1932

Abstract

There is growing awareness of pollinator declines worldwide. Conservation efforts have mainly focused on finding the direct causes, while paying less attention to building a systemic understanding of the fragility of these communities of pollinators. To fill this gap, we need operational measures of network resilience that integrate two different approaches in theoretical ecology. First, we should consider the range of conditions compatible with the stable coexistence of all of the species in a community. Second, we should address the rate and shape of network collapse once this safe operational space is exited. In this review, we describe this integrative approach and consider several mechanisms that may enhance the resilience of pollinator communities, chiefly rewiring the network of interactions, increasing heterogeneity, allowing variance, and enhancing coevolution. The most pressing need is to develop ways to reduce the gap between these theoretical recommendations and practical applications. This perspective shifts the emphasis from traditional approaches focusing on the equilibrium states to strategies that allow pollination networks to cope with global environmental change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120120-102424
2023-01-23
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120120-102424.html?itemId=/content/journals/10.1146/annurev-ento-120120-102424&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aizen MA, Aguiar S, Biesmeijer JC, Garibaldi LA, Inouye DW et al. 2019. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25:103516–27
    [Google Scholar]
  2. 2.
    Alberch P. 1989. The logic of monsters: evidence for internal constraint in development and evolution. Geobios 22:21–57
    [Google Scholar]
  3. 3.
    Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S et al. 1998. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12:18–17
    [Google Scholar]
  4. 4.
    Allesina S, Tang S. 2012. Stability criteria for complex ecosystems. Nature 483:7388205–8
    [Google Scholar]
  5. 5.
    Aparicio A, Velasco-Hernández JX, Moog CH, Liu YY, Angulo MT. 2021. Structure-based identification of sensor species for anticipating critical transitions. PNAS 118:51e2104732118
    [Google Scholar]
  6. 6.
    Arroyo MTK, Primack R, Armesto JJ. 1982. Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am. J. Bot. 69:82–97
    [Google Scholar]
  7. 7.
    Barbour MA, Greyson-Gaito CJ, Sotoodeh A, Locke B, Bascompte J. 2020. Loss of consumers constrains phenotypic evolution in the resulting food web. Evol. Lett. 4:3266–77
    [Google Scholar]
  8. 8.
    Barbour MA, Kliebenstein DJ, Bascompte J. 2022. A keystone gene underlies the persistence of an experimental food web. Science 376:70–73
    [Google Scholar]
  9. 9.
    Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH et al. 2012. Approaching a state shift in Earth's biosphere. Nature 486:740152–58
    [Google Scholar]
  10. 10.
    Bartomeus I, Saavedra S, Rohr RP, Godoy O. 2021. Experimental evidence of the importance of multitrophic structure for species persistence. PNAS 118:12e2023872118
    [Google Scholar]
  11. 11.
    Bascompte J. 2009. Disentangling the web of life. Science 325:5939416–19
    [Google Scholar]
  12. 12.
    Bascompte J, Ferrera A 2020. A structural theory of mutualistic networks. Theoretical Ecology: Concepts and Applications KS McCann, G Gellner 93–115 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  13. 13.
    Bascompte J, García MB, Ortega R, Rezende EL, Pironon S. 2019. Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Sci. Adv. 5:5eaav2539
    [Google Scholar]
  14. 14.
    Bascompte J, Jordano P. 2007. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38:567–93
    [Google Scholar]
  15. 15.
    Bascompte J, Jordano P, Melián CJ, Olesen JM. 2003. The nested assembly of plant-animal mutualistic networks. PNAS 100:169383–87
    [Google Scholar]
  16. 16.
    Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J. 2009. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:72411018–20
    [Google Scholar]
  17. 17.
    Biesmeijer J, Roberts S, Reemer M, Ohlemüller R, Edwards M et al. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–54
    [Google Scholar]
  18. 18.
    Bryden J, Gill R, Mitton R, Raine N, Jansen V 2013. Chronic sublethal stress causes bee colony failure. Ecol. Lett. 16:1463–69
    [Google Scholar]
  19. 19.
    Burgos E, Ceva H, Perazzo RP, Devoto M, Medan D et al. 2007. Why nestedness in mutualistic networks?. J. Theor. Biol. 249:2307–13
    [Google Scholar]
  20. 20.
    Burkle LA, Marlin JC, Knight TM. 2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:61271611–15
    [Google Scholar]
  21. 21.
    Carpenter SR, Brock WA, Folke C, Nes EHV, Scheffer M. 2015. Allowing variance may enlarge the safe operating space for exploited ecosystems. PNAS 112:4614384–89
    [Google Scholar]
  22. 22.
    Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA et al. 2011. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332:60331079–82
    [Google Scholar]
  23. 23.
    Cenci S, Saavedra S. 2018. Structural stability of nonlinear population dynamics. Phys. Rev. E 97:1012401
    [Google Scholar]
  24. 24.
    Dai L, Vorselen D, Korolev KS, Gore J. 2012. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336:60851175–77
    [Google Scholar]
  25. 25.
    Dakos V, Bascompte J. 2014. Critical slowing down as early warning for the onset of collapse in mutualistic communities. PNAS 111:4917546–51
    [Google Scholar]
  26. 26.
    de Andreazzi CS, Astegiano J, Guimarães PR. 2020. Coevolution by different functional mechanisms modulates the structure and dynamics of antagonistic and mutualistic networks. Oikos 129:2224–37
    [Google Scholar]
  27. 27.
    Diaz S, Chapin FI, Potts S. 2005. Biodiversity regulation of ecosystem services. Ecosystems and Human Well-Being: Current State and Trends, Vol. 1 Millenn. Ecosyst. Assess 297–329 Washington, DC: Island Press
    [Google Scholar]
  28. 28.
    Drake JM, Griffen BD. 2010. Early warning signals of extinction in deteriorating environments. Nature 467:7314456–59
    [Google Scholar]
  29. 29.
    Dunne JA, Williams RJ, Martinez ND. 2002. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5:4558–67
    [Google Scholar]
  30. 30.
    Ebeling A, Klein A, Schumacher J, Weisser WW, Tscharntke T. 2008. How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos 117:121808–15
    [Google Scholar]
  31. 31.
    Fares S, Mugnozza G, Corona P, Palahí M. 2015. Sustainability: five steps for managing Europe's forests. Nature 519:407–9
    [Google Scholar]
  32. 32.
    Fontaine C, Dajoz I, Meriguet J, Loreau M. 2006. Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLOS Biol. 4:1e1
    [Google Scholar]
  33. 33.
    Gao J, Barzel B, Barabási AL. 2016. Universal resilience patterns in complex networks. Nature 530:7590307–12
    [Google Scholar]
  34. 34.
    Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R et al. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:61271608–11
    [Google Scholar]
  35. 35.
    Gawecka KA, Pedraza F, Bascompte J. 2022. Effects of habitat destruction on coevolving metacommunities. Ecol. Lett. In press
    [Google Scholar]
  36. 36.
    Genung MA, Lessard JP, Brown CB, Bunn WA, Cregger MA et al. 2010. Non-additive effects of genotypic diversity increase floral abundance and abundance of floral visitors. PLOS ONE 5:1e8711
    [Google Scholar]
  37. 37.
    Ghazoul J. 2006. Floral diversity and the facilitation of pollination. J. Ecol. 94:2295–304
    [Google Scholar]
  38. 38.
    Gilarranz LJ, Rayfield B, Linan-Cembrano G, Bascompte J, Gonzalez A. 2017. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357:6347199–201
    [Google Scholar]
  39. 39.
    Gonzalez A, Rayfield B, Lindo Z. 2011. The disentangled bank: how loss of habitat fragments and disassembles ecological networks. Am. J. Bot. 98:3503–16
    [Google Scholar]
  40. 40.
    Goulson D, Nicholls E, Botías C, Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:62291255957
    [Google Scholar]
  41. 41.
    Grilli J, Adorisio M, Suweis S, Barabás G, Banavar JR et al. 2017. Feasibility and coexistence of large ecological communities. Nat. Commun. 8:523
    [Google Scholar]
  42. 42.
    Guimarães PR Jr. 2020. The structure of ecological networks across levels of organization. Annu. Rev. Ecol. Evol. Syst. 51:433–60
    [Google Scholar]
  43. 43.
    Guimarães PR Jr., Rico-Gray V, Oliveira P, Izzo TJ, dos Reis SF, Thompson JN 2007. Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr. Biol. 17:201797–803
    [Google Scholar]
  44. 44.
    Guimerà R, Amaral LAN. 2005. Functional cartography of complex metabolic networks. Nature 433:895–900
    [Google Scholar]
  45. 45.
    Hagen M, Kissling WD, Rasmussen C, Aguiar MAD, Brown LE et al. 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46:89–210
    [Google Scholar]
  46. 46.
    Haldane AG, May RM. 2011. Systemic risk in banking ecosystems. Nature 469:7330351–55
    [Google Scholar]
  47. 47.
    Hattab T, Leprieur F, Ben Rais Lasram F, Gravel D, Le Loc'h F, Albouy C 2016. Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change. Ecography 39:121227–37
    [Google Scholar]
  48. 48.
    Henry M, Béguin M, Requier F, Rollin O, Odoux JF et al. 2012. A common pesticide decreases foraging success and survival in honey bees. Science 336:6079348–50
    [Google Scholar]
  49. 49.
    Holling CS. 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst. 4:1–23
    [Google Scholar]
  50. 50.
    Holmgren N, Norrström N, Aps R, Kuikka S. 2014. A concept of Bayesian regulation in fisheries management. PLOS ONE 9:11e111614
    [Google Scholar]
  51. 51.
    Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L et al. 2009. Ecological networks—beyond food webs. J. Anim. Ecol. 78:1253–69
    [Google Scholar]
  52. 52.
    Janzen DH. 1974. The deflowering of Central America. Nat. Hist. 83:48–53
    [Google Scholar]
  53. 53.
    Janzen DH, Hallwachs W. 2021. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let's be kind to the survivors. PNAS 118:2e2002546117
    [Google Scholar]
  54. 54.
    Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V. 2019. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100:2e02569
    [Google Scholar]
  55. 55.
    Justus J. 2014. Ecological and Lyapunov stability. Philos. Sci. 75:421–36
    [Google Scholar]
  56. 56.
    Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S et al. 2020. Fire and biodiversity in the Anthropocene. Science 370:6519eabb0355
    [Google Scholar]
  57. 57.
    Kudo G, Ida TY. 2013. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94:102311–20
    [Google Scholar]
  58. 58.
    Lever JJ, van de Leemput IA, Weinans E, Quax R, Dakos V et al. 2020. Foreseeing the future of mutualistic communities beyond collapse. Ecol. Lett. 23:12–15
    [Google Scholar]
  59. 59.
    Lever JJ, Van Nes EH, Scheffer M, Bascompte J. 2014. The sudden collapse of pollinator communities. Ecol. Lett. 17:3350–59
    [Google Scholar]
  60. 60.
    Levine JM, Bascompte J, Adler PB, Allesina S. 2017. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546:765656–64
    [Google Scholar]
  61. 61.
    López-Uribe MM, Soro A, Jha S. 2017. Conservation genetics of bees: advances in the application of molecular tools to guide bee pollinator conservation. Conserv. Genet. 18:3501–6
    [Google Scholar]
  62. 62.
    May RM. 1972. Will a large complex system be stable?. Nature 238:5364413–14
    [Google Scholar]
  63. 63.
    McCann KS. 2000. The diversity-stability debate. Nature 405:228–33
    [Google Scholar]
  64. 64.
    Meeus I, Brown M, De Graaf D, Smagghe G. 2011. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25:4662–71
    [Google Scholar]
  65. 65.
    Memmott J, Craze PG, Waser NM, Price MV. 2007. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 10:8710–17
    [Google Scholar]
  66. 66.
    Memmott J, Waser NM, Price MV. 2004. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271:15572605–11
    [Google Scholar]
  67. 67.
    Moreira F, Ascoli D, Safford H, Adams MA, Moreno JM et al. 2020. Wildfire management in Mediterranean-type regions: paradigm change needed. Environ. Res. Lett. 15:1011001
    [Google Scholar]
  68. 68.
    Morone F, Ferraro GD, Makse HA. 2019. The k-core as a predictor of structural collapse in mutualistic ecosystems. Nat. Phys. 15:195–102
    [Google Scholar]
  69. 69.
    Newman MEJ, Girvan M. 2004. Finding and evaluating community structure in networks. Phys. Rev. E 69:026113
    [Google Scholar]
  70. 70.
    Nosil P, Gompert Z. 2022. Eco-evolutionary effects of keystone genes. Science 376:658830–31
    [Google Scholar]
  71. 71.
    Okuyama T, Holland JN. 2008. Network structural properties mediate the stability of mutualistic communities. Ecol. Lett. 11:3208–16
    [Google Scholar]
  72. 72.
    Pascual M, Dunne JA. 2006. Ecological Networks: Linking Structure to Dynamics in Food Webs Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  73. 73.
    Pellissier L, Rohr RP, Ndiribe C, Pradervand JN, Salamin N et al. 2013. Combining food web and species distribution models for improved community projections. Ecol. Evol. 3:134572–83
    [Google Scholar]
  74. 74.
    Pimm SL. 1984. The complexity and stability of ecosystems. Nature 307:321–26
    [Google Scholar]
  75. 75.
    Pires MM, O'Donnell JL, Burkle LA, Díaz-Castelazo C, Hembry DH et al. 2020. The indirect paths to cascading effects of extinctions in mutualistic networks. Ecology 101:7e03080
    [Google Scholar]
  76. 76.
    Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25:6345–53
    [Google Scholar]
  77. 77.
    Potts SG, Vulliamy B, Dafni A, Ne'eman G, Willmer P 2003. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84:102628–42
    [Google Scholar]
  78. 78.
    Ramos SE, Schiestl FP. 2019. Rapid plant evolution driven by the interaction of pollination and herbivory. Science 364:6436193–96
    [Google Scholar]
  79. 79.
    Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J. 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–28
    [Google Scholar]
  80. 80.
    Rohr RP, Saavedra S, Bascompte J. 2014. On the structural stability of mutualistic systems. Science 345:61951253497
    [Google Scholar]
  81. 81.
    Saavedra S, Rohr RP, Dakos V, Bascompte J. 2013. Estimating the tolerance of species to the effects of global environmental change. Nat. Commuun. 4:2350
    [Google Scholar]
  82. 82.
    Saavedra S, Rohr RP, Olesen JM, Bascompte J. 2016. Nested species interactions promote feasibility over stability during the assembly of a pollinator community. Ecol. Evol. 6:4997–1007
    [Google Scholar]
  83. 83.
    Sabatino M, Maceira N, Aizen AM. 2010. Direct effects of habitat area on interaction diversity in pollination webs. Ecol. Appl. 20:1491–97
    [Google Scholar]
  84. 84.
    Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR et al. 2009. Early-warning signals for critical transitions. Nature 461:726053–59
    [Google Scholar]
  85. 85.
    Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:6856591–96
    [Google Scholar]
  86. 86.
    Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W et al. 2012. Anticipating critical transitions. Science 338:6105344–48
    [Google Scholar]
  87. 87.
    Schleuning M, Fründ J, Schweiger O, Welk E, Albrecht J et al. 2016. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7:13965
    [Google Scholar]
  88. 88.
    Shuster S, Lonsdorf E, Wimp G, Bailey J, Whitham T. 2006. Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. Evolution 60:5991–1003
    [Google Scholar]
  89. 89.
    Siviter H, Bailes EJ, Martin CD, Oliver TR, Koricheva J et al. 2021. Agrochemicals interact synergistically to increase bee mortality. Nature 596:7872389–92
    [Google Scholar]
  90. 90.
    Skovmand LH, Xu CC, Servedio MR, Nosil P, Barrett RD, Hendry AP. 2018. Keystone genes. Trends Ecol. Evol. 33:9689–700
    [Google Scholar]
  91. 91.
    Solé R, Montoya JM. 2001. Complexity and fragility in ecological networks. Proc. R. Soc. B 268:14802039–45
    [Google Scholar]
  92. 92.
    Song C, Rohr RP, Saavedra S. 2018. A guideline to study the feasibility domain of multi-trophic and changing ecological communities. J. Theor. Biol. 450:30–36
    [Google Scholar]
  93. 93.
    Sonne J, Maruyama PK, González AMM, Rahbek C, Bascompte J, Dalsgaard B. 2022. Extinction, coextinction and colonization dynamics in plant–hummingbird networks under climate change. Nat. Ecol. Evol. 6:720–29
    [Google Scholar]
  94. 94.
    Spiesman BJ, Inouye BD. 2013. Habitat loss alters the architecture of plant–pollinator interaction networks. Ecology 94:122688–96
    [Google Scholar]
  95. 95.
    Staniczenko PP, Sivasubramaniam P, Suttle KB, Pearson RG. 2017. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks. Ecol. Lett. 20:6693–707
    [Google Scholar]
  96. 96.
    Stouffer DB, Bascompte J. 2011. Compartmentalization increases food-web persistence. PNAS 108:93648–52
    [Google Scholar]
  97. 97.
    Strogatz SH. 1994. Nonlinear Dynamics and Chaos New York: Perseus Books
    [Google Scholar]
  98. 98.
    Stuligross C, Williams NM. 2021. Past insecticide exposure reduces bee reproduction and population growth rate. PNAS 118:48e2109909118
    [Google Scholar]
  99. 99.
    Suweis S, Simini F, Banavar JR, Maritan A. 2013. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500:7463449–52
    [Google Scholar]
  100. 100.
    Thébault E, Fontaine C. 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:5993853–56
    [Google Scholar]
  101. 101.
    Thom R. 1994. Structural Stability and Morphogenesis Boston: Addison-Wesley
    [Google Scholar]
  102. 102.
    Traveset A, Castro-Urgal R, Rotllàn-Puig X, Lázaro A 2018. Effects of habitat loss on the plant–flower visitor network structure of a dune community. Oikos 127:145–55
    [Google Scholar]
  103. 103.
    Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11:121351–63
    [Google Scholar]
  104. 104.
    van Nes EH, Arani BM, Staal A, van der Bolt B, Flores BM et al. 2016. What do you mean, “tipping point. ”? Trends Ecol. Evol. 31:902–4
    [Google Scholar]
  105. 105.
    Vandermeer JH. 1970. The community matrix and the number of species in a community. Am. Nat. 104:73–83
    [Google Scholar]
  106. 106.
    Vieira MC, Almeida-Neto M. 2015. A simple stochastic model for complex coextinctions in mutualistic networks: Robustness decreases with connectance. Ecol. Lett. 18:2144–52
    [Google Scholar]
  107. 107.
    Wang R, Dearing JA, Langdon PG, Zhang E, Yang X et al. 2012. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492:7429419–22
    [Google Scholar]
  108. 108.
    Whitehorn PR, O'Connor S, Wackers FL, Goulson D. 2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:6079351–52
    [Google Scholar]
  109. 109.
    Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK et al. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7:7510–23
    [Google Scholar]
  110. 110.
    Wuest SE, Niklaus PA. 2018. A plant biodiversity effect resolved to a single chromosomal region. Nat. Ecol. Evol. 2:121933–39
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120120-102424
Loading
/content/journals/10.1146/annurev-ento-120120-102424
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error