1932

Abstract

Mites are masters at attaching to larger animals, often insects, in a temporary symbiosis called phoresy that allows these tiny animals to exploit patchy resources. In this article, we examine phoresy in the Acari, including those that feed on their carriers in transit, from a broad perspective. From a phylogenetic perspective, phoresy has evolved several times from free-living ancestors but also has been lost frequently. Rotting logs appear to be the first patchy resource exploited by phoretic mites, but the evolution of rapid life cycles later permitted exploitation of short-lived resources. As phoresy is a temporary symbiosis, most species have off-host interactions with their carrier. These relationships can be highly complex and context dependent but often are exploitative of the carrier's resources or progeny. Transitions from phoresy to parasitism seem widespread, but evidence for transitions from obligate phoretic parasitism to permanent parasitism is weak.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-013329
2023-01-23
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120220-013329.html?itemId=/content/journals/10.1146/annurev-ento-120220-013329&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Athias-Binche F. 1984. La phorésie chez les acariens uropodides (Anactinotriches), une stratégie écologique originale. Acta Ecol. Ecol. Gen. 5:119–33
    [Google Scholar]
  2. 2.
    Athias-Binche F 1984. Phoresy in Uropodina (Anactinotrichida), occurrence, demographic involvements and ecological significance. Acarology, Vol. 1 DA Griffiths, CE Bowman 276–85 Chichester, UK: Ellis Horwood
    [Google Scholar]
  3. 3.
    Athias-Binche F. 1994. La Phorésie chez les acariens. Aspects adaptatifs et évolutifs. Perpignan, France: Éd. Castillet
    [Google Scholar]
  4. 4.
    Athias-Binche F. 1995. Phenotypic plasticity, polymorphisms in variable environments and some evolutionary consequences in phoretic mites (Acarina): a review. Ecologie 26:225–41
    [Google Scholar]
  5. 5.
    Athias-Binche F, Morand S. 1993. From phoresy to parasitism: the example of mites and nematodes. Res. Rev. Parasitol. 53:73–79
    [Google Scholar]
  6. 6.
    Atyeo WT, Gaud J 1979. Feather mites and their hosts. Recent Advances in Acarology, Vol. II JG Rodriguez 355–61 New York: Academic
    [Google Scholar]
  7. 7.
    Bartlow AW, Agosta SJ. 2021. Phoresy in animals: review and synthesis of a common but understudied mode of dispersal. Biol. Rev. 96:223–46
    [Google Scholar]
  8. 8.
    Baumann J. 2018. Tiny mites on a great journey—a review on scutacarid mites as phoronts and inquilines (Heterostigmatina, Pygmephoroidea, Scutacaridae). Acarologia 58:192–251
    [Google Scholar]
  9. 9.
    Beati L, Klompen H. 2019. Phylogeography of ticks (Acari: Ixodida). Annu. Rev. Entomol. 64:379–97
    [Google Scholar]
  10. 10.
    Beaulieu F, Déchêne AD, Walter DE. 2008. Phase morphs and phoresy: new species of Antennoseius (Vitzthumia) mites (Acari: Mesostigmata: Ascidae) associated with pyrophilous carabids (Carabidae: Sericoda spp.) in Alberta, Canada. Zootaxa 1961:37–57
    [Google Scholar]
  11. 11.
    Beaulieu F, Dowling APG, Klompen H, de Moraes GJ, Walter DE. 2011. Superorder Parasitiformes Reuter, 1909. Zootaxa 3148:123–28
    [Google Scholar]
  12. 12.
    Beninger CW. 1993. Egg predation by Poecilochirus carabi (Mesostigmata: Parasitidae) and its effect on reproduction of Nicrophorus vespilloides (Coleoptera: Silphidae). Econ. Entomol. 22:766–69
    [Google Scholar]
  13. 13.
    Biani NB, Mueller UG, Wcislo WT. 2009. Cleaner mites: sanitary mutualism in the miniature ecosystem of Neotropical bee nests. Am. Nat. 173:841–47
    [Google Scholar]
  14. 14.
    Binns ES. 1982. Phoresy as migration—some functional aspects of phoresy in mites. Biol. Rev. 57:571–620
    [Google Scholar]
  15. 15.
    Blackman SW. 1997. Experimental evidence that the mite Poecilochirus davydovae (Mesostigmata: Parasitidae) eats the eggs of its beetle host. J. Zool. Lond. 242:63–67
    [Google Scholar]
  16. 16.
    Bochkov AV. 2004. Mites of the family Cheyletidae (Acari: Prostigmata): phylogeny, distribution, evolution and analysis of parasite-host relationships. Parazitologiia 38:122–38
    [Google Scholar]
  17. 17.
    Bochkov AV, Klimov PB. 2005. Three new species of the predaceous Cheyletidae (Acari: Prostigmata) phoretic on insects. Acarina 13:15–22
    [Google Scholar]
  18. 18.
    Bohonak AJ, Smith BP, Thornton M. 2004. Distributional, morphological and generic consequences of dispersal for temporary pond water mites. Freshw. Biol. 49:170–80
    [Google Scholar]
  19. 19.
    Britto EPJ, Finotti AS, de Moraes GJ. 2015. Diversity and population dynamics of Ascidae, Blattisociidae and Melicharidae (Acari: Mesostigmata) in tropical flowers in Brazil. Exp. Appl. Acarol. 66:203–17
    [Google Scholar]
  20. 20.
    Butler L, Hunter PE. 1968. Redescription of Megisthanus floridanus with observations on its biology (Acarina: Megisthanidae). Fla. Entomol. 51:187–97
    [Google Scholar]
  21. 21.
    Camerik AM 2010. Phoresy revisited. Trends in Acarology M Sabelis, J Bruin 333–36 Berlin: Springer
    [Google Scholar]
  22. 22.
    Colwell RK. 1973. Competition and coexistence in a simple tropical community. Am. Nat. 107:737–60
    [Google Scholar]
  23. 23.
    Cowan DP. 1984. Life history and male dimorphism in the mite Kennethiella trisetosa (Acarina: Winterschmidtiidae), and its symbiotic relationship with the wasp Ancistrocerus antilope (Hymenoptera: Eumenidae). Ann. Entomol. Soc. Am. 77:725–32
    [Google Scholar]
  24. 24.
    Cross EA, Bohart GE. 1978. Some observations of the habits and distribution of Trochometridium Cross, 1965 (Acarina: Pyemotidae). Acarologia 20:286–93
    [Google Scholar]
  25. 25.
    Crowell RM, Davids C. 1979. Systematics of Unionicola laurentiana, n.sp., and U. neartica, n.sp., sponge-associated Hydracarina (Parasitengona: Unionicolidae) from North America. Ohio J. Sci. 79:178–86
    [Google Scholar]
  26. 26.
    Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J. 2010. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 56:222–41
    [Google Scholar]
  27. 27.
    Derne BT, Hutchinson MN, Weinstein P, Gardner MG, Halliday B. 2018. Parasite in peril? A new species of mite in the genus Ophiomegistus Banks (Parasitiformes: Paramegistidae) on an endangered host, the pygmy bluetongue lizard Tiliqua adelaidensis (Peters) (Squamata: Scincidae). Aust. Ecol. 44:420–32
    [Google Scholar]
  28. 28.
    Dowling APG, O'Connor BM 2010. Phylogenetic relationships within the suborder Dermanyssina (Acari: Parasitiformes) and a test of dermanyssoid monophyly. Int. J. Acarol. 36:299–312
    [Google Scholar]
  29. 29.
    Dunlop JA, Frahnert K, Mąkol J. 2018. A giant mite in Cretaceous Burmese amber. Foss. Rec. 21:285–90
    [Google Scholar]
  30. 30.
    Edwards DD, Dimock RV Jr. 1995. Specificity of the host recognition behaviour of larval Unionicola (Acari: Unionicolidae): the effects of larval ontogeny and early larval experience. Anim. Behav. 50:343–52
    [Google Scholar]
  31. 31.
    Eickwort GC. 1990. Associations of mites with social insects. Annu. Rev. Entomol. 35:469–88
    [Google Scholar]
  32. 32.
    Elbadry EA, Tawfik MSF. 1966. Life cycle of the mite Adactylidium sp. (Acarina: Pyemotidae), a predator of thrips eggs in the United Arab Republic. Ann. Entomol. Soc. Am. 59:458–61
    [Google Scholar]
  33. 33.
    Ermilov SG, Frolov AV. 2019. Ramusella (Dosangoppia) bochkovi (Acari, Oribatida, Oppiidae), a new subgenus and species of oribatid mites phoretic on Ceratophyus polyceros (Pallas, 1771) (Coleoptera, Geotrupidae) from Russia. Syst. Appl. Acarol. 23:209–21
    [Google Scholar]
  34. 34.
    Ermilov SG, Frolov AV. 2021. New data on oribatid mites (Acari, Oribatida) phoretic on passalid beetles (Coleoptera, Passalidae) from the Afrotropical and Oriental regions, with descriptions of three new species from Congo, Gabon and Ghana. Syst. Appl. Acarol. 26:769–87
    [Google Scholar]
  35. 35.
    Fain A, Camerik AM. 1994. Notes on the mites of the genus Ereynetes Berlese (Acari: Ereynetinae), with description of five new species from South Africa. Bull. Inst. R. Sci. Nat. Belg. 64:145–64
    [Google Scholar]
  36. 36.
    Farish DJ, Axtell RC. 1971. Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia 13:16–29
    [Google Scholar]
  37. 37.
    Fashing NJ. 2010. Life history and biology of Hormosianoetus mallotae (Fashing) (Histiostomatidae: Astigmata), an obligatory inhabitant of water-filled treeholes. Int. J. Acarol. 36:189–98
    [Google Scholar]
  38. 38.
    Felska M, Wohltmann A, Makol J. 2018. A synopsis of host-parasite associations between Trombidioidea (Trombidiformes: Prostigmata, Parasitengona) and arthropod hosts. Syst. Appl. Acarol. 23:1375–479
    [Google Scholar]
  39. 39.
    Filipponi A. 1955. Sulla natura dell'associazione tra Macrocheles muscaedomesticae e Musca domestica. Riv. Parassitol. 16:83–102
    [Google Scholar]
  40. 40.
    Franks NR, Healey KJ, Byrom L. 1991. Studies on the relationship between the ant ectoparasite Antennophorus grandis (Acarina: Antennophoridae) and its host Lasius flavus (Hymenoptera: Formicidae). J. Zool. Lond. 225:59–70
    [Google Scholar]
  41. 41.
    Galvão AS, Melo JWS, Monteiro VB, Lima DB, de Moraes GJ, Gondim MGC Jr. 2012. Dispersal strategies of Aceria guerreronis (Acari: Eriophyidae), a coconut pest. Exp. Appl. Acarol. 57:1–13
    [Google Scholar]
  42. 42.
    Guerra TJ, Romero GQ, Costa JC, Lofego AC, Benson WW. 2012. Phoretic dispersal on bumblebees by bromeliad flower mites (Mesostigmata, Melicharidae). Insect Soc. 59:11–16
    [Google Scholar]
  43. 43.
    Halliday RB. 2019. The enemy of my parasite is my friend: the possible role of predatory mites as biological control agents of pest beetles in soil. Int. J. Acarol. 45:189–96
    [Google Scholar]
  44. 44.
    Hayashi K, Ichikawa T, Yasui Y. 2010. Life history of the newly discovered Japanese tree sap mite, Hericia sanukiensis (Acari, Astigmata, Algophagidae). Exp. Appl. Acarol. 50:35–49
    [Google Scholar]
  45. 45.
    Hofstetter RW, Cronin J, Klepzig KD, Moser JC, Ayres MP. 2006. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147:679–91
    [Google Scholar]
  46. 46.
    Hofstetter RW, Dempsey TD, Klepzig KD, Ayres MP. 2007. Temperature-dependent effects on mutualistic and phoretic associations. Community Ecol 8:47–56
    [Google Scholar]
  47. 47.
    Hofstetter RW, Dinkins-Bookwalter J, Davis TS, Klepzig KD 2015. Symbiotic associations of bark beetles. Bark Beetles: Biology and Ecology of Native and Invasive Species FE Vega, RW Hofstetter 209–45 New York: Academic
    [Google Scholar]
  48. 48.
    Hofstetter RW, Moser JC. 2014. The role of mites in insect-fungus associations. Annu. Rev. Entomol. 59:537–57
    [Google Scholar]
  49. 49.
    Houck MA. 1994. Adaptation and transition into parasitism from commensalism: a phoretic model. See Ref. 50 252–81 Berlin: Springer
    [Google Scholar]
  50. 50.
    Houck MA 1994. Mites: Ecological and Evolutionary Analyses of Life-History Patterns Berlin: Springer
    [Google Scholar]
  51. 51.
    Houck MA, Cohen AC. 1995. The potential role of phoresy in the evolution of parasitism: radiolabelling (tritium) evidence from an astigmatid mite. Exp. Appl. Acarol. 19:677–94
    [Google Scholar]
  52. 52.
    Houck MA, O'Connor BM 1991. Ecological and evolutionary significance of phoresy in the Astigmata. Annu. Rev. Entomol. 36:611–36
    [Google Scholar]
  53. 53.
    Hunter PE, Rosario RMT. 1988. Associations of Mesostigmata with other arthropods. Annu. Rev. Entomol. 33:393–417
    [Google Scholar]
  54. 54.
    Ito F. 2013. Evaluation of the benefits of a myrmecophilous oribatid mite, Aribates javensis, to a myrmecine ant, Myrmecina sp. Exp. Appl. Acarol. 61:79–85
    [Google Scholar]
  55. 55.
    Janet C. 1897. Etudes sur les Fourmis, les Guêpes et les Abeilles. Note 14, Rapports des Animaux Myrmécophiles aves les Fourmis Limoges, Fr.: VH Ducourtieux
    [Google Scholar]
  56. 56.
    Jauharlina J, Lindquist EE, Quinnell RJ, Robertson HG, Compton SG. 2012. Fig wasps as vectors of mites and nematodes. Afr. Entomol. 20:101–10
    [Google Scholar]
  57. 57.
    Joharchi O, Vorontsov D, Walter DE. 2021. Oldest determined record of a mesostigmatic mite (Acari: Mesostigmata: Sejidae) in Cretaceous Burmese amber. Acarologia 61:641–49
    [Google Scholar]
  58. 58.
    Kaliszewski M, Athias-Binche F, Lindquist EE. 1995. Parasitism and parasitoidism in Tarsonemina (Acari: Heterostigmata) and evolutionary considerations. Adv. Parasitol. 35:335–67
    [Google Scholar]
  59. 59.
    Katlav A, Hajiqanbar H, Talebi AA. 2015. A new genus and species of mites of the family Caraboacaridae (Acari: Heterostigmata) associated with Clivina ypsilon (Coleoptera: Carabidae) with notes on distribution and host range of the family. Can. Entomol. 147:370–80
    [Google Scholar]
  60. 60.
    Kethley JB. 1983. Modifications of the deutonymph of Uropodella lacinata Berlese, 1888, for phoretic dispersal (Acari: Parasitiformes). J. Ga. Entomol. Soc. 18:151–55
    [Google Scholar]
  61. 61.
    Khaustov AA, Poinar G Jr. 2011. Protoresinacarus brevipedis gen. n., sp. n. from early Cretaceous Burmese amber: the first fossil record of mites of the family Resinacaridae (Acari: Heterostigmata: Pyemotoidea). Hist. Biol. 23:219–22
    [Google Scholar]
  62. 62.
    Kim CM. 2004. Trigynaspida (Acari: Mesostigmata): new diagnosis, classification and phylogeny. Acarologia 44:157–94
    [Google Scholar]
  63. 63.
    Kinn DN. 1971. The Life Cycle and Behaviour of Cercoleipus coelonotus (Acarina: Mesostigmata) Including a Survey of Phoretic Mite Associates of California Scolytidae Univ. Calif. Publ. Entomol. 65 Berkeley, CA: Univ. Calif. Press
    [Google Scholar]
  64. 64.
    Kinn DN, Witcosky JJ. 1978. Variation in southern pine beetle attack height associated with phoretic uropodid mites. Can. Entomol. 110:249–51
    [Google Scholar]
  65. 65.
    Klimov PB, O'Connor B 2013. Is permanent parasitism reversible? Critical evidence from early evolution of house dust mites. Syst. Biol. 62:411–23
    [Google Scholar]
  66. 66.
    Klimov PB, O'Connor B, Chetverikov PE, Bolton SJ, Pepato AR et al. 2018. Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a long branch. Mol. Phylogenet. Evol. 119:105–17
    [Google Scholar]
  67. 67.
    Klimov PB, Vinson SB, O'Connor BM. 2007. Acarinaria in associations of apid bees (Hymenoptera) and chaetodactylid mites (Acari). Invertebr. Syst. 21:109–36
    [Google Scholar]
  68. 68.
    Klimov PB, Vorontsov DD, Azar D, Sidorchuk EA, Braig HR et al. 2021. A transitional fossil mite (Astigmata: Levantoglyphidae fam. n.) from the early Cretaceous suggests gradual evolution of phoresy related metamorphosis. Sci. Rep. 11:15113
    [Google Scholar]
  69. 69.
    Klompen H, Lekveishvili M, Black WC IV 2007. Phylogeny of parasitiform mites (Acari) based on rRNA. Mol. Phylogenet. Evol. 43:936–51
    [Google Scholar]
  70. 70.
    Knee W. 2017. A new Paraleius species (Acari, Oribatida, Scheloribatidae) associated with bark beetles (Curculionidae, Scolytinae) in Canada. ZooKeys 667:51–65
    [Google Scholar]
  71. 71.
    Knülle W. 1987. Genetic variability and ecological adaptability of hypopus formation in a stored product mite. Exp. Appl. Acarol. 3:21–32
    [Google Scholar]
  72. 72.
    Knülle W. 2003. Interaction between genetic and inductive factors controlling the expression of dispersal and dormancy morphs in dimorphic astigmatic mites. Evolution 57:828–38
    [Google Scholar]
  73. 73.
    Konikiewicz M, Mąkol J. 2018. Insight into the fossil fauna of terrestrial Parasitengona mites (Trombidiformes: Prostigmata)—the first representatives of Erythraeina Welbourn, 1991 and Trombidiina Welbourn, 1991 in Burmese amber. Cretac. Res. 89:60–74
    [Google Scholar]
  74. 74.
    Koulianos S, Schwarz HH. 1999. Reproduction, development and diet of Parasitellus fucorum (Mesostigmata: Parasitidae), a mite associated with bumblebees (Hymenoptera: Apidae). J. Zool. 248:267–69
    [Google Scholar]
  75. 75.
    Krantz GW. 1998. Reflections on the biology, morphology and ecology of the Macrochelidae. Exp. Appl. Acarol. 10:231–58
    [Google Scholar]
  76. 76.
    Krantz GW, Poinar GO Jr. 2004. Mites, nematodes and the multimillion dollar weevil. J. Nat. Hist. 38:135–41
    [Google Scholar]
  77. 77.
    Lachaud JP, Klompen H, Pérez-Lachaud G. 2016. Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association. Sci. Rep. 6:29995
    [Google Scholar]
  78. 78.
    Lan Q, Lu Z, Ke B, Liao J, Fan QH. 2017. Temperature and humidity effects on physogastric development and reproduction of the mushroom mite Dolichocybe pernicosa (Acari: Dolichocybidae). Syst. Appl. Acarol. 22:1843–48
    [Google Scholar]
  79. 79.
    Lara C, Ornelas JF. 2001. Nectar “theft” by hummingbird flower mites and its consequences for seed set in Moussonia deppeana. . Funct. Ecol. 15:78–84
    [Google Scholar]
  80. 80.
    Lara C, Ornelas JF. 2002. Effects of nectar theft by flower mites on hummingbird behavior and the reproductive success of their host plant, Moussonia deppeana (Gesneriaceae). Oikos 96:470–80
    [Google Scholar]
  81. 81.
    Lebedeva NV, Lebedev VD. 2007. Diversity of oribatid mites (Acari, Oribatei) and other soil microarthropods in plumage of raptors. Cauc. Entomol. Bull. 3:9–18
    [Google Scholar]
  82. 82.
    Lesne P. 1986. Moeurs du Limosina sacra Meig.[Dipt.]. Phénomènes de transport mutuel chez les animaux articulés. Origine du parasitisme chez les Insectes diptères. Bull. Soc. Entomol. Fr. 1:162–65
    [Google Scholar]
  83. 83.
    Lindquist EE. 1969. Review of Holarctic tarsonemid mites (Acarina: Prostigmata) parasitizing eggs of ipine bark beetles. Mem. Entomol. Soc. Can. 101:S60
    [Google Scholar]
  84. 84.
    Lindquist EE. 1986. The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetic, and systematic revision, with a reclassification of family group taxa in the Heterostigmata. Mem. Entomol. Soc. Can. 118:S136
    [Google Scholar]
  85. 85.
    Lindquist EE, Krantz GW, Walter DE 2009. Order Mesostigmata. A Manual of Acarology GE Krantz, DE Walter 124–232 Lubbock, TX: Texas Tech Univ. Press
    [Google Scholar]
  86. 86.
    Lindquist EE, O'Connor BM, Shaw MD, Sidorchuk EA 2020. Review of the genera Berlesia Canestrini, 1884, and Katidiseius Fain & Lukoschus, 1983, the subfamily Katydiseiinae Fain & Lukoschus, 1983, and their family group relationships (Acari: Mesostigmata: Gamasina), with description of three new species parasitic on gryllacridid crickets. Zootaxa 4857:5–70
    [Google Scholar]
  87. 87.
    Liu S, Li J, Guo K, Qiao H, Xu R et al. 2016. Seasonal phoresy as an overwintering strategy of a phytophagous mite. Sci. Rep. 6:25483
    [Google Scholar]
  88. 88.
    Lombardero MJ, Klepzig KD, Moser JC, Ayres MP. 2000. Biology, demography and community interactions of Tarsonemus (Acarina: Tarsonemidae) mites phoretic on Dendroctonus frontalis (Coleoptera: Scolytidae). Agric. For. Entomol. 2:193–202
    [Google Scholar]
  89. 89.
    Luong LT, Penoni LR, Horn CJ, Polak M. 2015. Physical and physiological costs of ectoparasitic mites on host flight endurance. Ecol. Entomol. 40:518–24
    [Google Scholar]
  90. 90.
    Luong LT, Subasinghe D. 2016. A facultative ectoparasite attains higher reproductive success as a parasite than its free-living conspecifics. Exp. Appl. Acarol. 71:63–70
    [Google Scholar]
  91. 91.
    Mackensen J, Bauhus J, Webber E. 2003. Decomposition rates of coarse woody debris—a review with particular emphasis on Australian tree species. Aust. J. Bot. 51:27–37
    [Google Scholar]
  92. 92.
    Magowski WŁ. 1994. Discovery of the first representative of the mite subcohort Heterostigmata (Arachnida: Acari) in the Mesozoic Siberian amber. Acarologia 35:229–41
    [Google Scholar]
  93. 93.
    Magowski WŁ. 1995. Fossil heterostigmatid mites in amber—85 million year-old arthropod mite relationships. The Acari: Physiological and Ecological Aspects of Acari-Host Relationships D Kropczyńska, J Boczek, A Tomczyk 53–58 Krynica, Pol.: DABOR Publ. House
    [Google Scholar]
  94. 94.
    McKinney MI, Park YL. 2013. Distribution of Chaetodactylus krombeini (Acari: Chaetodactylidae) with Osmia corniforns (Hymenoptera: Megachilidae) nests: implications for population management. Exp. Appl. Acarol. 60:153–61
    [Google Scholar]
  95. 95.
    Moraza ML, Lindquist EE. 2015. Systematics and biology of mites associated with Neotropical hispine beetles in unfurled leaves of Heliconia, with descriptions of two new genera of the family Melicharidae (Acari: Mesostigmata: Gamasina: Ascoidea). Zootaxa 3931:301–51
    [Google Scholar]
  96. 96.
    Moser JC. 1975. Mite predators of the southern pine beetle. Ann. Entomol. Soc. Am. 68:1113–16
    [Google Scholar]
  97. 97.
    Moser JC, Cross EA. 1975. Phoretomorph: a new phoretic phase unique to the Pyemotidae (Acarina: Tarsonemoidea). Ann. Entomol. Soc. Am. 68:820–22
    [Google Scholar]
  98. 98.
    Moser JC, Kiełczewski B, Wiśniewski J, Bałazy S. 1978. Evaluating Pyemotes dryas (Vitzthum 1923) (Acari: Pyemotidae) as a parasite of the southern pine beetle. Int. J. Acarol. 4:67–70
    [Google Scholar]
  99. 99.
    Nehring V, Teubner H, König S. 2019. Dose-independent virulence in phoretic mites that parasitize burying beetles. Int. J. Parasitol. 49:759–67
    [Google Scholar]
  100. 100.
    Norton RA. 1980. Observations on phoresy by oribatid mites (Acari: Oribatei). Int. J. Acarol. 6:121–30
    [Google Scholar]
  101. 101.
    Norton RA. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. See Ref. 50 99–135
  102. 102.
    Norton RA, Kethley JB, Johnston DE, O'Connor BM 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. Evolution and Diversity of Sex Ratio in Insects and Mites D Wrensch, MA Ebbert 8–99 New York: Chapman & Hall
    [Google Scholar]
  103. 103.
    O'Connor BM. 1982. Evolutionary ecology of astigmatid mites. Annu. Rev. Entomol. 27:385–409
    [Google Scholar]
  104. 104.
    O'Connor BM. 1994. Life-history modifications in astigmatid mites. . See Ref. 50 136–59
  105. 105.
    O'Connor BM 2009. Cohort Astigmata. A Manual of Acarology GE Krantz, DE Walter 565–657 Lubbock, TX: Texas Tech Univ. Press
    [Google Scholar]
  106. 106.
    Okabe K. 1999. Morphology and ecology in deutonymphs of non-psoroptid Astigmata. J. Acarol. Soc. Jpn. 8:89–101
    [Google Scholar]
  107. 107.
    Okabe K. 2013. Ecological characteristics of insects that affect symbiotic relationships with mites. Entomol. Sci. 16:363–78
    [Google Scholar]
  108. 108.
    Okabe K, Makino S. 2008. Life cycle and sexual mode adaptations of the parasitic mite Ensliniella parasitica (Acari: Winterschmidtiidae) to its host, the eumenine wasp Allodynerus delphinalis (Hymenoptera: Vespidae). Can. J. Zool. 86:470–78
    [Google Scholar]
  109. 109.
    Okabe K, Makino S. 2008. Parasitic mites as part-time bodyguards of a host wasp. Proc. R. Soc. B 275:2293–97
    [Google Scholar]
  110. 110.
    Okabe K, Makino S. 2010. Conditional mutualism between Allodynerus delphinalis (Hymenoptera: Vespidae) and Ensliniella parasitica (Astigmata: Winterschmidtiidae) may determine maximum parasitic mite infestation. Environ. Entomol. 39:424–29
    [Google Scholar]
  111. 111.
    Ontano AZ, Gainett G, Aharon S, Ballesteros JA, Benavides LR et al. 2020. Taxonomic sampling and rare genomic changes overcome long-branch attraction in the phylogenetic placement of pseudoscorpions. Mol. Biol. Evol. 38:2446–67
    [Google Scholar]
  112. 112.
    Palevsky E, Soroker V, Weintraub P, Mansour F, Abo-Moch F, Gerson U. 2001. How species-specific is the phoretic relationship between the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae), and its insect hosts?. Exp. Appl. Acarol. 25:217–24
    [Google Scholar]
  113. 113.
    Pfammatter JA, Coyle DR, Gandhi KJK, Hernandez N, Hofstetter RW et al. 2016. Structure of phoretic mite assemblages across subcortical beetle species at a regional scale. Environ. Entomol. 45:53–65
    [Google Scholar]
  114. 114.
    Polak M. 1996. Ectoparasitic effects on host survival and reproduction: the Drosophila-Macrocheles association. Ecology 77:1379–89
    [Google Scholar]
  115. 115.
    Polak M. 1998. Effects of ectoparasitism on host condition in the Drosophila-Macrocheles system. Ecology 79:1807–17
    [Google Scholar]
  116. 116.
    Qu SX, Li HP, Ma L, Song JD, Hou LJ, Lin JS. 2015. Temperature-dependent development and reproductive traits of Tyrophagus putrescentiae (Sarcoptiformes: Acaridae) reared on different edible mushrooms. Environ. Entomol. 44:392–99
    [Google Scholar]
  117. 117.
    Radovsky FJ. 1994. The evolution of parasitism and the distribution of some dermanyssoid mites (Mesostigmata) on vertebrate hosts. See Ref. 50 186–217
  118. 118.
    Rahmatzaei B, Hajiqanbar H, Mortazavi A, Husemann M. 2021. Global distribution and host range of the endoparasitic mite genus Locustacarus (Acari: Podapolipidae) with description of a new species from Iran parasitizing grasshoppers (Orthoptera: Acrididae). Syst. Parasitol. 98:487–501
    [Google Scholar]
  119. 119.
    Rath W, Delfinado-Baker M, Drescher W. 1991. Observations on the mating behaviour, sex ratio, phoresy and dispersal of Tropilaelaps clareae (Acari: Laelapidae). Int. J. Acarol. 17:201–8
    [Google Scholar]
  120. 120.
    Rettenmeyer CW, Rettenmeyer ME, Joseph J, Berghoff SM 2011. The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates. Insect Soc. 58:281–92
    [Google Scholar]
  121. 121.
    Robin N, Béthoux O, Sidorchuk E, Cui Y, Li Y et al. 2016. A Carboniferous mite on an insect reveals the antiquity of an inconspicuous interaction. Curr. Biol. 26:1376–82
    [Google Scholar]
  122. 122.
    Schäffer S, Koblmüller S. 2020. Unexpected diversity in the host-generalist oribatid mite Paraleius leontonychus (Oribatida, Scheloribatidae) phoretic on Palearctic bark beetles. PeerJ 8:e9710
    [Google Scholar]
  123. 123.
    Schatz H, Behan-Pelletier VM, O'Connor BM, Norton RA. 2011. Suborder Oribatida van der Hammen, 1968. Zootaxa 3148:141–48
    [Google Scholar]
  124. 124.
    Schedwill P, Paschkewitz S, Teubner H, Steinmetz N, Nehring V. 2020. From the host's point of view: effects of variation in burying beetle brood care and brood size on the interaction with parasitic mites. PLOS ONE 15:e0228047
    [Google Scholar]
  125. 125.
    Schmidt AR, Jancke S, Lindquist EE, Ragazzi E, Roghi G et al. 2012. Arthropods in amber from the Triassic Period. PNAS 108:14796–801
    [Google Scholar]
  126. 126.
    Schwarz HH, Walzl MG. 1996. Pairing, oviposition and development in two sibling species of phoretic mites (Acari: Mesostigmata: Parasitidae: Poecilochirus spp.) associated with burying beetles (Coleoptera: Silphidae: Nicrophorus spp.). J. Nat. Hist. 30:1337–48
    [Google Scholar]
  127. 127.
    Seeman OD. 1996. Flower mites and phoresy: the biology of Hattena panopla Domrow and Hattena cometis Domrow (Acari: Mesostigmata: Ameroseiidae). Aust. J. Zool. 44:193–202
    [Google Scholar]
  128. 128.
    Seeman OD. 2000. Life cycle, development, feeding and immature life stages of the Fedrizziidae (Mesostigmata: Fedrizzioidea). Acarologia 41:39–52
    [Google Scholar]
  129. 129.
    Seeman OD. 2008. Systematics and phylogeny of Chrysomelobia species (Acari: Podapolipidae), sexually transmitted parasites of chrysomelid beetles. Invertebr. Syst. 22:55–84
    [Google Scholar]
  130. 130.
    Seeman OD. 2017. Megisthanus leviathanicus sp. nov. (Parasitiformes: Megisthanidae), the largest known Mesostigmata, a symbiont of the beetle Mastachilus australasicus (Coleoptera: Passalidae). Int. J. Acarol. 43:263–85
    [Google Scholar]
  131. 131.
    Seeman OD. 2021. Contrasting species diversification of Eutarsopolipus (Acariformes: Podapolipidae) on Castelnaudia and Notonomus (Coleoptera: Carabidae). Zootaxa 4971:174
    [Google Scholar]
  132. 132.
    Seguy E. 1950. Phoresie et role pathogene chez les insectes dipteres. Eos 1950:315–24
    [Google Scholar]
  133. 133.
    Shaw M. 2010. Post-larval stages of Ascoschoengastia (Laurentella) lorius (Gunther) (Acariformes: Trombiculidae) provide evidence for a nest-based life history. Zootaxa 2680:55–64
    [Google Scholar]
  134. 134.
    Sidorchuk EA. 2018. Mites as fossils: forever small?. Int. J. Acarol. 44:349–59
    [Google Scholar]
  135. 135.
    Smith BP. 1998. Loss of larval parasitism in parasitengonine mites. Exp. Appl. Acarol. 22:187–99
    [Google Scholar]
  136. 136.
    Smith IM, Oliver DR. 1986. Review of parasitic associations of larval water mites (Acari: Parasitengona: Hydrachnida) with insect hosts. Can. Entomol. 118:407–72
    [Google Scholar]
  137. 137.
    Sun SJ, Kilner RM. 2020. Temperature stress induces mites to help their carrion beetle hosts by eliminating rival blowflies. eLife 9:e55649
    [Google Scholar]
  138. 138.
    Theron-De Bruin N, Dreyer LL, Ueckermann EA, Wingfield MJ, Roets F. 2018. Birds mediate a fungus-mite mutualism. Microb. Ecol. 75:863–74
    [Google Scholar]
  139. 139.
    Trach VA. 2013. On the morphology, biology, and distribution of Lobogynioides andreinii (Acari, Mesostigmata, Diplogyniidae). Entomol. Rev. 93:105–12
    [Google Scholar]
  140. 140.
    Treat AE. 1975. Mites of Moths and Butterflies Ithaca, NY: Comstock
    [Google Scholar]
  141. 141.
    Walter DE, Lindquist EE. 1995. The distributions of parthenogenetic ascid mites (Acari: Parasitiformes) do not support the biotic uncertainty hypothesis. Exp. Appl. Acarol. 19:434–42
    [Google Scholar]
  142. 142.
    Walter DE, Proctor HC. 2013. Mites: Ecology, Evolution and Behaviour Berlin: Springer. , 2nd ed..
    [Google Scholar]
  143. 143.
    Walter DE, Seeman OD. 2017. A new species of Paracarophenax (Acariformes: Acarophenacidae) with a new means of phoretic attachment. Int. J. Acarol. 43:329–35
    [Google Scholar]
  144. 144.
    Wheeler WM. 1919. The phoresy of Antherophagus. . Psyche 26:145–52
    [Google Scholar]
  145. 145.
    Wilson DS, Knollenberg WG. 1987. Adaptive indirect effects: the fitness of burying beetles with and without their phoretic mites. Evol. Ecol. 1:139–59
    [Google Scholar]
  146. 146.
    Wohltmann A. 2001. The evolution of life histories in Parasitengona (Acari: Prostigmata). Acarologia 41:145–204
    [Google Scholar]
  147. 147.
    Yoder JA, Jajack AJ, Tomko PM, Rosselot AE, Gribbins KM, Benoit JB. 2012. Pollen feeding in Balaustium murorum (Acari: Erythraeidae): visualization and behaviour. Int. J. Acarol. 38:641–47
    [Google Scholar]
  148. 148.
    Zhang ZQ, Fan QH, Pesic V, Smit H, Bochkov AV et al. 2011. Order Trombidiformes Reuter, 1909. Zootaxa 3148:129–38
    [Google Scholar]
  149. 149.
    Zhang ZQ, Gerson U. 1995. Eustigmaeus johnstoni, new species (Acari: Stigmaeidae), parasitic on phlebotomine sandflies (Diptera: Psychodidae). Tijdschr. Entomol. 138:297–301
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-013329
Loading
/content/journals/10.1146/annurev-ento-120220-013329
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error