1932

Abstract

Aphids are serious pests of agricultural and ornamental plants and important model systems for hemipteran–plant interactions. The long evolutionary history of aphids with their host plants has resulted in a variety of systems that provide insight into the different adaptation strategies of aphids to plants and vice versa. In the past, various plant–aphid interactions have been documented, but lack of functional tools has limited molecular studies on the mechanisms of plant–aphid interactions. Recent technological advances have begun to reveal plant–aphid interactions at the molecular level and to increase our knowledge of the mechanisms of aphid adaptation or specialization to different host plants. In this article, we compile and analyze available information on plant–aphid interactions, discuss the limitations of current knowledge, and argue for new research directions. We advocate for more work that takes advantage of natural systems and recently established molecular techniques to obtain a comprehensive view of plant–aphid interaction mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-020526
2023-01-23
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120220-020526.html?itemId=/content/journals/10.1146/annurev-ento-120220-020526&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. 2012. Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol. 194:28–45
    [Google Scholar]
  2. 2.
    Ahuja I, Kissen R, Bones AM. 2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17:73–90
    [Google Scholar]
  3. 3.
    Atamian HS, Chaudhary R, Cin VD, Bao E, Girke T, Kaloshian I. 2013. In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol. Plant. Microbe Interact. 26:67–74
    [Google Scholar]
  4. 4.
    Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM et al. 2014. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 51:41–51
    [Google Scholar]
  5. 5.
    Bass C, Zimmer CT, Riveron JM, Wilding CS, Wondji CS et al. 2013. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. PNAS 110:19460–65
    [Google Scholar]
  6. 6.
    Becerra JX. 2007. The impact of herbivore-plant coevolution on plant community structure. PNAS 104:7483–88
    [Google Scholar]
  7. 7.
    Birnbaum SSL, Rinker DC, Gerardo NM, Abbot P. 2017. Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity. Mol. Ecol. 26:6742–61
    [Google Scholar]
  8. 8.
    Boulain H, Legeai F, Guy E, Morlière S, Douglas NE et al. 2018. Fast evolution and lineage-specific gene family expansions of aphid salivary effectors driven by interactions with host-plants. Genome Biol. Evol. 10:1554–72
    [Google Scholar]
  9. 9.
    Boulain H, Legeai F, Jaquiéry J, Guy E, Morlière S et al. 2019. Differential expression of candidate salivary effector genes in pea aphid biotypes with distinct host plant specificity. Front. Plant Sci. 10:1301
    [Google Scholar]
  10. 10.
    Caillaud MC, Via S. 2000. Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am. Nat. 156:606–21
    [Google Scholar]
  11. 11.
    Cao H-H, Zhang Z-F, Wang X-F, Liu T-X. 2018. Nutrition versus defense: why Myzus persicae (green peach aphid) prefers and performs better on young leaves of cabbage. PLOS ONE 13:e0196219
    [Google Scholar]
  12. 12.
    Carletto J, Lombaert E, Chavigny P, Brévault T, Lapchin L, Vanlerberghe-Masutti F. 2009. Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Mol. Ecol. 18:2198–212
    [Google Scholar]
  13. 13.
    Chaman ME, Copaja SV, Argandoña VH. 2003. Relationships between salicylic acid content, phenyl-alanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. J. Agric. Food Chem. 51:2227–31
    [Google Scholar]
  14. 14.
    Chaudhary R, Atamian HS, Shen Z, Briggs SP, Kaloshian I. 2014. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. PNAS 111:8919–24
    [Google Scholar]
  15. 15.
    Chaudhary R, Peng H-C, He J, MacWilliams J, Teixeira M et al. 2019. Aphid effector Me10 interacts with tomato TFT7, a 14-3-3 isoform involved in aphid resistance. New Phytol. 221:1518–28
    [Google Scholar]
  16. 16.
    Chen Y, Singh A, Kaithakottil GG, Mathers TC, Gravino M et al. 2020. An aphid RNA transcript migrates systemically within plants and is a virulence factor. PNAS 117:12763–71
    [Google Scholar]
  17. 17.
    Chung SH, Parker BJ, Blow F, Brisson JA, Douglas AE. 2020. Host and symbiont genetic determinants of nutritional phenotype in a natural population of the pea aphid. Mol. Ecol. 29:848–58
    [Google Scholar]
  18. 18.
    Coppola M, Manco E, Vitiello A, Di Lelio I, Giorgini M et al. 2018. Plant response to feeding aphids promotes aphid dispersal. Entomol. Exp. Appl. 166:386–94
    [Google Scholar]
  19. 19.
    Cui N, Yang P-C, Guo K, Kang L, Cui F. 2017. Large-scale gene expression reveals different adaptations of Hyalopterus persikonus to winter and summer host plants. Insect Sci. 24:431–42
    [Google Scholar]
  20. 20.
    de Ilarduya OM, Kaloshian I. 2001. Mi-1.2 transcripts accumulate ubiquitously in resistant Lycopersicon esculentum. J. Nematol. 33:116–20
    [Google Scholar]
  21. 21.
    Desneux N, Barta RJ, Hoelmer KA, Hopper KR, Heimpel GE. 2009. Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160:387–98
    [Google Scholar]
  22. 22.
    Dogimont C, Chovelon V, Pauquet J, Boualem A, Bendahmane A. 2014. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J. 80:993–1004
    [Google Scholar]
  23. 23.
    Duvaux L, Geissmann Q, Gharbi K, Zhou JJ, Ferrari J et al. 2015. Dynamics of copy number variation in host races of the pea aphid. Mol. Biol. Evol. 32:63–80
    [Google Scholar]
  24. 24.
    Ellis C, Karafyllidis I, Turner JG. 2002. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol. Plant Microbe Interact. 15:1025–30
    [Google Scholar]
  25. 25.
    Elzinga DA, De Vos M, Jander G. 2014. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol. Plant Microbe Interact. 27:747–56
    [Google Scholar]
  26. 26.
    Endara MJ, Coley PD, Ghabash G, Nicholls JA, Dexter KG et al. 2017. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. PNAS 114:E7499–505
    [Google Scholar]
  27. 27.
    Erb M, Meldau S, Howe GA. 2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17:250–59
    [Google Scholar]
  28. 28.
    Escudero-Martinez C, Leybourne DJ, Bos JIB. 2020. Plant resistance in different cell layers affects aphid probing and feeding behaviour during non-host and poor-host interactions. Bull. Entomol. Res. 111:31–38
    [Google Scholar]
  29. 29.
    Eyres I, Jaquiéry J, Sugio A, Duvaux L, Gharbi K et al. 2016. Differential gene expression according to race and host plant in the pea aphid. Mol. Ecol. 25:4197–215
    [Google Scholar]
  30. 30.
    Ferrari J, Scarborough CL, Godfray HCJ. 2007. Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia 153:323–29
    [Google Scholar]
  31. 31.
    Ferrari J, West JA, Via S, Godfray HCJ. 2012. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66:375–90
    [Google Scholar]
  32. 32.
    Field LM, Blackman RL, Tyler-Smith C, Devonshire AL. 1999. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem. J. 339:Part 3737–42
    [Google Scholar]
  33. 33.
    Francis F, Vanhaelen N, Haubruge E. 2005. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch. Insect Biochem. Physiol. 58:166–74
    [Google Scholar]
  34. 34.
    Gao LL, Anderson JP, Klingler JP, Nair RM, Edwards OR, Singh KB. 2007. Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol. Plant Microbe Interact. 20:82–93
    [Google Scholar]
  35. 35.
    Glastad KM, Hunt BG, Goodisman MAD. 2019. Epigenetics in insects: genome regulation and the generation of phenotypic diversity. Annu. Rev. Entomol. 64:185–203
    [Google Scholar]
  36. 36.
    Gomez-Gomez L, Boller T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003–11
    [Google Scholar]
  37. 37.
    Grantham ME, Brisson JA. 2018. Extensive differential splicing underlies phenotypically plastic aphid morphs. Mol. Biol. Evol. 35:1934–46
    [Google Scholar]
  38. 38.
    Guo H, Zhang Y, Tong J, Ge P, Wang Q et al. 2020. An aphid-secreted salivary protease activates plant defense in phloem. Curr. Biol. 30:4826–36
    [Google Scholar]
  39. 39.
    Guy E, Boulain H, Aigu Y, Le Pennec C, Chawki K et al. 2016. Optimization of agroinfiltration in Pisum sativum provides a new tool for studying the salivary protein functions in the pea aphid complex. Front. Plant Sci. 7:1171
    [Google Scholar]
  40. 40.
    Hawthorne DJ, Via S. 2001. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–7
    [Google Scholar]
  41. 41.
    Heidel-Fischer HM, Vogel H 2015. Molecular mechanisms of insect adaptation to plant secondary compounds. Curr. Opin. Insect Sci. 8:8–14
    [Google Scholar]
  42. 42.
    Hewer A, Will T, van Bel AJ. 2010. Plant cues for aphid navigation in vascular tissues. J. Exp. Biol. 213:4030–42
    [Google Scholar]
  43. 43.
    Hogenhout SA, Bos JIB. 2011. Effector proteins that modulate plant–insect interactions. Curr. Opin. Plant Biol. 14:422–28
    [Google Scholar]
  44. 44.
    Jaouannet M, Rodriguez PA, Thorpe P, Lenoir CJ, MacLeod R et al. 2014. Plant immunity in plant-aphid interactions. Front. Plant Sci. 5:663
    [Google Scholar]
  45. 45.
    Jaquiéry J, Stoeckel S, Nouhaud P, Mieuzet L, Mahéo F et al. 2012. Genome scans reveal candidate regions involved in the adaptation to host plant in the pea aphid complex. Mol. Ecol. 21:5251–64
    [Google Scholar]
  46. 46.
    Jaubert-Possamai S, Rispe C, Tanguy S, Gordon K, Walsh T et al. 2010. Expansion of the miRNA pathway in the hemipteran insect Acyrthosiphon pisum. Mol. Biol. Evol. 27:979–87
    [Google Scholar]
  47. 47.
    Ji R, Lei J, Chen IW, Sang W, Yang S et al. 2021. Cytochrome P450s CYP380C6 and CYP380C9 in green peach aphid facilitate its adaptation to indole glucosinolate-mediated plant defense. Pest Manag. Sci. 77:148–58
    [Google Scholar]
  48. 48.
    Jones AME, Bridges M, Bones AM, Cole R, Rossiter JT 2001. Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem. Mol. Biol. 31:1–5
    [Google Scholar]
  49. 49.
    Jones AME, Winge P, Bones AM, Cole R, Rossiter JT. 2002. Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem. Mol. Biol. 32:275–84
    [Google Scholar]
  50. 50.
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  51. 51.
    Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13:484–92
    [Google Scholar]
  52. 52.
    Jwa N-S, Hwang B. 2017. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front. Plant Sci. 8:1687
    [Google Scholar]
  53. 53.
    Kaloshian I, Walling LL. 2005. Hemipterans as plant pathogens. Annu. Rev. Phytopathol. 43:491–521
    [Google Scholar]
  54. 54.
    Kang ZW, Liu FH, Pang RP, Yu WB, Tan XL et al. 2018. The identification and expression analysis of candidate chemosensory genes in the bird cherry-oat aphid Rhopalosiphum padi (L.). Bull. Entomol. Res. 108:645–57
    [Google Scholar]
  55. 55.
    Kettles GJ, Drurey C, Schoonbeek H-J, Maule AJ, Hogenhout SA. 2013. Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol. 198:1178–90
    [Google Scholar]
  56. 56.
    Kettles GJ, Kaloshian I. 2016. The potato aphid salivary effector Me47 is a glutathione-S-transferase involved in modifying plant responses to aphid infestation. Front. Plant Sci. 7:1142
    [Google Scholar]
  57. 57.
    Kim JH, Jander G. 2007. Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J. 49:1008–19
    [Google Scholar]
  58. 58.
    Kim JH, Lee BW, Schroeder FC, Jander G. 2008. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J. 54:1015–26
    [Google Scholar]
  59. 59.
    Kloth KJ, Abreu IN, Delhomme N, Petřík I, Villard C et al. 2019. PECTIN ACETYLESTERASE9 affects the transcriptome and metabolome and delays aphid feeding. Plant Physiol. 181:1704–20
    [Google Scholar]
  60. 60.
    Kloth KJ, Busscher-Lange J, Wiegers GL, Kruijer W, Buijs G et al. 2017. SIEVE ELEMENT-LINING CHAPERONE1 restricts aphid feeding on Arabidopsis during heat stress. Plant Cell 29:2450–64
    [Google Scholar]
  61. 61.
    Kloth KJ, Shah P, Broekgaarden C, Ström C, Albrectsen BR, Dicke M. 2021. SLI1 confers broad-spectrum resistance to phloem-feeding insects. Plant Cell Environ. 44:2765–76
    [Google Scholar]
  62. 62.
    Kos M, Kabouw P, Noordam R, Hendriks K, Vet LEM et al. 2011. Prey-mediated effects of glucosinolates on aphid predators. Ecol. Entomol. 36:377–88
    [Google Scholar]
  63. 63.
    Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE et al. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. PNAS 106:18073–78
    [Google Scholar]
  64. 64.
    Kuśnierczyk A, Winge P, Jørstad TS, Troczyńska J, Rossiter JT, Bones AM. 2008. Towards global understanding of plant defence against aphids: timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ. 31:1097–115
    [Google Scholar]
  65. 65.
    Le Trionnaire G, Tanguy S, Hudaverdian S, Gleonnec F, Richard G et al. 2019. An integrated protocol for targeted mutagenesis with CRISPR-Cas9 system in the pea aphid. Insect Biochem. Mol. Biol. 110:34–44
    [Google Scholar]
  66. 66.
    Legeai F, Rizk G, Walsh T, Edwards O, Gordon K et al. 2010. Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum. BMC Genom. 11:281
    [Google Scholar]
  67. 67.
    Li Q, Fan J, Sun J, Zhang Y, Hou M, Chen J 2019. Anti-plant defense response strategies mediated by the secondary symbiont Hamiltonella defensa in the wheat aphid Sitobion miscanthi. Front. Microbiol. 10:2419
    [Google Scholar]
  68. 68.
    Li Q, Xie Q-G, Smith-Becker J, Navarre DA, Kaloshian I. 2006. Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol. Plant Microbe Interact. 19:655–64
    [Google Scholar]
  69. 69.
    Loxdale HD, Balog A, Harvey JA. 2019. Generalism in nature… The great misnomer: aphids and wasp parasitoids as examples. Insects 10:314
    [Google Scholar]
  70. 70.
    Lu H, Zhu J, Yu J, Chen X, Kang L, Cui F. 2020. A symbiotic virus facilitates aphid adaptation to host plants by suppressing jasmonic acid responses. Mol. Plant Microbe Interact. 33:55–65
    [Google Scholar]
  71. 71.
    Lyko F, Maleszka R. 2011. Insects as innovative models for functional studies of DNA methylation. Trends Genet. 27:127–31
    [Google Scholar]
  72. 72.
    Mai VC, Drzewiecka K, Jeleń H, Narożna D, Rucińska-Sobkowiak R et al. 2014. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci. 221–22:1–12
    [Google Scholar]
  73. 73.
    Martel JW, Malcolm SB. 2004. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore. J. Chem. Ecol. 30:545–61
    [Google Scholar]
  74. 74.
    Mathers TC, Chen Y, Kaithakottil G, Legeai F, Mugford ST et al. 2017. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol. 18:27
    [Google Scholar]
  75. 75.
    Mathers TC, Mugford ST, Wouters RHM, Heavens D, Botha A-M et al. 2022. Aphidinae comparative genomics resource (version v1) Data set: Zenodo, CERN Meyrin, Switz: updated Feb. 4. https://doi.org/10.5281/zenodo.5908005
    [Crossref] [Google Scholar]
  76. 76.
    McGlincy NJ, Smith CWJ. 2008. Alternative splicing resulting in nonsense-mediated mRNA decay: What is the meaning of nonsense?. Trends Biochem. Sci. 33:385–93
    [Google Scholar]
  77. 77.
    McLean AHC, van Asch M, Ferrari J, Godfray HCJ. 2011. Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc. Biol. Sci. 278:760–66
    [Google Scholar]
  78. 78.
    Medina-Ortega KJ, Walker GP 2015. Faba bean forisomes can function in defence against generalist aphids. Plant Cell Environ. 38:1167–77
    [Google Scholar]
  79. 79.
    Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–19
    [Google Scholar]
  80. 80.
    Miya A, Albert P, Shinya T, Desaki Y, Ichimura K et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. PNAS 104:19613–18
    [Google Scholar]
  81. 81.
    Mohase L, van der Westhuizen AJ. 2002. Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction. J. Plant Physiol. 159:585–90
    [Google Scholar]
  82. 82.
    Moran NA. 1992. The evolution of aphid life cycles. Annu. Rev. Entomol. 37:321–48
    [Google Scholar]
  83. 83.
    Morkunas I, Mai VC, Gabryś B. 2011. Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol. Plant. 33:2057–73
    [Google Scholar]
  84. 84.
    Mutti NS, Louis J, Pappan LK, Pappan K, Begum K et al. 2008. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. PNAS 105:9965–69
    [Google Scholar]
  85. 85.
    Mutti NS, Park Y, Reese JC, Reeck GR. 2006. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 6:38
    [Google Scholar]
  86. 86.
    Naessens E, Dubreuil G, Giordanengo P, Baron OL, Minet-Kebdani N et al. 2015. A secreted MIF cytokine enables aphid feeding and represses plant immune responses. Curr. Biol. 25:1898–903
    [Google Scholar]
  87. 87.
    Nalam V, Louis J, Shah J. 2019. Plant defense against aphids, the pest extraordinaire. Plant Sci. 279:96–107
    [Google Scholar]
  88. 88.
    Ngou BPM, Jones JDG, Ding P. 2021. Plant immune networks. Trends Plant Sci. 27:255–73
    [Google Scholar]
  89. 89.
    Nottingham SF, Hardie J. 1993. Flight behaviour of the black bean aphid, Aphis fabae, and the cabbage aphid, Brevicoryne brassicae, in host and non-host plant odour. Physiol. Entomol. 18:389–94
    [Google Scholar]
  90. 90.
    Nouhaud P, Gautier M, Gouin A, Jaquiéry J, Peccoud J et al. 2018. Identifying genomic hotspots of differentiation and candidate genes involved in the adaptive divergence of pea aphid host races. Mol. Ecol. 27:3287–300
    [Google Scholar]
  91. 91.
    Nouhaud P, Peccoud J, Mahéo F, Mieuzet L, Jaquiéry J, Simon JC. 2014. Genomic regions repeatedly involved in divergence among plant-specialized pea aphid biotypes. J. Evol. Biol. 27:2013–20
    [Google Scholar]
  92. 92.
    Oliver KM, Degnan PH, Burke GR, Moran NA. 2009. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55:247–66
    [Google Scholar]
  93. 93.
    Pan Y, Xu P, Zeng X, Liu X, Shang Q. 2019. Characterization of UDP-glucuronosyltransferases and the potential contribution to nicotine tolerance in Myzus persicae. Int. J. Mol. Sci. 20:3637
    [Google Scholar]
  94. 94.
    Peccoud J, Ollivier A, Plantegenest M, Simon J-C. 2009. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. PNAS 106:7495–500
    [Google Scholar]
  95. 95.
    Peccoud J, Simon J-C, von Dohlen C, Coeur d'acier A, Plantegenest M et al. 2010. Evolutionary history of aphid-plant associations and their role in aphid diversification. C. R. Biol. 333:474–87
    [Google Scholar]
  96. 96.
    Pegadaraju V, Louis J, Singh V, Reese JC, Bautor J et al. 2007. Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. Plant J. 52:332–41
    [Google Scholar]
  97. 97.
    Pélissier HC, Peters WS, Collier R, van Bel AJE, Knoblauch M. 2008. GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol. 49:1699–710
    [Google Scholar]
  98. 98.
    Peters WS, van Bel AJE, Knoblauch M. 2006. The geometry of the forisome–sieve element–sieve plate complex in the phloem of Vicia faba L. leaflets. J. Exp. Bot. 57:3091–98
    [Google Scholar]
  99. 99.
    Pickett JA, Wadhams LJ, Woodcock CM, Hardie J. 1992. The chemical ecology of aphids. Annu. Rev. Entomol. 37:67–90
    [Google Scholar]
  100. 100.
    Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA. 2011. Silencing of aphid genes by dsRNA feeding from plants. PLOS ONE 6:e25709
    [Google Scholar]
  101. 101.
    Pitino M, Hogenhout SA. 2012. Aphid protein effectors promote aphid colonization in a plant species-specific manner. Mol. Plant Microbe Interact. 26:130–39
    [Google Scholar]
  102. 102.
    Pontoppidan B, Ekbom B, Eriksson S, Meijer J. 2001. Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a brassica herbivore. Eur. J. Biochem. 268:1041–48
    [Google Scholar]
  103. 103.
    Powell G, Maniar SP, Pickett JA, Hardie J. 1999. Aphid responses to non-host epicuticular lipids. Entomol. Exp. Appl. 91:115–23
    [Google Scholar]
  104. 104.
    Powell G, Tosh CR, Hardie J. 2005. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51:309–30
    [Google Scholar]
  105. 105.
    Prince DC, Drurey C, Zipfel C, Hogenhout SA. 2014. The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis. Plant Physiol. 164:2207–19
    [Google Scholar]
  106. 106.
    Ramsey JS, Elzinga DA, Sarkar P, Xin YR, Ghanim M, Jander G. 2014. Adaptation to nicotine feeding in Myzus persicae. J. Chem. Ecol. 40:869–77
    [Google Scholar]
  107. 107.
    Riddick EW, Simmons AM. 2014. Do plant trichomes cause more harm than good to predatory insects?. Pest Manag. Sci. 70:1655–65
    [Google Scholar]
  108. 108.
    Rider SD Jr., Srinivasan DG, Hilgarth RS. 2010. Chromatin-remodelling proteins of the pea aphid, Acyrthosiphon pisum (Harris). Insect Mol. Biol. 19:201–14
    [Google Scholar]
  109. 109.
    Rodriguez PA, Escudero-Martinez C, Bos JIB. 2017. An aphid effector targets trafficking protein VPS52 in a host-specific manner to promote virulence. Plant Physiol. 173:1892–903
    [Google Scholar]
  110. 110.
    Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. PNAS 95:9750–54
    [Google Scholar]
  111. 111.
    Sanchez-Arcos C, Reichelt M, Gershenzon J, Kunert G. 2016. Modulation of legume defense signaling pathways by native and non-native pea aphid clones. Front. Plant Sci. 7:1872
    [Google Scholar]
  112. 112.
    Schatz B, Sauvion N, Kjellberg F, Nel A 2017. Plant–insect interactions: a palaeontological and an evolutionary perspective. Advances in Botanical Research, Vol. 81 N Sauvion, D Thiéry, P-A Calatayud 1–24 Amsterdam: Elsevier
    [Google Scholar]
  113. 113.
    Schwarzkopf A, Rosenberger D, Niebergall M, Gershenzon J, Kunert G. 2013. To feed or not to feed: plant factors located in the epidermis, mesophyll, and sieve elements influence pea aphid's ability to feed on legume species. PLOS ONE 8:e75298
    [Google Scholar]
  114. 114.
    Simon J-C, d'Alençon E, Guy E, Jacquin-Joly E, Jaquiéry J et al. 2015. Genomics of adaptation to host-plants in herbivorous insects. Brief. Funct. Genom. 14:413–23
    [Google Scholar]
  115. 115.
    Singh KS, Cordeiro EMG, Troczka BJ, Pym A, Mackisack J et al. 2021. Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae. Commun. Biol. 4:847
    [Google Scholar]
  116. 116.
    Singh KS, Troczka BJ, Duarte A, Balabanidou V, Trissi N et al. 2020. The genetic architecture of a host shift: an adaptive walk protected an aphid and its endosymbiont from plant chemical defenses. Sci. Adv. 6:eaba1070
    [Google Scholar]
  117. 117.
    Smadja C, Shi P, Butlin RK, Robertson HM. 2009. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol. Biol. Evol. 26:2073–86
    [Google Scholar]
  118. 118.
    Smadja CM, Canbäck B, Vitalis R, Gautier M, Ferrari J et al. 2012. Large-scale candidate gene scan reveals the role of chemoreceptor genes in host plant specialization and speciation in the pea aphid. Evolution 66:2723–38
    [Google Scholar]
  119. 119.
    Stewart SA, Hodge S, Ismail N, Mansfield JW, Feys BJ et al. 2009. The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Mol. Plant Microbe Interact. 22:1645–55
    [Google Scholar]
  120. 120.
    Sugio A, Dubreuil G, Giron D, Simon J-C. 2015. Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms. J. Exp. Bot. 66:467–78
    [Google Scholar]
  121. 121.
    Sun M, Voorrips RE, van Kaauwen M, Visser RGF, Vosman B. 2020. The ability to manipulate ROS metabolism in pepper may affect aphid virulence. Hortic. Res. 7:6
    [Google Scholar]
  122. 122.
    Takemoto H, Uefune M, Ozawa R, Arimura G-I, Takabayashi J. 2013. Previous infestation of pea aphids Acyrthosiphon pisum on broad bean plants resulted in the increased performance of conspecific nymphs on the plants. J. Plant Interact. 8:370–74
    [Google Scholar]
  123. 123.
    Tan XL, Chen JL, Benelli G, Desneux N, Yang XQ et al. 2017. Pre-infestation of tomato plants by aphids modulates transmission-acquisition relationship among whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV) and plants. Front. Plant Sci. 8:1597
    [Google Scholar]
  124. 124.
    ten Broeke CJM, Dicke M, van Loon JJA. 2017. The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars. Arthropod-Plant Interact. 11:785–96
    [Google Scholar]
  125. 125.
    Thairu MW, Hansen AK. 2019. Changes in aphid host plant diet influence the small-RNA expression profiles of its obligate nutritional symbiont. Buchnera. mBio 10:e01733–19
    [Google Scholar]
  126. 126.
    Thorpe P, Cock PJA, Bos JIB 2016. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genom. 17:172
    [Google Scholar]
  127. 127.
    Thorpe P, Escudero-Martinez CM, Eves-van den Akker S, Bos JIB. 2020. Transcriptional changes in the aphid species Myzus cerasi under different host and environmental conditions. Insect Mol. Biol. 29:271–82
    [Google Scholar]
  128. 128.
    Tsuchida T, Koga R, Fukatsu T. 2004. Host plant specialization governed by facultative symbiont. Science 303:1989
    [Google Scholar]
  129. 129.
    van Bel AJE, Will T 2016. Functional evaluation of proteins in watery and gel saliva of aphids. Front. Plant Sci. 7:1840
    [Google Scholar]
  130. 130.
    Vanlerberghe-Masutti F, Chavigny P. 1998. Host-based genetic differentiation in the aphid Aphis gossypii Glover, evidenced from RAPD fingerprints. Mol. Ecol. 7:905–14
    [Google Scholar]
  131. 131.
    Via S. 1991. The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45:827–52
    [Google Scholar]
  132. 132.
    Vincent TR, Avramova M, Canham J, Higgins P, Bilkey N et al. 2017. Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell 29:1460–79
    [Google Scholar]
  133. 133.
    Walsh TK, Brisson JA, Robertson HM, Gordon K, Jaubert-Possamai S et al. 2010. A functional DNA methylation system in the pea aphid, Acyrthosiphon pisum. Insect Mol. Biol. 19:215–28
    [Google Scholar]
  134. 134.
    Wang Q, Liu J-T, Zhang Y-J, Chen J-L, Li X-C et al. 2021. Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae. Insect Biochem. Mol. Biol. 130:103528
    [Google Scholar]
  135. 135.
    Wang Q, Yuan E, Ling X, Zhu-Salzman K, Guo H et al. 2020. An aphid facultative symbiont suppresses plant defence by manipulating aphid gene expression in salivary glands. Plant Cell Environ. 43:2311–22
    [Google Scholar]
  136. 136.
    Wang Q, Zhou JJ, Liu JT, Huang GZ, Xu WY et al. 2019. Integrative transcriptomic and genomic analysis of odorant binding proteins and chemosensory proteins in aphids. Insect Mol. Biol. 28:1–22
    [Google Scholar]
  137. 137.
    Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett M et al. 2008. Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. J. Chem. Ecol. 34:1153–61
    [Google Scholar]
  138. 138.
    Weßling R, Epple P, Altmann S, He Y, Yang L et al. 2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16:364–75
    [Google Scholar]
  139. 139.
    Will T, van Bel AJE. 2008. Induction as well as suppression: how aphid saliva may exert opposite effects on plant defense. Plant Signal. Behav. 3:427–30
    [Google Scholar]
  140. 140.
    Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW. 2007. Silencing of the major family of NBS–LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J. 51:803–18
    [Google Scholar]
  141. 141.
    Xue W, Fan J, Zhang Y, Xu Q, Han Z et al. 2016. Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of Sitobion avenae. PLOS ONE 11:e0161839
    [Google Scholar]
  142. 142.
    Zhang L, Reifová R, Halenková Z, Gompert Z. 2021. How important are structural variants for speciation?. Genes 12:1084
    [Google Scholar]
  143. 143.
    Zhang S, Zhang Z, Wen Z, Gu C, An Y-QC et al. 2017. Fine mapping of the soybean aphid-resistance genes Rag6 and Rag3c from Glycine soja 85–32. Theor. Appl. Genet. 130:2601–15
    [Google Scholar]
  144. 144.
    Zhang Y, Fan J, Sun J-R, Chen J-L. 2015. Cloning and RNA interference analysis of the salivary protein C002 gene in Schizaphis graminum. J. Integr. Agric. 14:698–705
    [Google Scholar]
  145. 145.
    Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD et al. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–60
    [Google Scholar]
  146. 146.
    Züst T, Agrawal AA. 2016. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2:15206
    [Google Scholar]
  147. 147.
    Züst T, Agrawal AA. 2016. Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed Asclepias syriaca. Funct. Ecol. 30:547–56
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-020526
Loading
/content/journals/10.1146/annurev-ento-120220-020526
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error