1932

Abstract

While Mesozoic, Paleogene, and Neogene insect faunas greatly resemble the modern one, the Paleozoic fauna provides unique insights into key innovations in insect evolution, such as the origin of wings and modifications of postembryonic development including holometaboly. Deep-divergence estimates suggest that the majority of contemporary insect orders originated in the Late Paleozoic, but these estimates reflect divergences between stem groups of each lineage rather than the later appearance of the crown groups. The fossil record shows the initial radiations of the extant hyperdiverse clades during the Early Permian, as well as the specialized fauna present before the End Permian mass extinction. This review summarizes the recent discoveries related to the documented diversity of Paleozoic hexapods, as well as current knowledge about what has actually been verified from fossil evidence as it relates to postembryonic development and the morphology of different body parts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-022637
2023-01-23
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120220-022637.html?itemId=/content/journals/10.1146/annurev-ento-120220-022637&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aristov DS, Rasnitsyn AP. 2015. New insects from the Kungurian of Tshekarda fossil site in Permian Territory of Russia. Russ. Entomol. J. 24:117–35
    [Google Scholar]
  2. 2.
    Auychinda C, Murányi D, Li W, Sartori M, Gattolliat JL. 2020. A new species of Cincticostella (Ephemeroptera, Ephemerellidae) from China. Alpine Entomol 4:129–38
    [Google Scholar]
  3. 3.
    Bashkuev AS. 2011. Nedubroviidae, a new family of Mecoptera: the first Paleozoic long-proboscid scorpionflies. Zootaxa 2895:47–57
    [Google Scholar]
  4. 4.
    Bashkuev AS, Sukatsheva ID. 2021. New species of Kamopanorpa Martynov from the Permian of South Siberia with comments on the systematic position of Microptysmatidae (Protomeropina = Permotrichoptera). Palaeoentomology 4:453–61
    [Google Scholar]
  5. 5.
    Bechly G. 1996. Morphologische Untersuchungen am Flügelgeäder der rezenten Libellen und deren Stammgruppenvertreter (Insecta; Pterygota; Odonata), unter besonderer Berücksichtigung der Phylogenetischen Systematik und des Grundplanes der Odonata. Petalura 2:
    [Google Scholar]
  6. 6.
    Bechly G, Brauckmann C, Zessin W, Gröning E. 2001. New results concerning the morphology of the most ancient dragonflies (Insecta: Odonatoptera) from the Namurian of Hagen-Vorhalle (Germany). Z. Zool. Syst. Evolutionsforsch. 39:209–26
    [Google Scholar]
  7. 7.
    Bechly G, Stockar R. 2011. The first Mesozoic record of the extinct apterygote insect genus Dasyleptus (Insecta: Archaeognatha: Monura: Dasyleptidae) from the Triassic of Monte San Giorgio (Switzerland). Palaeodiversity 4:23–37
    [Google Scholar]
  8. 8.
    Beckemeyer RJ, Byers GW. 2001. Forewing morphology of Dunbaria fasciipennis Tillyard (Palaeodictyoptera: Spilapteridae), with notes on a specimen from the University of Kansas Natural History Museum. J. Kansas Entomol. Soc. 74:221–30
    [Google Scholar]
  9. 9.
    Belles X. 2019. The innovation of the final moult and the origin of insect metamorphosis. Philos. Trans. R. Soc. B 374:20180415
    [Google Scholar]
  10. 10.
    Belles X. 2020. Insect Metamorphosis London: Academic
  11. 11.
    Béthoux O. 2015. The Late Carboniferous Triplosoba pulchella is not a fly in the ointment but a stem-mayfly. Syst. Entomol. 40:342–56
    [Google Scholar]
  12. 12.
    Béthoux O, Briggs DEG. 2008. How Gerarus lost its head: stem-group Orthoptera and Paraneoptera revisited. Syst. Entomol. 33:529–47
    [Google Scholar]
  13. 13.
    Béthoux O, Galtier J, Nel A. 2004. Oldest evidence of insect endophytic oviposition. Palaios 19:408–13
    [Google Scholar]
  14. 14.
    Béthoux O, Gu JJ, Yue Y, Ren D. 2012. Miamia maimai n. sp., a new Pennsylvanian stem-orthopteran insect, and a case study on the application of cladotypic nomenclature. Foss. Rec. 15:103–13
    [Google Scholar]
  15. 15.
    Béthoux O, Kristensen NP, Engel MS. 2008. Hennigian phylogenetic systematics and the ‘groundplan’ versus ‘post-groundplan’ approaches: a reply to Kukalová-Peck. Evol. Biol. 35:317–23
    [Google Scholar]
  16. 16.
    Béthoux O, Llamosi A, Toussaint S. 2016. Reinvestigation of Protelytron permianum (Insecta; Early Permian; USA) as an example for applying reflectance transformation imaging to insect imprint fossils. Foss. Rec. 20:1–7
    [Google Scholar]
  17. 17.
    Béthoux O, Nel A. 2002. Venation pattern and revision of Orthoptera sensu nov. and sister groups. Phylogeny of Palaeozoic and Mesozoic Orthoptera sensu nov. . Zootaxa 96:1–88
    [Google Scholar]
  18. 18.
    Bitsch J, Nel A. 1999. Morphology and classification of the extinct Archaeognatha and related taxa (Hexapoda). Ann. Soc. Entomol. Fr. 35:17–29
    [Google Scholar]
  19. 19.
    Blanke A, Greve C, Wipfler B, Beutel RG, Holland BR et al. 2013. The identification of concerted convergence in insect heads corroborates Palaeoptera. Syst. Biol. 62:250–63
    [Google Scholar]
  20. 20.
    Boudinot B, Yan EV, Prokop J, Luo X, Beutel RG. 2022. Permian parallelisms: reanalysis of †Tshekardocoleidae sheds light on the earliest evolution of the Coleoptera. Syst. Entomol. In press
    [Google Scholar]
  21. 21.
    Bray PS, Anderson KB. 2009. Identification of Carboniferous (320 million years old) class Ic amber. Science 236:132–34
    [Google Scholar]
  22. 22.
    Carpenter FM. 1992. Arthropoda 4, Superclass Hexapoda Treatise Invertebr. Paleontol. 3–4 Boulder, CO: Geol. Soc. Am.
  23. 23.
    Carpenter FM. 1997. Insecta. See Reference 147 184–93
  24. 24.
    Carpenter FM, Richardson ES. 1971. Additional insects in Pennsylvanian concretions from Illinois. Psyche 78:4267–95
    [Google Scholar]
  25. 25.
    Chang HH, Qiu ZY, Yuan H, Wang XY, Li XJ et al. 2020. Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Mol. Phylogenet. Evol. 145:106734
    [Google Scholar]
  26. 26.
    Chen L, Gu JJ, Yang Q, Ren D, Blanke A, Béthoux O. 2021. Ovipositor and mouthparts in a fossil insect support a novel ecological role for early orthopterans in 300 million years old forests. eLife 10:e71006
    [Google Scholar]
  27. 27.
    Condamine FL, Nel A, Grandcolas P, Legendre F. 2020. Fossil and phylogenetic analyses reveal recurrent periods of diversification and extinction in dictyopteran insects. Cladistics 36:394–412
    [Google Scholar]
  28. 28.
    Corbet PS. 1999. Dragonflies: Behavior and Ecology of Odonata Ithaca, NY: Cornell Univ. Press
  29. 29.
    Cui YY, Béthoux O, Klass KD, Ren D. 2015. The Jurassic Bajanzhargalanidae (Insecta: Grylloblattida?): new genera and species, and data on postabdominal morphology. Arthropod Struct. Dev. 44:6 Part B688–716
    [Google Scholar]
  30. 30.
    Cui YY, Béthoux O, Ren D. 2011. Intraindividual variability in Sinonamuropteridae forewing venation (Grylloblattida; Late Carboniferous): taxonomic and nomenclatural implications. Syst. Entomol. 36:44–56
    [Google Scholar]
  31. 31.
    D'Haese CA. 2003. Morphological appraisal of Collembola phylogeny with special emphasis on Poduromorpha and a test of the aquatic origin hypothesis. Zool. Scr. 32:563–86
    [Google Scholar]
  32. 32.
    Dmitriev VY, Aristov DS, Bashkuev AS, Vasilenko DV, Vřsanský P et al. 2018. Insect diversity from the Carboniferous to recent. Paleontol. J. 52:610–19
    [Google Scholar]
  33. 33.
    Dunlop JA, Garwood RJ. 2017. Terrestrial invertebrates in the Rhynie chert ecosystem. Philos. Trans. R. Soc. B 373:20160493
    [Google Scholar]
  34. 34.
    Edgecombe GD. 2020. Arthropod origins: integrating paleontological and molecular evidence. Annu. Rev. Ecol. Evol. Syst. 51:1–25
    [Google Scholar]
  35. 35.
    Edmunds GF, McCafferty WP. 1988. The mayfly subimago. Annu. Rev. Entomol. 33:509–29
    [Google Scholar]
  36. 36.
    Emeljanov AF. 2014. The evolutionary role and fate of the primary ovipositor in insects. Entomol. Rev. 94:367–96
    [Google Scholar]
  37. 37.
    Engel MS. 2009. A new Lower Permian bristletail from the Wellington Formation in Kansas (Archaeognatha: Dasyleptidae). Trans. Kans. Acad. Sci. 112:1–240–44
    [Google Scholar]
  38. 38.
    Engel MS, Davis SR, Prokop J 2013. Insect wings: the evolutionary development of nature's first flyers. Arthropod Biology and Evolution: Molecules, Development, Morphology A Minelli, G Boxshall, G Fusco 269–98 Berlin: Springer
    [Google Scholar]
  39. 39.
    Engel MS, Grimaldi DA. 2004. New light shed on the oldest insect. Nature 427:627–30
    [Google Scholar]
  40. 40.
    Engel MS, Winterton SL, Breitkreuz LCV. 2018. Phylogeny and evolution of Neuropterida: Where have wings of lace taken us?. Annu. Rev. Entomol. 63:531–51
    [Google Scholar]
  41. 41.
    Evangelista DA, Wipfler B, Béthoux O, Donath A, Fujita M et al. 2019. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. R. Soc. B 286:20182076
    [Google Scholar]
  42. 42.
    Fayers SR, Trewin NH. 2005. A hexapod from the Early Devonian Windyfield chert, Rhynie, Scotland. Palaeontology 48:1117–30
    [Google Scholar]
  43. 43.
    Garwood R, Ross A, Sotty D, Chabard D, Charbonnier S et al. 2012. Tomographic reconstruction of neopterous Carboniferous insect nymphs. PLOS ONE 7:9e45779
    [Google Scholar]
  44. 44.
    Grimaldi DA, Engel MS. 2005. Evolution of the Insects Cambridge, UK: Cambridge Univ. Press
  45. 45.
    Gu JJ, Béthoux O, Ren D. 2011. Longzhua loculata n. gen. n. sp., one of the most completely documented Pennsylvanian Archaeorthoptera (Insecta; Ningxia, China). J. Paleontol. 85:303–14
    [Google Scholar]
  46. 46.
    Haug C, Haug JT. 2017. The presumed oldest flying insect: more likely a myriapod?. PeerJ 5:e3402
    [Google Scholar]
  47. 47.
    Haug JT, Haug C, Garwood RJ. 2016. Evolution of insect wings and development—new details from Palaeozoic nymphs. Biol. Rev. 91:53–69
    [Google Scholar]
  48. 48.
    Haug JT, Labandeira CC, Santiago-Blay JA, Haug C, Brown S. 2015. Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. BMC Evol. Biol. 15:208
    [Google Scholar]
  49. 49.
    Heming BS. 2003. Insect Development and Evolution Ithaca, NY: Cornell Univ. Press
  50. 50.
    Hennig W. 1981. Insect Phylogeny Hoboken, NJ: Wiley
  51. 51.
    Hessler RR, Yager J. 1998. Skeletomusculature of trunk segments and their limbs in Speleonectes tulumensis (Remipedia). J. Crustac. Biol. 18:111–19
    [Google Scholar]
  52. 52.
    Hörnig MK, Haug C, Schneider JW, Haug JT. 2018. Evolution of reproductive strategies in dictyopteran insects—clues from ovipositor morphology of extinct roachoids. Acta Palaeontol. Pol. 63:1–24
    [Google Scholar]
  53. 53.
    Huang DY, Bechly G, Nel P, Engel MS, Prokop J et al. 2016. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci. Rep. 6:23004
    [Google Scholar]
  54. 54.
    Jacquelin L, Desutter-Grandcolas L, Chintauan-Marquier I, Boistel R, Zheng D et al. 2018. New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta). Sci. Rep. 8:238
    [Google Scholar]
  55. 55.
    Jarzembowski EA, Ross AJ 1996. Insect origination and extinction in the Phanerozoic. Biotic Recovery from Mass Extinction Events MB Hart 65–78 Geol. Soc. Spec. Publ. 102 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  56. 56.
    Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B et al. 2018. Phylogenomics and the evolution of hemipteroid insects. PNAS 115:12775–80
    [Google Scholar]
  57. 57.
    Kamsoi O, Ventos-Alfonso A, Casares F, Almudi I, Belles X. 2021. Regulation of metamorphosis in neopteran insects is conserved in the paleopteran Cloeon dipterum (Ephemeroptera). PNAS 118:e2105272118
    [Google Scholar]
  58. 58.
    Khramov AV, Bashkuev AS, Lukashevicha ED. 2020. The fossil record of long-proboscid nectarivorous insects. Entomol. Rev. 100:881–968
    [Google Scholar]
  59. 59.
    Khramov AV, Naugolnykh SV, Weigierek P. 2022. Possible long-proboscid insect pollinators from the Early Permian of Russia. Curr. Biol. 32:P3815–20.E2
    [Google Scholar]
  60. 60.
    Kiesmüller C, Hörnig MK, Leipner A, Haug C, Haug JT. 2019. Palaeozoic palaeodictyopteran insect nymphs with prominent ovipositors from a new locality. Bull. Geosci. 94:23–40
    [Google Scholar]
  61. 61.
    Kirejtshuk AG, Poschmann M, Prokop J, Garrouste R, Nel A. 2014. Evolution of the elytral venation and structural adaptations in the oldest Palaeozoic beetles (Insecta: Coleoptera: Tshekardocoleidae). J. Syst. Palaeontol. 12:575–600
    [Google Scholar]
  62. 62.
    Klass K-D, Matushkina NA. 2018. The exoskeleton of the male genitalic region in Archaeognatha, with hypotheses on the early evolution and the morphological interpretation of genitalia in insects. Arthropod Syst. Phylogeny 76:235–94
    [Google Scholar]
  63. 63.
    Kluge NYu. 1996. A new suborder of Thysanura for Carboniferous insects originally described as larva of Bojophlebia, with comments on characters of the order Thysanura and Ephemeroptera. Zoosyst. Ross. 4:71–75
    [Google Scholar]
  64. 64.
    Kohli M, Letsch H, Greve C, Béthoux O, Deregnaucourt I et al. 2021. Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. iScience 24:11103324
    [Google Scholar]
  65. 65.
    Kristensen NP. 1991. Phylogeny of extant hexapods. The Insects of Australia: A Textbook for Students and Research Workers, Vol. 1 ID Naumann 125–40 Ithaca, NY: Cornell Univ. Press. , 2nd ed..
    [Google Scholar]
  66. 66.
    Kristensen NP. 1995. Forty years’ insect phylogenetic systematics: Hennig “Kritische Bemerkungen…” and subsequent developments. Zool. Beitr. 36:183–124
    [Google Scholar]
  67. 67.
    Kristensen NP 1997. The groundplan and basal diversification of the hexapods. Arthropod Relationships RA Fortey, RH Thomas 281–93 Syst. Assoc. Spec . Vol. Ser. 55 London: Chapman & Hall
    [Google Scholar]
  68. 68.
    Kukalová-Peck J. 1971. The structure of Dunbaria (Palaeodictyoptera). Psyche 78:306–18
    [Google Scholar]
  69. 69.
    Kukalová-Peck J. 1978. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. J. Morphol. 15:653–126
    [Google Scholar]
  70. 70.
    Kukalová-Peck J. 1983. Origin of the insect wing and wing articulation from the arthropodan leg. Can. J. Zool. 61:71618–69
    [Google Scholar]
  71. 71.
    Kukalová-Peck J. 1985. Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphological phylogeny and metamorphosis of pterygopte insects (Insecta, Ephemerida). Can. J. Zool. 63:933–55
    [Google Scholar]
  72. 72.
    Kukalová-Peck J. 1987. New Carboniferous Diplura, Monura, and Thysanura, the hexapod ground plan, and the role of thoracic lobes in the origin of wings (Insecta). Can. J. Zool. 65:2327–45
    [Google Scholar]
  73. 73.
    Kukalová-Peck J. 1991. Fossil history and the evolution of hexapod structures. The Insects of Australia: A Textbook for Students and Research Workers, Vol. 1 ID Naumann 141–79 Ithaca, NY: Cornell Univ. Press. , 2nd ed..
    [Google Scholar]
  74. 74.
    Kukalová-Peck J. 1992. The ‘Uniramia’ do not exist: the ground plan of the Pterygota as revealed by Permian Diaphanopterodea from Russia (Insecta: Palaeodictyopteroidea). Can. J. Zool. 70:236–55
    [Google Scholar]
  75. 75.
    Kukalová-Peck J. 1997. Mazon Creek insect fossils: the origin of insect wings and clues about the origin of insect metamorphosis. In Arthropod Relationshipsed. RA Fortey, RH Thomaspp. 194207 Syst. Assoc. Spec. Vol. Ser. 55. London: Chapman & Hall
    [Google Scholar]
  76. 76.
    Kukalová-Peck J. 2008. Phylogeny of higher taxa in Insecta: finding synapomorphies in the extant fauna and separating them from homoplasies. Evol. Biol. 35:4–51
    [Google Scholar]
  77. 77.
    Kukalová-Peck J. 2009. Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera). Palaeodiversity 2:169–98
    [Google Scholar]
  78. 78.
    Kukalová-Peck J, Beutel RG. 2012. Is the Carboniferous Adiphlebia lacoana really the “oldest beetle”? Critical reassessment and description of a new Permian beetle family. Eur. J. Entomol. 109:633–45
    [Google Scholar]
  79. 79.
    Kukalová-Peck J, Brauckmann C. 1992. Most Paleozoic Protorthoptera are ancestral hemipteroids: major wing braces as clues to a new phylogeny of Neoptera (Insecta). Can. J. Zool. 70:2452–73
    [Google Scholar]
  80. 80.
    Kukalová-Peck J, Lawrence JF. 2004. Relationships among coleopteran suborders and major endoneopteran lineages: evidence from hind wing characters. Eur. J. Entomol. 101:95–144
    [Google Scholar]
  81. 81.
    Kukalová-Peck J, Richardson ES. 1983. New Homoiopteridae (Insecta: Paleodictyoptera) with wing articulation from Upper Carboniferous strata of Mazon Creek, Illinois. Can. J. Zool. 61:1670–87
    [Google Scholar]
  82. 82.
    Laaß M, Hauschke N. 2019. Earliest record of exophytic insect oviposition on plant material from the latest Pennsylvanian (Gzhelian, Stephanian C) of the Saale Basin, Germany. Palaeogeogr. Palaeoclimat. Palaeoecol. 534:109337
    [Google Scholar]
  83. 83.
    Labandeira CC. 2019. The fossil record of insect mouthparts: innovation, functional convergence, and associations with other organisms. Insect Mouthparts HW Krenn 567–671 Zool. Monogr. 5 Berlin: Springer
    [Google Scholar]
  84. 84.
    Labandeira CC, Phillips TL. 1996. A Carboniferous insect gall: insight into early ecological history of the Holometabola. PNAS 93:8470–74
    [Google Scholar]
  85. 85.
    Labandeira CC, Sepkoski JJ. 1993. Insect diversity in the fossil record. Science 261:5119310–15
    [Google Scholar]
  86. 86.
    Labandeira CC, Wappler T. 2023. Arthropod and pathogen damage on fossil and modern plants: exploring the origins and evolution of herbivory on land. Annu. Rev. Entomol. 68:34161
    [Google Scholar]
  87. 87.
    Legendre F, Nel A, Svenson GJ, Robillard T, Pellens R et al. 2015. Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLOS ONE 10:7e0130127
    [Google Scholar]
  88. 88.
    Lozano-Fernandez J, Carton R, Tanner AR, Puttick MN, Blaxter M et al. 2016. A molecular palaeobiological exploration of arthropod terrestrialization. Philos. Trans. R. Soc. B 371:20150133
    [Google Scholar]
  89. 89.
    Lozano-Fernandez J, Giacomelli M, Fleming JF, Chen A, Vinther J et al. 2019. Pancrustacean evolution illuminated by taxon-rich genomic-scale data sets with an expanded remipede sampling. Genome Biol. Evol. 11:2055–70
    [Google Scholar]
  90. 90.
    Maiorana VC. 1979. Why do adult insects not moult?. Biol. J. Linn. Soc. 11:253–58
    [Google Scholar]
  91. 91.
    Minet J, Huang D, Wu H, Nel A. 2010. Early Mecopterida and the systematic position of the Microptysmatidae (Insecta: Endopterygota). Ann. Soc. Entomol. Fr. 46:1–2262–70
    [Google Scholar]
  92. 92.
    Misof B, Liu S, Meusemann K, Peters RS, Donath A et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:6210763–67
    [Google Scholar]
  93. 93.
    Müller AH. 1978. Zur Entomofauna des Permkarbon: 3 Teil. Über die Morphologie, Taxonomie und Ökologie von Eugereon boeckingi (Palaeodictyoptera). Freiberg Forsch. C 334:7–20
    [Google Scholar]
  94. 94.
    Nel A. 2021. Impact of the choices of calibration points for molecular dating: a case study of Ensifera. Palaeoentomology 4:3228–30
    [Google Scholar]
  95. 95.
    Nel A, Bechly G, Prokop J, Béthoux O, Fleck G. 2012. Systematics and evolution of Paleozoic and Mesozoic damselfly-like Odonatoptera of the ‘Protozygopteran’ grade. J. Paleontol. 86:81–104
    [Google Scholar]
  96. 96.
    Nel A, Fleck G, Garrouste R, Gand G, Lapeyrie J et al. 2009. Revision of Permo-Carboniferous griffenflies (Insecta: Odonatoptera: Meganisoptera) based upon new species and redescription of selected poorly known taxa from Eurasia. Palaeontographica A 289:89–121
    [Google Scholar]
  97. 97.
    Nel A, Gand G, Fleck G, Béthoux O, Lapeyrie J. 1999. Saxonagrion minutus nov. gen. et sp., the oldest damselfly from the Upper Permian of France (Odonatoptera, Panodonata, Saxonagrionidae nov. fam.). Geobios 32:883–88
    [Google Scholar]
  98. 98.
    Nel A, Ilger JM, Brauckmann C, Prokop J. 2012. Revision of Bechala sommeri Ilger and Brauckmann, 2012 from the early Late Carboniferous of Germany (Insecta: Odonatoptera: Bechalidae). Insect Syst. Evol. 43:161–69
    [Google Scholar]
  99. 99.
    Nel A, Prokop J, Nel P, Grandcolas P, Huang DY et al. 2012. Traits and evolution of wing venation pattern in paraneopteran insects. J. Morphol. 273:480–506
    [Google Scholar]
  100. 100.
    Nel A, Prokop J, Pecharová M, Engel MS, Garrouste R. 2018. Palaeozoic giant dragonflies were hawker predators. Sci. Rep. 8:12141
    [Google Scholar]
  101. 101.
    Nel A, Roques P, Nel P, Prokin AA, Bourgoin T et al. 2013. The earliest-known holometabolous insects. Nature 503:257–61
    [Google Scholar]
  102. 102.
    Nel A, Roques P, Nel P, Prokop J, Steyer JS. 2007. The earliest holometabolous insect from the Carboniferous: a “crucial” innovation with delayed success (Insecta Protomeropina Protomeropidae). Ann. Soc. Entomol. Fr. 43:349–55
    [Google Scholar]
  103. 103.
    Nel P, Azar D, Prokop J, Roques P, Hodebert G et al. 2012. From Carboniferous to recent: wing venation enlightens evolution of thysanopteran lineage. J. Syst. Palaeontol. 10:385–99
    [Google Scholar]
  104. 104.
    Nicholson DB, Ross AJ, Mayhew PJ. 2014. Fossil evidence for key innovations in the evolution of insect diversity. Proc. R. Soc. B 281:20141823
    [Google Scholar]
  105. 105.
    Novokshonov VG 1998.. [ The fossil insects of Chekarda. .] In Chekarda—mestonakhozhdenie permskikh iskopaemykh rasteniy i nasekomykh [Chekarda—The Locality of Permian Fossil Plants and Insects], ed. GY Ponomaryova, VG Novokshonov, SV Nauglonykh 25–54 Perm, Russ.: Perm Univ.
    [Google Scholar]
  106. 106.
    Novokshonov VG. 1998. New insects (Insecta: Hypoperlida, Mischopterida, Jurinida) from the Lower Permian of the Middle Urals. Paleontol. J. 32:46–53
    [Google Scholar]
  107. 107.
    Payne JL, Clapham ME. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?. Annu. Rev. Earth Planet. Sci. 40:89–111
    [Google Scholar]
  108. 108.
    Pecharová M, Ren D, Prokop J. 2015. A new palaeodictyopteroid (Megasecoptera: Brodiopteridae) from the Early Pennsylvanian of northern China reveals unique morphological traits and intra-specific variability. Alcheringa 39:236–49
    [Google Scholar]
  109. 109.
    Pecharová M, Prokop J. 2018. The morphology of mouthparts, wings and genitalia of Paleozoic insect families Protohymenidae and Scytohymenidae reveals new details and supposed function. Arthropod Struct. Dev. 47:117–29
    [Google Scholar]
  110. 110.
    Pecharová M, Prokop J, Ren D. 2015. Early Pennsylvanian aykhalids from Xiaheyan, northern China and their palaeogeographical significance (Insecta: Megasecoptera). C. R. Palevol. 14:613–24
    [Google Scholar]
  111. 111.
    Pérez-de la Fuente R, Nel A, Poschmann MJ. 2022. Shedding light on the enigmatic extinct insect order Glosselytrodea: new diversity and key morphological insights on non-tegminized Permian forms. Pap. Palaeontol. 8:e1452
    [Google Scholar]
  112. 112.
    Petrulevičius JF, Gutiérrez PR. 2016. New basal Odonatoptera (Insecta) from the lower Carboniferous (Serpukhovian) of Argentina. Arq. Entomol. 16:341–58
    [Google Scholar]
  113. 113.
    Prokin AA, Ponomarenko AG, Kirejtshuk AG. 2019. Description of a larva of Kargalarva permosialis gen. et sp. nov. (Coleoptera: Schizophoromorpha) from the Kargala Fossil Site. Paleontol. J. 53:282–86
    [Google Scholar]
  114. 114.
    Prokop J, Engel MS. 2019. Palaeodictyopterida. Curr. Biol. 29:R306–9
    [Google Scholar]
  115. 115.
    Prokop J, Fernandes FR, Lapeyrie J, Nel A. 2015. Discovery of the first lacewings (Neuroptera: Permithonidae) from the Guadalupian of Lodève Basin (Southern France). Geobios 48:263–70
    [Google Scholar]
  116. 116.
    Prokop J, Krzemińska E, Krzemiński W, Rosová K, Pecharová M et al. 2019. Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. R. Soc. Open Sci. 6:190460
    [Google Scholar]
  117. 117.
    Prokop J, Krzeminski W, Krzeminska E, Hörnschemeyer T, Ilger JM et al. 2014. Late Palaeozoic Paoliida is the sister group of Dictyoptera (Insecta: Neoptera). J. Syst. Palaeontol. 12:601–22
    [Google Scholar]
  118. 118.
    Prokop J, Nel A. 2009. Systematic position of Triplosoba, hitherto the oldest mayfly from Upper Carboniferous of Commentry in Central France (Insecta: Palaeodictyopterida). Syst. Entomol. 34:610–15
    [Google Scholar]
  119. 119.
    Prokop J, Nel A. 2010. New griffenfly, Bohemiatupus elegans from the Late Carboniferous of western Bohemia in the Czech Republic (Odonatoptera: Meganisoptera: Meganeuridae). Ann. Soc. Entomol. Fr. 46:183–88
    [Google Scholar]
  120. 120.
    Prokop J, Nel A, Engel MS, Pecharová M, Hörnschemeyer T. 2016. New Carboniferous fossils of Spilapteridae enlighten postembryonic wing development in Palaeodictyoptera. Syst. Entomol. 41:178–90
    [Google Scholar]
  121. 121.
    Prokop J, Nel A, Tenny A. 2010. On the phylogenetic position of the palaeopteran Syntonopteroidea (Insecta: Ephemeroptera), with a new species from the Upper Carboniferous of England. Org. Div. Evol. 10:331–40
    [Google Scholar]
  122. 122.
    Prokop J, Pecharová M, Garrouste R, Beattie R, Chintauan-Marquier IC et al. 2017. Redefining the extinct orders Miomoptera and Hypoperlida as stem acercarian insects. BMC Evol. Biol. 17:205
    [Google Scholar]
  123. 123.
    Prokop J, Pecharová M, Jarzembowski EA, Ross AJ. 2018. New palaeodictyopterans from the Late Carboniferous of the UK (Insecta: Palaeodictyopterida). Earth Environ. Sci. Trans. R. Soc. Edinb. 107:2–399–107
    [Google Scholar]
  124. 124.
    Prokop J, Pecharová M, Nel A, Grey M, Hörnschemeyer T. 2017. A remarkable insect from the Pennsylvanian of the Joggins Formation in Nova Scotia, Canada: insights into unusual venation of Brodiidae and nymphs of Megasecoptera. J. Syst. Palaeont. 15:1051–65
    [Google Scholar]
  125. 125.
    Prokop J, Pecharová M, Nel A, Hörnschemeyer T. 2018. The wing base of the palaeodictyopteran genus Dunbaria Tillyard: Where are we now?. Arthropod Struct. Dev. 47:339–51
    [Google Scholar]
  126. 126.
    Prokop J, Pecharová M, Nel A, Hörnschemeyer T, Krzemińska E et al. 2017. Paleozoic nymphal wing pads support dual model of insect wing origins. Curr. Biol. 27:263–69
    [Google Scholar]
  127. 127.
    Prokop J, Pecharová M, Ren D. 2016. Hidden surface microstructures on Carboniferous insect Brodioptera sinensis (Megasecoptera) enlighten functional morphology and sensorial perception. Sci. Rep. 6:28316
    [Google Scholar]
  128. 128.
    Prokop J, Pecharová M, Sinitshenkova ND, Klass KD. 2020. Male postabdomen reveals ancestral traits of Megasecoptera among winged insects. Arthropod Struct. Dev. 57:100944
    [Google Scholar]
  129. 129.
    Prokop J, Rosová K, Krzemińska E, Krzemiński W, Nel A, Engel MS. 2022. Abdominal serial homologues of wings in Paleozoic insects. Curr. Biol. 32:153414–22
    [Google Scholar]
  130. 130.
    Prokop J, Rosová K, Leipner A, Nel A. 2022. First caddisfly-like insect from the Pennsylvanian of Piesberg (Insecta: stem Amphiesmenoptera). Hist. Biol. https://doi.org/10.1080/08912963.2022.2098022
    [Crossref] [Google Scholar]
  131. 131.
    Prokop J, Szwedo J, Lapeyrie J, Garrouste R, Nel A. 2015. New Middle Permian insects from Salagou Formation of the Lodève Basin in southern France (Insecta: Pterygota). Ann. Soc. Entomol. Fr. 51:14–51
    [Google Scholar]
  132. 132.
    Prokop J, Tippeltová Z, Roques P, Nel A. 2013. A new genus and species of Breyeriidae and wings of immature stages from the Upper Carboniferous, Nord-Pas-de-Calais, France (Insecta: Palaeodictyoptera). Insect Syst. Evol. 44:117–28
    [Google Scholar]
  133. 133.
    Przibram H, Megušar F. 1912. Wachstumsmessungen an Sphodromantis bioruluta Burm. 1. Länge und Masse. Arch. Entw. Mech. Org. 34:680–741
    [Google Scholar]
  134. 134.
    Rasnitsyn AP. 1977. New Paleozoic and Mesozoic insects. Paleontol. J. 11:160–72
    [Google Scholar]
  135. 135.
    Rasnitsyn AP. 1981. A modified paranotal theory of insect wing origin. J. Morphol. 168:331–38
    [Google Scholar]
  136. 136.
    Rasnitsyn AP. 2000. Taxonomy and morphology of Dasyleptus Brongniart, 1885, with description of a new species (Insecta: Machilida: Dasyleptidae). Russ. Entomol. J. 8:3145–54
    [Google Scholar]
  137. 137.
    Rasnitsyn AP, Krassilov VA. 1996. First find of pollen grains in the gut of Permian insects. Paleontol. J. 30:484–90
    [Google Scholar]
  138. 138.
    Rasnitsyn AP, Novokshonov VG. 1997. On the morphology of Uralia maculata from the Early Permian (Kungurian) of Ural (Russia). Entomol. Scand. 28:27–38
    [Google Scholar]
  139. 139.
    Rasnitsyn AP, Quicke DLJ, eds. 2002. History of Insects Dordrecht, Neth.: Kluwer Acad. Publ.
  140. 140.
    Riek EF, Kukalová-Peck J. 1984. A new interpretation of dragonfly wing venation based upon Early Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic characters states in pterygote wings. Can. J. Zool. 62:1150–66
    [Google Scholar]
  141. 141.
    Rinehart LF, Rasnitsyn AP, Lucas SG, Heckert AB. 2005. Instar sizes and growth in the Middle Permian monuran Dasyleptus brongniarti (Insecta: Machilida: Dasyleptidae). N. M. Mus. Nat. Hist. Sci. Bull. 30:270–72
    [Google Scholar]
  142. 142.
    Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL et al. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61:973–99
    [Google Scholar]
  143. 143.
    Rosová K, Sinitshenkova ND, Prokop J 2021. Evidence for wing development in the Late Palaeozoic Palaeodictyoptera revisited. Arthropod Struct. Dev. 63:101061
    [Google Scholar]
  144. 144.
    Schachat SR, Labandeira CC, Dyer L. 2021. Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record. Ann. Entomol. Soc. Am. 114:99–118
    [Google Scholar]
  145. 145.
    Schwentner M, Combosch DJ, Pakes Nelson J, Giribet G 2017. A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Curr. Biol. 27:1818–24.e5
    [Google Scholar]
  146. 146.
    Sehnal F, Švácha P, Zrzavý JZ 1996. Evolution of insect metamorphosis. Metamorphosis. Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells LI Gilbert, JR Tata, BG Atkinson 3–58 San Diego: Acad. Press
    [Google Scholar]
  147. 147.
    Shabica CW, Hay AW. 1997. Richardson's Guide to the Fossil Fauna of Mazon Creek Chicago: Northeast. Ill. Univ.
  148. 148.
    Sharov AG. 1966. Basic Arthropodan Stock Elmsford, NY: Pergamon Press
  149. 149.
    Sharov AG. 1973. Morphological features and mode of life of the Paleodictyoptera. Readings in the Memory of Nikolaj Aleksadrovitch Kholodkovskij GY Bei-Benko 49–63 Leningrad: Sci. Publ.
    [Google Scholar]
  150. 150.
    Shcherbakov DE. 2000. Permian faunas of Homoptera (Hemiptera) in relation to phytogeography and the Permo-Triassic crisis. Paleontol. J. 34:Suppl. 3S251–67
    [Google Scholar]
  151. 151.
    Shcherbakov DE. 2002. The 270 million year history of Auchenorrhyncha (Homoptera). Denisia 176:29–35
    [Google Scholar]
  152. 152.
    Shcherbakov DE. 2013. Permian ancestors of Hymenoptera and Raphidioptera. ZooKeys 358:45–67
    [Google Scholar]
  153. 153.
    Shcherbakov DE. 2015. Permian and Triassic ancestors of webspinners (Embiodea). Russ. Entomol. J. 24:187–200
    [Google Scholar]
  154. 154.
    Shcherbakov DE, Makarkin VN, Aristov DS, Vasilenko DV. 2009. Permian insects from the Russky Island, South Primorye. Russ. Entomol. J. 18:7–16
    [Google Scholar]
  155. 155.
    Shcherbakov DE, Popov YA. 2002. Superorder Cimicidea Laicharting, 1781 order Hemiptera Linné, 1758. The bugs, cicadas, plantlice, scale insects, etc. (=Cimicida Laicharting, 1781, = Homoptera Leach, 1815 + Heteroptera Latreille, 1810). See Reference 139 143–57
  156. 156.
    Shear WA, Kukalová-Peck J. 1990. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can. J. Zool. 68:1807–34
    [Google Scholar]
  157. 157.
    Simon S, Blanke A, Meusemann K. 2018. Reanalyzing the Palaeoptera problem: The origin of insect flight remains obscure. Arthropod Struct. Dev. 47:328–38
    [Google Scholar]
  158. 158.
    Sinitshenkova ND. 1979. A new family of the Palaeodictyoptera from the Carboniferous of Siberia. Paleontol. J. 13:192–205
    [Google Scholar]
  159. 159.
    Sinitshenkova ND. 2002. Superorder Dictyoneurida Handlirsch, 1906 (= Palaeodictyopteroidea). See Reference 139115–24
    [Google Scholar]
  160. 160.
    Smith DM. 2012. Exceptional preservation of insects in lacustrine environments. Palaios 27:346–53
    [Google Scholar]
  161. 161.
    Song HJ, Béthoux O, Shin S, Donath A, Letsch H et al. 2020. Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nat. Commun. 11:4939
    [Google Scholar]
  162. 162.
    Sroka P, Godunko RJ, Sinitshenkova ND, Prokop J. 2021. Life history, systematics and flight ability of the Early Permian stem-mayflies in the genus Misthodotes Sellards, 1909 (Insecta, Ephemerida, Permoplectoptera). BMC Ecol. Evol. 21:97
    [Google Scholar]
  163. 163.
    Sroka P, Staniczek AH, Bechly G. 2015. Revision of the giant pterygote insect Bojophlebia prokopi Kukalová-Peck, 1985 (Hydropalaeoptera: Bojophlebiidae) from the Carboniferous of the Czech Republic, with the first cladistic analysis of fossil palaeopterous insects. J. Syst. Palaeontol. 13:963–82
    [Google Scholar]
  164. 164.
    Staniczek AH, Bechly G, Godunko R. 2011. Coxoplectoptera, a new fossil order of Palaeoptera (Arthropoda: Insecta), with comments on the phylogeny of the stem group of mayflies (Ephemeroptera). Insect Syst. Evol. 42:101–38
    [Google Scholar]
  165. 165.
    Staniczek AH, Sroka P, Benchly G. 2014. Neither silverfish nor fowl: The enigmatic Carboniferous Carbotriplura kukalovae Kluge, 1996 (Insecta: Carbotriplurida) is the putative fossil sister group of winged insects (Insecta: Pterygota). Syst. Entomol. 39:619–32
    [Google Scholar]
  166. 166.
    Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63:31–45
    [Google Scholar]
  167. 167.
    Storozhenko SYu. 2002. Order Grylloblattida Walker, 1914 (= Notoptera Crampton, 1915, = Grylloblattodea Brues et Melander, 1932, + Protorthoptera Handlirsch, 1906, = Paraplecoptera Martynov, 1925, + Protoperlaria Tillyard, 1928). See Reference 139 278–84
  168. 168.
    Suzuki K, Watanabe Y, Tojo K. 2020. Embryogenesis of the damselfly Euphaea yayeyamana Oguma (Insecta: Odonata: Euphaeidae), with special reference to the formation of their larval abdominal “gill-like” appendages. Entomol. Sci. 23:280–93
    [Google Scholar]
  169. 169.
    Wang Y, Engel MS, Rafael JA, Wu HY, Rédei D et al. 2016. Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda). Sci. Rep. 6:38939
    [Google Scholar]
  170. 170.
    Whitfield JB, Kjer KM. 2008. Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annu. Rev. Entomol. 53:449–72
    [Google Scholar]
  171. 171.
    Willmann R 1998. Advances and problems in insect phylogeny. Arthropod Relationships RA Fortey, RH Thomas 269–79 Syst. Assoc. Spec . Vol. Ser. 55 London: Chapman & Hall
    [Google Scholar]
  172. 172.
    Willmann R. 1999. The Upper Carboniferous Lithoneura lameerei (Insecta, Ephemeroptera?). Paläontol. Z. 73:289–302
    [Google Scholar]
  173. 173.
    Willmann R. 2003. Die phylogenetischen Beziehungen der Insecta: Offene Fragen und Probleme. Verh. Westdtsch. Entomol. 2003:1–64
    [Google Scholar]
  174. 174.
    Willmann R. 2007. Die Stammgruppenvertreter der Ephemeroptera und ihre systematische Stellung (Insecta). Spec. Phylogenet. Evol. 1:2109–28
    [Google Scholar]
  175. 175.
    Wipfler B, Letsch H, Frandsen PB, Kapli P, Mayer Ch et al. 2019. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. PNAS 116:3024–29
    [Google Scholar]
  176. 176.
    Wolfe JM, Daley AC, Legg DA, Edgecombe GD. 2016. Fossil calibrations for the arthropod tree of life. Earth Sci. Rev. 160:43–110
    [Google Scholar]
  177. 177.
    Wootton RJ. 1981. Palaeozoic insects. Annu. Rev. Entomol. 26:319–44
    [Google Scholar]
  178. 178.
    Wootton RJ. 1988. The historical ecology of aquatic insects: an overview. Palaeogeogr. Palaeoclimat. Palaeoecol. 62:477–92
    [Google Scholar]
  179. 179.
    Wootton RJ, Kukalová-Peck J. 2000. Flight adaptations in Palaeozoic Palaeoptera (Insecta). Biol. Rev. 75:129–67
    [Google Scholar]
  180. 180.
    Wootton RJ, Kukalová-Peck J, Newman JS, Muzon J. 1998. Smart engineering in the Mid-Carboniferous: How well could Paleozoic dragonflies fly?. Science 282:749–51
    [Google Scholar]
  181. 181.
    Yan EV, Beutel RG, Lawrence JF. 2018. Whirling in the late Permian: Ancestral Gyrinidae show early radiation of beetles before Permian-Triassic mass extinction. BMC Evol. Biol. 18:332018
    [Google Scholar]
  182. 182.
    Yan EV, Lawrence JF, Beattie R, Beutel RG. 2017. At the dawn of the great rise: Ponomarenkia belmonthensis (Insecta: Coleoptera), a remarkable new Late Permian beetle from the Southern Hemisphere. J. Syst. Palaeontol. 16:611–19
    [Google Scholar]
  183. 183.
    Yoshizawa K, Lienhard C. 2016. Bridging the gap between chewing and sucking in the hemipteroid insects: new insights from Cretaceous amber. Zootaxa 4079:229–45
    [Google Scholar]
  184. 184.
    Zhao C, Ang Y, Wang M, Gao C, Zhang K et al. 2020. Contribution to understanding the evolution of holometaboly: transformation of internal head structures during the metamorphosis in the green lacewing Chrysopa pallens (Neuroptera: Chrysopidae). BMC Evol. Biol. 20:79
    [Google Scholar]
  185. 185.
    Zhao X, Yu Y, Clapham M, Yan E, Chen J et al. 2021. Early evolution of beetles regulated by the end-Permian deforestation. eLife 10:e72692
    [Google Scholar]
  186. 186.
    Zrzavý J, Štys P. 1997. The basic plan of arthropods: insights from evolutionary morphology and developmental biology. J. Evol. Biol. 10:353–67
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-022637
Loading
/content/journals/10.1146/annurev-ento-120220-022637
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error