Communication by substrate-borne mechanical waves is widespread in insects. The specifics of vibrational communication are related to heterogeneous natural substrates that strongly influence signal transmission. Insects generate vibrational signals primarily by tremulation, drumming, stridulation, and tymbalation, most commonly during sexual behavior but also in agonistic, social, and mutualistic as well as defense interactions and as part of foraging strategies. Vibrational signals are often part of multimodal communication. Sensilla and organs detecting substrate vibration show great diversity and primarily occur in insect legs to optimize sensitivity and directionality. In the natural environment, signals from heterospecifics, as well as social and enemy interactions within vibrational communication networks, influence signaling and behavioral strategies. The exploitation of substrate-borne vibrational signaling offers a promising application for behavioral manipulation in pest control.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1.
    Adamo SA, Hoy RR. 1995. Agonistic behaviour in male and female field crickets, Gryllus bimaculatus, and how behavioural context influences its expression. Anim. Behav. 49:1491–501
    [Google Scholar]
  2. 2.
    Agrawal S, Dickinson ES, Sustar A, Gurung P, Shepherd D et al. 2020. Central processing of leg proprioception in Drosophila. eLife 9:e60299
    [Google Scholar]
  3. 3.
    Andrade MCB, Mason AC. 2000. Male condition, female choice, and extreme variation in repeated mating in a scaly cricket, Ornebius aperta (Orthoptera: Gryllidae: Mogoplistinae). J. Insect Behav. 13:4483–96
    [Google Scholar]
  4. 4.
    Barenholz-Paniry V, Ishay JS, Karin J, Akselrod S 1986. Rhythm of sounds produced by larvae of the oriental hornet Vespa orientalis: spectral analysis. BioSystems 19:299–305
    [Google Scholar]
  5. 5.
    Barth FG, Bleckmann H, Bohnenberger J, Seyfarth EA 1988. Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae). II. On the vibratory environment of a wandering spider. Oecologia 77:194–201
    [Google Scholar]
  6. 6.
    Blackledge TA, Pickett KM. 2000. Predatory interactions between mud-dauber wasps (Hymenoptera, Sphecidae) and Argiope (Araneae, Araneidae) in captivity. J. Arachnol. 28:211–16
    [Google Scholar]
  7. 7.
    Body MJA, Neer WC, Vore C, Lin CH, Vu DH et al. 2019. Caterpillar chewing vibrations cause changes in plant hormones and volatile emissions in Arabidopsis thaliana. Front. Plant Sci. 10:810
    [Google Scholar]
  8. 8.
    Bontonou G, Wicker-Thomas C. 2014. Sexual communication in the Drosophila genus. Insects 5:2439–58
    [Google Scholar]
  9. 9.
    Broad G, Quicke D. 2000. The adaptive significance of host location by vibrational sounding in parasitoid wasps. Proc. R. Soc. Lond. B 267:2403–9
    [Google Scholar]
  10. 10.
    Brownell PH. 1977. Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197:479–82
    [Google Scholar]
  11. 11.
    Caldwell MS. 2014. Interactions between airborne sound and substrate vibration in animal communication. See Reference 17 65–92
  12. 12.
    Cardé RT, Millar JG 2009. Pheromones. Encyclopedia of Insects VH Resh, RT Cardé 766–72 Cambridge, MA: Academic
    [Google Scholar]
  13. 13.
    Casas J, Magal C, Sueur J. 2007. Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proc. R. Soc. B 274:1087–92
    [Google Scholar]
  14. 14.
    Cocroft RB. 1999. Parent-offspring communication in response to predators in a subsocial treehopper (Hemiptera: Membracidae: Umbonia crassicornis). Ethology 105:553–68
    [Google Scholar]
  15. 15.
    Cocroft RB. 2005. Vibrational communication facilitates cooperative foraging in a phloem-feeding insect. Proc. R. Soc. B 272:1023–29
    [Google Scholar]
  16. 16.
    Cocroft RB, Gogala M, Hill PSM, Wessel A. 2014. Fostering research in a rapidly growing field. See Reference 17 3–12
  17. 17.
    Cocroft RB, Gogala M, Hill PSM, Wessel A. 2014. Studying Vibrational Communication Berlin: Springer
    [Google Scholar]
  18. 18.
    Cocroft RB, Rodríguez RL. 2005. The behavioral ecology of insect vibrational communication. BioScience 55:323–34
    [Google Scholar]
  19. 19.
    Cocroft RB, Rodríguez RL, Hunt RE. 2010. Host shifts and signal divergence: Mating signals covary with host use in a complex of specialized plant-feeding insects. Biol. J. Linn. Soc. 99:16072
    [Google Scholar]
  20. 20.
    Cocroft RB, Tieu TD, Hoy RR, Miles RN. 2000. Directionality in the mechanical response to substrate vibration in the treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J. Comp. Physiol. 186:695–705
    [Google Scholar]
  21. 21.
    Čokl A. 1983. Functional properties of vibroreceptors in the legs of Nezara viridula (L.) (Heteroptera, Pentatomidae). J. Comp. Physiol. A 150:261–69
    [Google Scholar]
  22. 22.
    Čokl A, Kalmring K, Rössler W. 1995. Physiology of atympanate tibial organs in forelegs and midlegs of the cave-living Ensifera, Troglophilus neglectus (Rhaphidophoridae, Gryllacridoidea). J. Exp. Zool. 273:376–88
    [Google Scholar]
  23. 23.
    Čokl A, Moreira Dias A, Blassioli-Moraes MC, Borges M, Laumann RA 2017. Rivalry between stinkbug females in a vibrational communication network. J. Insect Behav. 30:741–58
    [Google Scholar]
  24. 24.
    Čokl A, Virant-Doberlet M, Stritih N. 2000. The structure and function of songs emitted by southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiol. Entomol. 25:196–205
    [Google Scholar]
  25. 25.
    Čokl A, Zorović M, Žunič A, Virant-Doberlet M. 2005. Tuning of host plants with vibratory songs of Nezara viridula L (Heteroptera: Pentatomidae). J. Exp. Biol. 208:1481–88
    [Google Scholar]
  26. 26.
    Čokl A, Žunič-Kosi A, Stritih-Peljhan N, Blassioli-Moraes MC, Laumann RA, Borges M. 2021. Stink bug communication and signal detection in a plant environment. Insects 12:121058
    [Google Scholar]
  27. 27.
    Conrad A, Ayasse M. 2015. The role of vibrations in population divergence in the red mason bee, Osmia bicornis. . Curr. Biol. 25:2819–22
    [Google Scholar]
  28. 28.
    Davranoglou LR, Cicirello A, Taylor GK, Mortimer B. 2019. Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size. PLOS Biol. 17:e3000155
    [Google Scholar]
  29. 29.
    Davranoglou LR, Mortimer B, Taylor GK, Malenovský I. 2020. On the morphology and evolution of cicadomorphan tymbal organs. Arthropod Struct. Dev. 55:100918
    [Google Scholar]
  30. 30.
    De Luca PA, Buchmann S, Galen C, Mason AC, Vallejo-Marín M. 2019. Does body size predict the buzz-pollination frequencies used by bees?. Ecol. Evol. 9:4875–87
    [Google Scholar]
  31. 31.
    De Luca PA, Morris GK. 1998. Courtship communication in meadow katydids: female preference for large male vibrations. Behaviour 135:777–94
    [Google Scholar]
  32. 32.
    Delattre O, Sillam-Dussès D, Jandák V, Brothánek M, Rücker K et al. 2015. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69:1945–55
    [Google Scholar]
  33. 33.
    Derlink M, Pavlovčič P, Stewart AJA, Virant-Doberlet M. 2014. Mate recognition in duetting species: the role of male and female vibrational signals. Anim. Behav. 90:181–93
    [Google Scholar]
  34. 34.
    De Souza LR, Kasumovic MM, Judge KA. 2011. Communicating male size by tremulatory vibration in a Columbian rainforest katydid, Gnathoclita sodalis (Orthoptera, Tettigoniidae). Behaviour 148:341–57
    [Google Scholar]
  35. 35.
    Di Giulio A, Maurizi E, Barbero F, Sala M, Fattorini S et al. 2015. The Pied Piper: A parasitic beetle's melodies modulate ant behaviours. PLOS ONE 10:7e0130541
    [Google Scholar]
  36. 36.
    Drosopoulos S, Claridge MF. 2006. Insect Sounds and Communication: Physiology, Behaviour, Ecology and Evolution Boca Raton, FL: Taylor & Francis
    [Google Scholar]
  37. 37.
    Elias DO, Mason AC. 2014. The role of wave and substrate heterogeneity in vibratory communication: practical issues in studying the effect of vibratory environments in communication. See Reference 17 215–47
  38. 38.
    Elias DO, Mason AC, Hoy RR. 2004. The effect of substrate on the efficacy of seismic courtship signal transmission in the jumping spider Habronattus dossenus (Araneae: Salticidae). J. Exp. Biol. 207:4105–10
    [Google Scholar]
  39. 39.
    Endo J, Takanashi T, Mukai H, Numata H. 2019. Egg cracking vibration as a cue for stink bug siblings to synchronize hatching. Curr. Biol. 29:143–48
    [Google Scholar]
  40. 40.
    Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V. 2011. Inter-plant vibrational communication in a leafhopper insect. PLOS ONE 6:5e19692
    [Google Scholar]
  41. 41.
    Fabre CCG, Hedwig B, Conduit G, Lawrence PA, Goodwin SF et al. 2012. Substrate-borne vibratory communication during courtship in Drosophila melanogaster. Curr. Biol. 22:2180–85
    [Google Scholar]
  42. 42.
    Field LH. 1993. Structure and evolution of stridulatory mechanisms in New Zealand wetas (Orthoptera: Stenopelmatidae). Int. J. Insect Morphol. Embryol. 22:163–83
    [Google Scholar]
  43. 43.
    Field LH, Matheson T. 1998. Chordotonal organs of insects. Adv. Insect Physiol. 27:1–228
    [Google Scholar]
  44. 44.
    Fletcher LE. 2007. Vibrational signals in a gregarious sawfly larva (Perga affinis): group coordination or competitive signaling?. Behav. Ecol. Sociobiol. 61:1809–21
    [Google Scholar]
  45. 45.
    Ge J, Li N, Yang J, Wei J, Kang L. 2019. Female adult puncture-induced plant volatiles promote mating success of the pea leafminer via enhancing vibrational signals. Philos. Trans. R. Soc. B 374:20180318
    [Google Scholar]
  46. 46.
    Gibson JS, Cocroft RB. 2018. Vibration-guided mate searching in treehoppers: directional accuracy and sampling strategies in a complex sensory environment. J. Exp. Biol. 221:6jeb175083
    [Google Scholar]
  47. 47.
    Gogala M. 2006. Vibratory signals produced by Heteroptera—Pentatomorpha and Cimicomorpha. See Reference 36 275–95
  48. 48.
    Golden TMJ, Hill PSM. 2016. The evolution of stridulatory communication in ants, revisited. Insect. Soc. 63:309–19
    [Google Scholar]
  49. 49.
    Goodwyn PP, Katsumata-Wada A, Okada K. 2009. Morphology and neurophysiology of tarsal vibration receptors in the water strider Aquarius paludum (Heteroptera: Gerridae). J. Insect Physiol. 55:855–61
    [Google Scholar]
  50. 50.
    Greenfield MD. 2002. Signalers and Receivers Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  51. 51.
    Gross J, Gündermann G 2016. Principles of IPM in cultivated crops and implementation of innovative strategies for sustainable plant protection. Advances in Insect Control and Resistance Management AR Horowitz, I Ishaaya 9–26 Berlin: Springer
    [Google Scholar]
  52. 52.
    Hager FA, Kirchner WH. 2019. Directionality in insect vibration sensing: behavioral studies of vibrational orientation. See Reference 59 235–55
  53. 53.
    Hager FA, Krausa K, Kirchner WH. 2019. Vibrational behavior in termites (Isoptera). See Reference 59 309–27
  54. 54.
    Hartbauer M. 2010. Collective defense of Aphis nerii and Uroleucon hypochoeridis (Homoptera, Aphididae) against natural enemies. PLOS ONE 5:4e10417
    [Google Scholar]
  55. 55.
    Hartbauer M, Gepp J, Hinteregger K, Koblmuller 2015. Diversity of wing patterns and abdomen-generated substrate sounds in 3 European scorpionfly species. Insect Sci 22:521–31
    [Google Scholar]
  56. 56.
    Henry CS. 2006. Acoustic communication in Neuropterid insects. See Reference 36 153–66
  57. 57.
    Henry CS, Brooks SJ, Duelli P, Johnson JB, Wells MM, Mochizuki A. 2013. Obligatory duetting behaviour in the Chrysoperlacarnea-group of cryptic species (Neuroptera: Chrysopidae): its role in shaping evolutionary history. Biol. Rev. 88:787–808
    [Google Scholar]
  58. 58.
    Hill PSM. 2009. How do animals use substrate-borne vibrations as an information source?. Naturwissenschaften 96:1355–71
    [Google Scholar]
  59. 59.
    Hill PSM, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M, Wessel A. 2019. Biotremology: Studying Vibrational Behavior Berlin: Springer
    [Google Scholar]
  60. 60.
    Hill PSM, Shadley JR. 1997. Substrate vibration as a component of a calling song. Naturwissenschaften 84:460–63
    [Google Scholar]
  61. 61.
    Hill PSM, Shadley JR. 2001. Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am. Zool. 41:1200–14
    [Google Scholar]
  62. 62.
    Hill PSM, Wessel A. 2016. Biotremology. Curr. Biol. 26:R181–91
    [Google Scholar]
  63. 63.
    Horowitz AR, Ellsworth PC, Ishaaya I 2009. Biorational pest control—an overview. Biorational Control of Insect Pests I Ishaaya, AR Horowitz 1–20 Berlin: Springer
    [Google Scholar]
  64. 64.
    Hrncir M, Barth FG. 2014. Vibratory communication in stingless bees (Meliponini): the challenge of interpreting the signals. See Reference 17 349–74
  65. 65.
    Hrncir M, Maia-Silva C, Farina WM. 2018. Honey bee workers generate low-frequency vibrations that are reliable indicators of their activity level. J. Comp Physiol. A 205:79–86
    [Google Scholar]
  66. 66.
    Jeram S, Čokl A. 1996. Mechanoreceptors in insects: Johnston's organ in Nezara viridula (L.) (Pentatomidae, Heteroptera). Eur. J. Physiol. 431:R281–82
    [Google Scholar]
  67. 67.
    Keuper A, Kühne R. 1983. The acoustic behaviour of the bushcricket Tettigonia cantans. II. Transmission of airborne sound and vibration signals in the biotope. Behav. Proc. 8:125–145
    [Google Scholar]
  68. 68.
    Kilpinen O, Storm J. 1997. Biophysics of the subgenual organ of the honeybee, Apis mellifera. J. Comp. Physiol. A 181:309–18
    [Google Scholar]
  69. 69.
    Kočárek P. 2010. Substrate-borne vibrations as a component of intraspecific communication in the groundhopper Tetrix ceperoi. J. Insect Behav. 23:348–63
    [Google Scholar]
  70. 70.
    Kojima W, Takanashi T, Ishikawa Y. 2012. Vibratory communication in the soil: Pupal signals deter larval intrusion in a group-living beetle Trypoxylus dichotoma. Behav. Ecol. Sociobiol. 66:171–79
    [Google Scholar]
  71. 71.
    Kollasch AM, Abdul-Kafi AR, Body MJA, Pinto CF, Appel HM, Cocroft RB. 2020. Leaf vibrations produced by chewing provide a consistent acoustic target for plant recognition of herbivores. Oecologia 194:1–13
    [Google Scholar]
  72. 72.
    Korsunovskaya O, Berezin M, Heller KG, Tkacheva E, Kompantseva T, Zhantiev R. 2020. Biology, sounds and vibratory signals of hooded katydids (Orthoptera: Tettigoniidae: Phyllophorinae). Zootaxa 4852:3309–22
    [Google Scholar]
  73. 73.
    Kozak EC, Uetz GW. 2019. Male courtship signal modality and female mate preference in the wolf spider Schizocosa ocreata: results of digital multimodal playback studies. Curr. Zool. 65:705–11
    [Google Scholar]
  74. 74.
    Kristensen L, Zachariassen KE. 1980. Behavioural studies on the sensitivity to sound in the desert tenebrionid beetle Phrynoclous somalicus Wilke. Comp. Biochem. Physiol. A 65:223–26
    [Google Scholar]
  75. 75.
    Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M. 2015. The effect of timing of female vibrational reply on male signalling and searching behaviour in the leafhopper Aphrodes makarovi. PLOS ONE 10:10e0139020
    [Google Scholar]
  76. 76.
    Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M. 2016. Sender-receiver dynamics in leafhopper vibrational duetting. Anim. Behav. 114:139–46
    [Google Scholar]
  77. 77.
    Kuhelj A, de Groot M, Pajk F, Simčič T, Virant-Doberlet M. 2015. Energetic cost of vibrational signalling in a leafhopper. . Behav. Ecol. Sociobiol. 69:815–28
    [Google Scholar]
  78. 78.
    Kuhelj A, Virant-Doberlet M. 2017. Male-male interactions and male mating success in the leafhopper Aphrodes makarovi. Ethology 123:425–33
    [Google Scholar]
  79. 79.
    Lakes-Harlan R, Strauß J 2006. Developmental constraint of insect audition. Front. Zool. 3:27
    [Google Scholar]
  80. 80.
    Lakes-Harlan R, Strauß J 2014. Functional morphology and evolutionary diversity of vibration receptors in insects. See Reference 17 277–302
  81. 81.
    Laumann RA, Čokl A, Lopes APS, Fereira JBC, Moraes MCB, Borges M. 2011. Silent singers are not safe: selective response of a parasitoid to a substrate-borne vibratory signals of stink bugs. Anim. Behav. 82:1175–83
    [Google Scholar]
  82. 82.
    Legendre F, Marting PR, Cocroft RB. 2012. Competitive masking of vibrational signals during mate searching in a treehopper. Anim. Behav. 83:361–68
    [Google Scholar]
  83. 83.
    Liao YC, Percy DM, Yang MM. 2022. Biotremology: vibrational communication of Psylloidea. Arthropod Struct. Dev. 66:101138
    [Google Scholar]
  84. 84.
    Lighton JRB. 1987. Cost of tokking: the energetics of substrate communication in the tok-tok beetle, Psammodes striatus. J. Comp. Physiol. B 157:11–20
    [Google Scholar]
  85. 85.
    Low C. 2008. Seismic behaviors of a leafminer, Antispila nysaefoliella (Lepidoptera: Heliozelidae). Fla. Entomol. 91:604–9
    [Google Scholar]
  86. 86.
    Low ML, Naranjo M, Yack JE. 2021. Survival sounds in insects: diversity, function, and evolution. Front. Ecol. Evol. 9:641740
    [Google Scholar]
  87. 87.
    Mamiya A, Gurung P, Tuthill JC. 2018. Neural coding of leg proprioception in Drosophila. Neuron 100:636–50
    [Google Scholar]
  88. 88.
    Mankin RW 2019. Vibrational trapping and interference with mating of Diaphorina citri. See Reference 59 399–413
  89. 89.
    Mankin RW, Hagstrum D, Guo M, Eliopoulos P, Njoroge A. 2021. Automated applications of acoustics for stored product insect detection, monitoring, and management. Insects 12:259
    [Google Scholar]
  90. 90.
    Mankin RW, Rohde B, McNeill S. 2016. Vibrational duetting mimics to trap and disrupt mating of the devastating Asian citrus psyllid insect pest. Proc. Meet. Acoust. 25:010006
    [Google Scholar]
  91. 91.
    Markl H 1983. Vibrational communication. Neuroethology and Behavioral Physiology F Huber, H Markl 332–53 Berlin: Springer
    [Google Scholar]
  92. 92.
    Masoni A, Frizzi F, Nieri R, Casacci LP, Mazzoni V et al. 2021. Ants modulate stridulatory signals depending on the behavioural context. Sci. Rep. 11:5933
    [Google Scholar]
  93. 93.
    Mazzoni V, Anfora G, Virant-Doberlet M. 2013. Substrate vibrations during courtship in three Drosophila species. PLOS ONE 8:11e80708
    [Google Scholar]
  94. 94.
    Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M. 2009. Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol. Exp. Appl. 133:174–85
    [Google Scholar]
  95. 95.
    Mazzoni V, Nieri R, Eriksson A, Virant-Doberlet M, Polajnar J et al. 2019. Mating disruption by vibrational signals: state of the field and perspectives. See Reference 59 331–54
  96. 96.
    Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M. 2009. Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull. . Entomol. Res. 99:401–13
    [Google Scholar]
  97. 97.
    McKelvey EGZ, Gyles JP, Michie K, Kruszewski LE, Chan A, Fabre CCG 2021. Drosophila females receive male substrate-borne signals through specific leg neurons during courtship. Curr. Biol. 31:3894–904
    [Google Scholar]
  98. 98.
    McNett GD, Cocroft RB. 2008. Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav. Ecol. 19:3650–56
    [Google Scholar]
  99. 99.
    McNett GD, Luan LH, Cocroft RB. 2010. Wind-induced noise alters signaller and receiver behaviour in vibrational communication. Behav. Ecol. Sociobiol. 64:2043–51
    [Google Scholar]
  100. 100.
    Michelsen A, Fink F, Gogala M, Traue D. 1982. Plants as transmission channels for insect vibrational songs. Behav. Ecol. Sociobiol. 11:269–81
    [Google Scholar]
  101. 101.
    Mignini M, Lorenzi MC. 2015. Vibratory signals predict rank and offspring caste ratio in a social insect. Behav. Ecol. Sociobiol. 96:1739–48
    [Google Scholar]
  102. 102.
    Miklas N, Lasnier T, Renou M. 2003. Male bugs modulate pheromone emission in response to vibratory signals from conspecifics. J. Chem. Ecol. 29:561–74
    [Google Scholar]
  103. 103.
    Miles CI, Allison BE, Losinger MJ, Su QT, Miles RN. 2017. Motor and mechanical bases of the courtship call of the male treehopper Umbonia crassicornis. J. Exp. Biol. 220:1915–24
    [Google Scholar]
  104. 104.
    Miles RN. 2016. An analytical model for the propagation of bending waves on a plant stem due to vibration of an attached insect. Heliyon 2:3e00068
    [Google Scholar]
  105. 105.
    Morales MA, Barone JL, Henry CS. 2008. Acoustic alarm signalling facilitates predator protection of treehoppers by mutualist ant bodyguards. Proc. R. Soc. B 275:1935–41
    [Google Scholar]
  106. 106.
    Mortimer B. 2017. Biotremology: Do physical constraints limit the propagation of vibrational information?. Anim. Behav. 130:165–74
    [Google Scholar]
  107. 107.
    Müller A, Obrist MK. 2021. Simultaneous percussion by the larvae of a stem-nesting solitary bee—a collaborative defence strategy against parasitoid wasps?. J. Hymenopt. Res. 81:143–64
    [Google Scholar]
  108. 108.
    Nakahira T, Kudo S. 2008. Maternal care in the burrower bug Adomerus triguttulus: defensive behavior. J. Insect Behav. 21:306–16
    [Google Scholar]
  109. 109.
    Nieh JC. 2010. A negative feedback signal that is triggered by peril curbs honey bee recruitment. Curr. Biol. 20:310–15
    [Google Scholar]
  110. 110.
    Nishino H. 2003. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: I. Femoral chordotonal organ. J. Comp. Neurol. 464:312–26
    [Google Scholar]
  111. 111.
    Nishino H, Mukai H, Takanashi T. 2016. Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy. Cell Tissue Res 366:549–72
    [Google Scholar]
  112. 112.
    Oberst S, Lai JCS, Evans TA. 2019. Physical basis of vibrational behaviour: channel properties, noise and excitation signal extraction. See Reference 59 53–78
  113. 113.
    Ostrowski TD, Sradnick J, Stumpner A, Norbert E 2009. The elaborate courtship behavior of Stenobothrus clavatus Willemse, 1979 (Acrididae: Gomphocerinae). J. Orthoptera Res. 18:171–82
    [Google Scholar]
  114. 114.
    Pailler L, Desvignes S, Ruhland F, Pineirua M, Lucas C. 2021. Vibratory behaviour produces different vibration patterns in presence of reproductives in a subterranean termite species. Sci. Rep. 11:9902
    [Google Scholar]
  115. 115.
    Pepiciello I, Cini A, Nieri R, Mazzoni V, Cervo R. 2018. Adult-larval vibrational communication in paper wasps: the role of abdominal wagging in Polistes dominula. J. Exp. Biol. 221:jeb186247
    [Google Scholar]
  116. 116.
    Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V. 2015. Manipulating behaviour with substrate-borne vibrations—potential for insect pest control. Pest Manag. Sci. 71:15–23
    [Google Scholar]
  117. 117.
    Polajnar J, Eriksson A, Rossi Stacconi MV, Lucchi A, Anfora G et al. 2014. The process of pair formation mediated by substrate-borne vibrations in a small insect. Behav. Proc. 107:68–78
    [Google Scholar]
  118. 118.
    Polajnar J, Eriksson A, Virant-Doberlet M, Lucchi A, Mazzoni V 2016. Developing a bioacoustic method for mating disruption of a leafhopper pest in grapevine. Advances in Insect Control and Resistance Management AR Horowitz, I Ishaaya 165–90 Berlin: Springer
    [Google Scholar]
  119. 119.
    Polajnar J, Maistrello L, Ibrahim A, Mazzoni V 2019. Can vibrational playback improve control of an invasive stink bug?. See Reference 59 375–98
  120. 120.
    Polajnar J, Svenšek D, Čokl A. 2012. Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J. R. Soc. Interface 9:1898–907
    [Google Scholar]
  121. 121.
    Prešern J, Polajnar J, De Groot M, Zorović M, Virant-Doberlet M. 2018. On the spot: utilization of directional cues in vibrational communication of a stink bug. Sci. Rep. 8:5418
    [Google Scholar]
  122. 122.
    Rajaraman K, Godthi V, Pratap R, Balakrishnan R. 2015. A novel acoustic-vibratory multimodal duet. J. Exp. Biol. 218:3042–50
    [Google Scholar]
  123. 123.
    Ramsey M, Bencsik M, Newtonet MI. 2018. Extensive vibrational characterisation and long-term monitoring of honeybee dorso-ventral abdominal vibration signals. Sci. Rep. 8:14571
    [Google Scholar]
  124. 124.
    Rillich J, Schildberger K, Stevenson P. 2007. Assessment strategy of fighting crickets revealed by manipulating information exchange. Anim. Behav. 74:823–36
    [Google Scholar]
  125. 125.
    Rodríguez RL, Barbosa F. 2014. Mutual behavioral adjustment in vibrational duetting. See Reference 17 147–69
  126. 126.
    Rodriguez RL, Burger G, Wojcinski JE, Kilmer JT. 2015. Vibrational signals and mating behavior of Japanese beetles (Coleoptera: Scarabaeidae). Ann. Entomol. Am. 108:986–92
    [Google Scholar]
  127. 127.
    Römer H, Lang A, Hartbauer M. 2010. The signaller's dilemma: a cost-benefit analysis of public and private communication. PLOS ONE 5:e13325
    [Google Scholar]
  128. 128.
    Schnorbus H. 1971. Die subgenualen Sinnesorgane von Periplaneta americana: Histologie und Vibrationsschwellen. Z. Vergl. Physiol. 71:14–48
    [Google Scholar]
  129. 129.
    Skaggs R, Jackson JC, Toth AL, Schneider SS. 2014. The possible role of ritualized aggression in the vibration signal of the honeybee, Apis mellifera. Anim. Behav. 98:103–11
    [Google Scholar]
  130. 130.
    Stein W, Sauer A. 1999. Physiology of vibration-sensitive afferents in the femoral chordotonal organ of the stick insect. J. Comp. Physiol. A 184:253–63
    [Google Scholar]
  131. 131.
    Stewart KW, Sandberg JB. 2006. Vibratory communication and mate searching behaviour in stoneflies. See Reference 36 179–86
  132. 132.
    Stiedl O, Kalmring K. 1989. The importance of song and vibratory signals in the behaviour of the bushcricket Ephippiger ephippiger Fiebig (Orthoptera, Tettigoniidae): taxis by females. Oecologia 80:142–44
    [Google Scholar]
  133. 133.
    Stölting H, Stumpner A, Lakes-Harlan R. 2007. Morphology and physiology of the prosternal chordotonal organ of the sarcophagid fly Sarcophaga bullata (Parker). J. Insect Physiol. 53:444–54
    [Google Scholar]
  134. 134.
    Strauß J, Lakes-Harlan R. 2013. Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex. J. Comp. Neurol. 521:3791–803
    [Google Scholar]
  135. 135.
    Strauß J, Lakes-Harlan R. 2017. Vibrational sensitivity of the subgenual organ complex in female Sipyloidea sipylus stick insects in different experimental paradigms of stimulus direction, leg attachment, and ablation of a connective tibial sense organ. Comp. Biochem. Physiol. A 203:100–8
    [Google Scholar]
  136. 136.
    Strauß J, Stritih N. 2017. Neuronal regression of internal leg vibroreceptor organs in a cave-dwelling insect (Orthoptera: Rhaphidophoridae: Dolichopoda araneiformis). Brain Behav. Evol. 89:104–16
    [Google Scholar]
  137. 137.
    Strauß J, Stritih-Peljhan N. 2022. Vibration detection in arthropods: signal transfer, biomechanics and sensory adaptations. Arthropod Struct. Dev. 68:101167
    [Google Scholar]
  138. 138.
    Strauβ J, Stritih-Peljhan N, Nieri R, Virant-Doberlet M, Mazzoni V 2021. Communication by substrate-borne mechanical waves in insects: from basic to applied biotremology. Advances in Insect Physiology: Sound Communication in Insects R Jurenka 189–307 Cambridge, MA: Academic
    [Google Scholar]
  139. 139.
    Stritih N, Čokl A. 2012. Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera. PLOS ONE10e47646
    [Google Scholar]
  140. 140.
    Stritih N, Čokl A. 2014. The role of frequency in vibrational communication of Orthoptera. See Reference 17 375–93
  141. 141.
    Stritih-Peljhan N, Rühr PT, Buh B, Strauß J. 2019. Low-frequency vibration transmission and mechanosensory detection in the legs of cave crickets. Comp. Biochem. Physiol. A 233:89–96
    [Google Scholar]
  142. 142.
    Stritih-Peljhan N, Strauß J. 2018. The mechanical leg response to vibration stimuli in cave crickets and implications for vibrosensory organ functions. J. Comp. Physiol. A 204:687–702
    [Google Scholar]
  143. 143.
    Stritih-Peljhan N, Virant-Doberlet M. 2021. Vibrational signaling, an underappreciated mode in cricket communication. Naturwissenschaften 108:41
    [Google Scholar]
  144. 144.
    Šturm R, López Díez JJ, Polajnar J, Sueur J, Virant-Doberlet M 2022. Is it time for ecotremology?. Front. Ecol. Evol. 10:828503
    [Google Scholar]
  145. 145.
    Šturm R, Polajnar J, Virant-Doberlet M. 2019. Practical issues in studying natural vibroscape and biotic noise. See Reference 59 125–48
  146. 146.
    Šturm R, Rexhepi B, López Díez JJ, Blejec A, Polajnar J et al. 2021. Hay meadow vibroscape and interactions within insect vibrational community. iScience 24:103070
    [Google Scholar]
  147. 147.
    Sueur J, Aubin T. 2006. When males whistle at females: complex FM acoustic signals in cockroaches. Naturwissenschaften 93:500–5
    [Google Scholar]
  148. 148.
    Sueur J, Farina A. 2015. Ecoacoustics: the ecological investigation and interpretation of environmental sound. Biosemiotics 8:493–502
    [Google Scholar]
  149. 149.
    Sullivan-Beckers L, Cocroft RB. 2010. The importance of female choice, male-male competition and signal transmission as cues of selection on male mating signals. Evolution 64:3158–71
    [Google Scholar]
  150. 150.
    Suryanarayanan S, Hermanson JC, Jeanne RL 2011. A mechanical signal biases caste development in a social wasp. Curr. Biol. 21:231–35
    [Google Scholar]
  151. 151.
    Takanashi T, Fukaya M, Nakamuta K, Skals N, Nishino H. 2016. Substrate vibrations mediate behavioural responses via femoral chordotonal organs in a cerambycid beetle. Zool. Lett. 2:18
    [Google Scholar]
  152. 152.
    ter Hofstede HM, Schöneich S, Robillard T, Hedwig B 2015. Evolution of a communication system by sensory exploitation of startle behaviour. Curr. Biol. 25:3245–52
    [Google Scholar]
  153. 153.
    Travassos MA, Pierce NE. 2000. Acoustics, context and function of vibrational signaling in a lycaenid butterfly-ant mutualism. Anim. Behav. 60:13–26
    [Google Scholar]
  154. 154.
    Turchen LM, Cosme L, Yack JE, Guedes RNC. 2022. Bug talk trends & biases: literature survey and meta-analyses of vibratory sensing and communication in insects. Entomol. Gen 42:335–48
    [Google Scholar]
  155. 155.
    Velilla E, Polajnar J, Virant-Doberlet M, Commandeur D, Simon R et al. 2020. Variation in plant leaf traits affects transmission and detectability of herbivore vibrational cues. Ecol. Evol. 10:12277–89
    [Google Scholar]
  156. 156.
    Vilhelmsen L, Nunzio I, Romani R, Basibuyuk H, Quicke D 2001. Host location and oviposition in a basal group of parasitic wasps: the subgenual organ, ovipositor apparatus and associated structures in the Orussidae (Hymenoptera, Insecta). Zoomorphology 121:63–84
    [Google Scholar]
  157. 157.
    Virant-Doberlet M, Čokl A. 2004. Vibrational communication in insects. Neotrop. Entomol. 33:121–34
    [Google Scholar]
  158. 158.
    Virant-Doberlet M, Čokl A, Zorović M. 2006. Use of substrate vibrations for orientation: from behaviour to physiology. See Reference 36 87–107
  159. 159.
    Virant-Doberlet M, King RA, Polajnar J, Symondson WOC. 2011. Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol. Ecol. 20:2204–16
    [Google Scholar]
  160. 160.
    Virant-Doberlet M, Kuhelj A, Polajnar J, Šturm R. 2019. Predator-prey interactions and eavesdropping in vibrational communication networks. . Front. Ecol. Evol. 7:203
    [Google Scholar]
  161. 161.
    Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A et al. 2014. Vibrational communication networks: eavesdropping and biotic noise. See Reference 17 93–123
  162. 162.
    Wang YH, Engel MS, Rafael JA, Wu HY, Redei D et al. 2016. Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda). Sci. Rep. 6:38939
    [Google Scholar]
  163. 163.
    Wessel A. 2006. Stridulation in the Coleoptera—an overview. See Reference 36 397–404
  164. 164.
    Wessel A, Mühlethaler R, Hartung V, Kuštor V, Gogala M. 2014. The tymbal: evolution of a complex vibration-producing organ in the Tymbalia (Hemiptera excl. Sternorrhyncha). See Reference 17 395–444
  165. 165.
    Wipfler B, Letsch H, Frandsen PB, Kapli P, Mayer C et al. 2019. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. PNAS 116:3024–29
    [Google Scholar]
  166. 166.
    Yack JE, Smith ML, Weatherhead PJ. 2001. Caterpillar talk: acoustically mediated territoriality in larval Lepidoptera. PNAS 98:11371–75
    [Google Scholar]
  167. 167.
    Yadav C, Guedes RNC, Matheson SM, Timbers TA, Yack JE. 2017. Invitation by vibration: recruitment to feeding shelters in social caterpillars. Behav. Ecol. Sociobiol. 71:51
    [Google Scholar]
  168. 168.
    Zapponi L, Nieri R, Zaffaroni-Caorsi V, Pugno NC, Mazzoni V. 2022. Vibrational calling signals improve the efficacy of pheromone traps to capture the brown marmorated stink bug. J. Pest Sci. In press. https://doi.org/10.1007/s10340-022-01533-0
    [Crossref] [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error