1932

Abstract

The fall armyworm (FAW), (Lepidoptera, Noctuidae), is a well-known agricultural pest in its native range, North and South America, and has become a major invasive pest around the globe in the past decade. In this review, we provide an overview to update what is known about in its native geographic ranges. This is followed by discussion of studies from the invaded areas to gain insights into 's ecology, specifically its reproductive biology, host plant use, status of insecticide resistance alleles, and biocontrol methods in native and invasive regions. We show that reference to host strains is uninformative in the invasive populations because multidirectional introduction events likely underpinned its recent rapid spread. Given that recent genomic analyses show that FAW is much more diverse than was previously assumed, and natural selection forces likely differ geographically, region-specific approaches will be needed to control this global pest.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-102548
2023-01-23
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120220-102548.html?itemId=/content/journals/10.1146/annurev-ento-120220-102548&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acevedo FE, Peiffer M, Ray S, Meagher R, Luthe DS, Felton GW. 2018. Intraspecific differences in plant defense induction by fall armyworm strains. New Phytol. 218:310–21
    [Google Scholar]
  2. 2.
    Agboyi LK, Goergen G, Beseh P, Mensah SA, Clottey VA et al. 2020. Parasitoid complex of fall armyworm, Spodoptera frugiperda, in Ghana and Benin. Insects 11:68
    [Google Scholar]
  3. 3.
    Agboyi LK, Layodé BFR, Fening KO, Beseh P, Clottey VA et al. 2021. Assessing the potential of inoculative field releases of Telenomus remus to control Spodoptera frugiperda in Ghana. Insects 12:665
    [Google Scholar]
  4. 4.
    Anderson CJ, Oakeshott JG, Tay WT, Gordon KHJ, Zwick A, Walsh TK. 2018. Hybridization and gene flow in the mega-pest lineage of moth. Helicoverpa. PNAS 115:5034–39
    [Google Scholar]
  5. 5.
    Arias O, Cordeiro E, Corrêa AS, Domingues FA, Guidolin AS, Omoto C. 2019. Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): implications for insect resistance management programs. Pest Manag. Sci. 75:2948–57
    [Google Scholar]
  6. 6.
    Ashley TR. 1979. Classification and distribution of fall armyworm parasites. Fla. Entomol. 62:114–23
    [Google Scholar]
  7. 7.
    Barclay HJ. 1984. Pheromone trapping models for pest control: effects of mating patterns and immigration. Res. Popul. Ecol. 26:303–11
    [Google Scholar]
  8. 8.
    Batista-Pereira LG, Stein K, de Paula AF, Moreira JA, Cruz I et al. 2006. Isolation, identification, synthesis, and field evaluation of the sex pheromone of the Brazilian population of Spodoptera frugiperda. J. Chem. Ecol. 32:1085–99
    [Google Scholar]
  9. 9.
    Belay DK, Clark PL, Skoda SR, Isenhour DJ, Molina-Ochoa J et al. 2012. Spatial genetic variation among Spodoptera frugiperda (Lepidoptera: Noctuidae) sampled from the United States, Puerto Rico, Panama, and Argentina. Ann. Entomol. Soc. Am. 105:359–67
    [Google Scholar]
  10. 10.
    Boaventura D, Bolzan A, Padovez FEO, Okuma DM, Omoto C, Nauen R. 2020. Detection of a ryanodine receptor target-site mutation in diamide insecticide resistant fall armyworm, Spodoptera frugiperda. Pest Manag. Sci. 76:47–54
    [Google Scholar]
  11. 11.
    Boaventura D, Martin M, Pozzebon A, Mota-Sanchez D, Nauen R. 2020. Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects 11:545
    [Google Scholar]
  12. 12.
    Cañas-Hoyos N, Lobo-Echeverri T, Saldamando-Benjumea CI. 2017. Chemical composition of female sexual glands of Spodoptera frugiperda corn and rice strains from Tolima, Colombia. Southwest. Entomol. 42:375–94
    [Google Scholar]
  13. 13.
    Cañas-Hoyos N, Marquez EJ, Saldamando-Benjumea CI. 2014. Differentiation of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains from central Colombia: a wing morphometric approach. Ann. Entomol. Soc. Am. 107:575–81
    [Google Scholar]
  14. 14.
    Carvalho RA, Omoto C, Field LM, Williamson MS, Bass C. 2013. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLOS ONE 8:4e62268
    [Google Scholar]
  15. 15.
    Cheruiyot D, Morales XC, Chidawanyika F, Bruce TJA, Khan ZR. 2021. Potential roles of selected forage grasses in management of fall armyworm (Spodoptera frugiperda) through companion cropping. Entomol. Exp. Appl. 169:966–74
    [Google Scholar]
  16. 16.
    Clark PL, Molina-Ochoa J, Martinelli S, Skoda SR, Isenhour DJ et al. 2007. Population variation of the fall armyworm, Spodoptera frugiperda, in the Western Hemisphere. J. Insect Sci. 7:5
    [Google Scholar]
  17. 17.
    Cokola MC, Ndjadi SS, Bisimwa EB, Ahoton LE, Francis F 2021. First report of Spodoptera frugiperda (Lepidoptera: Noctuidae) on onion (Allium cepa L.) in South Kivu, Eastern DR Congo. Rev. Bras. Entomol. 65:e20200083
    [Google Scholar]
  18. 18.
    Cruz I, Valicente FH. 1992. Manejo da lagarta-do-cartucho, Spodoptera frugiperda, em milho, usando o predador Doru luteipes e baculovirus. Relatorio Tecnico Anual CNPMS 1988–199174–75 Sete Lagoas, Braz.: EMPRABPA
    [Google Scholar]
  19. 19.
    Cruz-Esteban S, Rojas JC, Malo EA. 2017. Calling behavior, copulation time, and reproductive compatibility of corn-strain fall armyworm (Lepidoptera: Noctuidae) from populations in Mexico. Environ. Entomol. 46:901–6
    [Google Scholar]
  20. 20.
    Cuartas P, Barrera G, Barreto E, Villamizar L. 2014. Characterisation of a Colombian granulovirus (Baculoviridae: Betabaculovirus) isolated from Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Biocontrol Sci. Technol. 24:1265–85
    [Google Scholar]
  21. 21.
    Czepak C, Godinho KCA, da Costa Gontijo P, Rezende JM 2019. Cotton. Natural Enemies of Insect Pests in Neotropical Agroecosystems B Souza, LL Vázquez, RC Marucci 293–303 Berlin: Springer
    [Google Scholar]
  22. 22.
    de Boisduval JBAD, Guenée A. 1852. Histoire Naturelle des Insectes. Species General des Lepidopteres. Tome Cinquieme. Noctuelites. Tome 1. Paris: Roret
    [Google Scholar]
  23. 23.
    Deshmukh S, Pavithra HB, Kalleshwaraswamy CM, Shivanna BK, Maruthi MS, Mota-Sanchez D. 2020. Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize in India. Fla. Entomol. 103:221–27
    [Google Scholar]
  24. 24.
    Dew JA. 1913. Fall army worm Laphygma frugiperda (S. & A.). J. Econ. Entomol. 6:361–66
    [Google Scholar]
  25. 25.
    Diez-Rodriguez GI, Omoto C 2001. Inheritance of lambda-cyhalothrin resistance in Spodopterafrugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotrop. Entomol. 30:311–16
    [Google Scholar]
  26. 26.
    Dumas P, Barbut J, Le Ru B, Silvain JF, Clamens AL et al. 2015. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Gueneé, 1852 (Lepidoptera, Noctuidae). PLOS ONE 10:e0122407
    [Google Scholar]
  27. 27.
    Dumas P, Legeai F, Lemaitre C, Scaon E, Orsucci M et al. 2015. Spodoptera frugiperda Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species?. Genetica 143:305–16
    [Google Scholar]
  28. 28.
    Durocher-Granger L, Mfune T, Musesha M, Lowry A, Reynolds K et al. 2021. Factors influencing the occurrence of fall armyworm parasitoids in Zambia. J. Pest Sci. 94:1133–46
    [Google Scholar]
  29. 29.
    Early R, González-Moreno P, Murphy ST, Day R. 2018. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40:25–50
    [Google Scholar]
  30. 30.
    Elibariki N, Bajracharya ASR, Bhat B, Tefera T, Mottern JL et al. 2020. Candidates for augmentative biological control of Spodoptera frugiperda in Kenya, Tanzania and Nepal. Indian J. Entomol. 82:606–9
    [Google Scholar]
  31. 31.
    Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P et al. 2014. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64:150–58
    [Google Scholar]
  32. 32.
    Feldmann F, Rieckmann U, Winter S. 2019. The spread of the fall armyworm Spodoptera frugiperda in Africa—what should be done next?. J. Plant Dis. Prot. 126:97–101
    [Google Scholar]
  33. 33.
    Figueiredo MLC, Cruz I, da Silva RB, Foster JE. 2015. Biological control with Trichogramma pretiosum increases organic maize productivity by 19.4%. Agron. Sustain. Dev. 35:1175–83
    [Google Scholar]
  34. 34.
    Figueiredo MLC, Della Lucia TMC, Cruz I 2002. Effect of Telenomus remus Nixon (Hymenoptera: Scelionidae) density on control of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) egg masses upon release in a maize field. Rev. Bras. Milho Sorgo 1:12–19
    [Google Scholar]
  35. 35.
    Firake DM, Behere GT. 2020. Natural mortality of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize agroecosystems of northeast India. Biol. Control 148:104303
    [Google Scholar]
  36. 36.
    Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar ARV, Chandrashekara K. 2018. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. 115:621–23
    [Google Scholar]
  37. 37.
    Gardner WA, Fuxa JR. 1980. Pathogens for the suppression of the fall armyworm. Fla. Entomol. 63:439–47
    [Google Scholar]
  38. 38.
    Ge S-s, He L-m, He W, Yan R, Wyckhuys KAG, Wu K-m. 2021. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 20:707–14
    [Google Scholar]
  39. 39.
    Gilligan TM, Passoa SC. 2014. LepIntercept: an identification resource for intercepted Lepidoptera larvae. Identification Technology Program, USDA/APHIS/PPQ/S&T, Fort Collins, CO. https://idtools.org/id/leps/lepintercept
    [Google Scholar]
  40. 40.
    Gilson C, Francisco G, Bingham GV, Matimelo M. 2018. Efficacy of a pheromone trap with insecticide-treated long-lasting screen against fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae). Outlooks Pest Manag. 29:215–19
    [Google Scholar]
  41. 41.
    Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLOS ONE 11:e0165632
    [Google Scholar]
  42. 42.
    Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury J-M et al. 2017. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7:11816
    [Google Scholar]
  43. 43.
    Groot AT, Dekker T, Heckel DG. 2016. The genetic basis of pheromone evolution in moths. Annu. Rev. Entomol. 61:99–117
    [Google Scholar]
  44. 44.
    Groot AT, Marr M, Schofl G, Lorenz S, Svatos A, Heckel DG. 2008. Host strain specific sex pheromone variation in Spodoptera frugiperda. Front. Zool. 5:20
    [Google Scholar]
  45. 45.
    Groot AT, Unbehend M, Hänniger S, Juárez ML, Kost S, Heckel DG 2016. Evolution of reproductive isolation of Spodoptera frugiperda. Sexual Communication in Moths J Allison, R Cardé 291–300 Oakland, CA: Univ. Calif. Press
    [Google Scholar]
  46. 46.
    Guan F, Zhang J, Shen H, Wang X, Padovan A et al. 2021. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Sci. 28:627–38
    [Google Scholar]
  47. 47.
    Gui F, Lan T, Zhao Y, Guo W, Dong Y et al. 2020. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell 13:513–31
    [Google Scholar]
  48. 48.
    Guillemaud T, Ciosi M, Lombaert E, Estoup A. 2011. Biological invasions in agricultural settings: insights from evolutionary biology and population genetics. C. R. Biol. 334:237–46
    [Google Scholar]
  49. 49.
    Guo Z-M, Deng X-Q, Li J, Yuan M-J, Wan H et al. 2020. Detection of insecticide sensitivity and target site mutations in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) in four regions of Hubei, central China. Acta Entomol. Sin. 63:582–89
    [Google Scholar]
  50. 50.
    Gutiérrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Terán-Santofimio H et al. 2019. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 112:792–802
    [Google Scholar]
  51. 51.
    Haenniger S, Goergen G, Akinbuluma MD, Kunert M, Heckel DG, Unbehend M. 2020. Sexual communication of Spodoptera frugiperda from West Africa: adaptation of an invasive species and implications for pest management. Sci. Rep. 10:2892
    [Google Scholar]
  52. 52.
    Hafeez M, Li X, Ullah F, Zhang Z, Zhang J et al. 2021. Behavioral and physiological plasticity provides insights into molecular based adaptation mechanism to strain shift in Spodoptera frugiperda. Int. J. Mol. Sci. 22:10284
    [Google Scholar]
  53. 53.
    Hänniger S, Dumas P, Schöfl G, Gebauer-Jung S, Vogel H et al. 2017. Genetic basis of allochronic differentiation in the fall armyworm. BMC Evol. Biol. 17:68
    [Google Scholar]
  54. 54.
    Harrison RD, Thierfelder C, Baudron F, Chinwada P, Midega C et al. 2019. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manag. 243:318–30
    [Google Scholar]
  55. 55.
    Hay-Roe MM, Meagher RL, Nagoshi RN. 2011. Effects of cyanogenic plants on fitness in two host strains of the fall armyworm (Spodoptera frugiperda). J. Chem. Ecol. 37:1314–22
    [Google Scholar]
  56. 56.
    Hussain AG, Wennmann JT, Goergen G, Bryon A, Ros VID. 2021. Viruses of the fall armyworm Spodoptera frugiperda: a review with prospects for biological control. Viruses 13:2220
    [Google Scholar]
  57. 57.
    Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E et al. 2017. Pest categorisation of Spodoptera frugiperda. EFSA J. 15:7e04927
    [Google Scholar]
  58. 58.
    Juárez ML, Murúa MG, Garcia MG, Ontivero M, Vera MT et al. 2012. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105:573–82
    [Google Scholar]
  59. 59.
    Juárez ML, Schöfl G, Vera MT, Vilardi JC, Murúa MG et al. 2014. Population structure of Spodoptera frugiperda maize and rice host forms in South America: Are they host strains?. Entomol. Exp. Appl. 152:182–99
    [Google Scholar]
  60. 60.
    Kenis M, du Plessis H, Van den Berg J, Ba MN, Goergen G et al. 2019. Telenomus remus, a candidate parasitoid for the biological control of Spodoptera frugiperda in Africa, is already present on the continent. Insects 10:10
    [Google Scholar]
  61. 61.
    Koffi D, Agboka K, Adjevi AKM, Assogba K, Fening KO et al. 2021. Trapping Spodoptera frugiperda (Lepidoptera: Noctuidae) moths in different crop habitats in Togo and Ghana. J. Econ. Entomol. 114:1138–44
    [Google Scholar]
  62. 62.
    Kost S, Heckel DG, Yoshido A, Marec F, Groot AT. 2016. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution 70:1418–27
    [Google Scholar]
  63. 63.
    Kulye M, Mehlhorn S, Boaventura D, Godley N, Venkatesh SK et al. 2021. Baseline susceptibility of Spodoptera frugiperda populations collected in India towards different chemical classes of insecticides. Insects 12:758
    [Google Scholar]
  64. 64.
    Levy HC, Garcia-Maruniak A, Maruniak JE. 2002. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla. Entomol. 85:186–90
    [Google Scholar]
  65. 65.
    Lima ER, McNeil JN. 2009. Female sex pheromones in the host races and hybrids of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemoecology 19:29–36
    [Google Scholar]
  66. 66.
    Lu Y-J, Adang MJ, Isenhour DJ, Kochert GD. 1992. RFLP analysis of genetic variation in North American populations of the fall armyworm moth Spodoptera frugiperda (Lepidoptera: Noctuidae). Mol. Ecol. 1:199–207
    [Google Scholar]
  67. 67.
    Luginbill P. 1928. The fall army worm Tech. Bull. 34 U. S. Dep. Agric. Washington, DC:
    [Google Scholar]
  68. 68.
    Lv D, Liu X, Dong Y, Yan Z, Zhang X et al. 2021. Comparison of gut bacterial communities of fall armyworm (Spodoptera frugiperda) reared on different host plants. Int. J. Mol. Sci. 22:16
    [Google Scholar]
  69. 69.
    Martinelli S, Clark PL, Zucchi MI, Silva-Filho MC, Foster JE, Omoto C. 2007. Genetic structure and molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in maize and cotton fields in Brazil. Bull. Entomol. Res. 97:225–31
    [Google Scholar]
  70. 70.
    McMichael M, Prowell DP. 1999. Differences in amplified fragment-length polymorphisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ann. Entomol. Soc. Am. 92:175–81
    [Google Scholar]
  71. 71.
    Meagher RL, Agboka K, Tounou AK, Koffi D, Agbevohia KA et al. 2019. Comparison of pheromone trap design and lures for Spodoptera frugiperda in Togo and genetic characterization of moths caught. Entomol. Exp. Appl. 167:507–16
    [Google Scholar]
  72. 72.
    Meagher RL, Nagoshi RN. 2010. Identification of fall armyworm (Lepidoptera: Noctuidae) host strains based on male-derived spermatophores. Fla. Entomol. 93:191–97
    [Google Scholar]
  73. 73.
    Meagher RL, Nagoshi RN, Armstrong JS, Niogret J, Epsky ND, Flanders KL. 2013. Captures and host strains of fall armyworm (Lepidoptera: Noctuidae) males in traps baited with different commercial pheromone blends. Fla. Entomol. 96:729–40
    [Google Scholar]
  74. 74.
    Midega CAO, Pittchar JO, Pickett JA, Hailu GW, Khan ZR. 2018. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot. 105:10–15
    [Google Scholar]
  75. 75.
    Mitchell ER. 1986. Pheromones: as the glamour and glitter fade—the real work begins. Fla. Entomol. 69:132–39
    [Google Scholar]
  76. 76.
    Mitchell ER, Baumhover AH, Jacobson M. 1976. Reduction of mating potential of male Heliothis spp. and Spodoptera frugiperda in field plots treated with disruptants. Environ. Entomol. 5:484–86
    [Google Scholar]
  77. 77.
    Mitchell ER, Copeland WW, Sparks AN, Sekul AA. 1974. Fall armyworm: disruption of pheromone communication with synthetic acetates. Environ. Entomol. 3:778–80
    [Google Scholar]
  78. 78.
    Mitchell ER, McLaughlin JR. 1982. Suppression of mating and oviposition by fall armyworm and mating by corn earworm in corn, using the air permeation technique. J. Econ. Entomol. 75:270–74
    [Google Scholar]
  79. 79.
    Mitchell ER, Tumlinson JH, McNeil JN. 1985. Field evaluation of commercial pheromone formulations and traps using a more effective sex pheromone blend for the fall armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 78:1364–69
    [Google Scholar]
  80. 80.
    Molina-Ochoa J, Carpenter JE, Heinrichs EA, Foster JE. 2003. Parasitoids and parasites of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas and Caribbean Basin: an inventory. Fla. Entomol. 86:254–89
    [Google Scholar]
  81. 81.
    Nagoshi KL, Allan SA, Meagher RL. 2020. Assessing the use of wing morphometrics to identify fall armyworm (Lepidoptera: Noctuidae) host strains in field collections. J. Econ. Entomol. 113:800–7
    [Google Scholar]
  82. 82.
    Nagoshi RN. 2010. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103:283–92
    [Google Scholar]
  83. 83.
    Nagoshi RN, Dhanani I, Asokan R, Mahadevaswamy HM, Kalleshwaraswamy CM et al. 2019. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLOS ONE 14:e0236759
    [Google Scholar]
  84. 84.
    Nagoshi RN, Fleischer S, Meagher RL, Hay-Roe M, Khan A et al. 2017. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLOS ONE 12:e0171743
    [Google Scholar]
  85. 85.
    Nagoshi RN, Goergen G, Du Plessis H, van den Berg J, Meagher R 2019. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9:8311
    [Google Scholar]
  86. 86.
    Nagoshi RN, Htain NN, Boughton D, Zhang L, Xiao YT et al. 2020. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10:10
    [Google Scholar]
  87. 87.
    Nagoshi RN, Koffi D, Agboka K, Tounou KA, Banerjee R et al. 2017. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLOS ONE 12:e0181982
    [Google Scholar]
  88. 88.
    Nagoshi RN, Meagher R. 2003. Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. Insect Mol. Biol. 12:453–58
    [Google Scholar]
  89. 89.
    Nagoshi RN, Meagher RL, Flanders K, Gore J, Jackson R et al. 2008. Using haplotypes to monitor the migration of fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Texas and Florida. J. Econ. Entomol. 101:742–49
    [Google Scholar]
  90. 90.
    Nagoshi RN, Meagher RL, Nuessly G, Hall DG. 2006. Effects of fall armyworm (Lepidoptera: Noctuidae) interstrain mating in wild populations. Environ. Entomol. 35:561–68
    [Google Scholar]
  91. 91.
    Nagoshi RN, Rosas-García NM, Meagher RL, Fleischer SJ, Westbrook JK et al. 2015. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 108:135–44
    [Google Scholar]
  92. 92.
    Nguyen DT, Chen Y, Herron GA. 2021. Preliminary characterisation of known pesticide resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in its invasive Australian range. Austral Entomol. 60:782–90
    [Google Scholar]
  93. 93.
    Okuma DM, Bernardi D, Horikoshi RJ, Bernardi O, Silva AP, Omoto C. 2017. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Manag. Sci. 74:1441–48
    [Google Scholar]
  94. 94.
    Otim MH, Aropet SA, Opio M, Kanyesigye D, Opolot HN, Tay WT. 2021. Parasitism of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in different maize producing regions of Uganda. Insects 12:121
    [Google Scholar]
  95. 95.
    Otim MH, Tay WT, Walsh TK, Kanyesigye D, Adumo S et al. 2018. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PLOS ONE 13:18
    [Google Scholar]
  96. 96.
    Pashley DP. 1986. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex?. Ann. Entomol. Soc. Am. 79:898–904
    [Google Scholar]
  97. 97.
    Pashley DP, Hammond AM, Hardy TN. 1992. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 85:400–5
    [Google Scholar]
  98. 98.
    Pashley DP, Johnson SJ, Sparks AN. 1985. Genetic population structure of migratory moths: the fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 78:756–62
    [Google Scholar]
  99. 99.
    Pashley DP, Martin JA. 1987. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 80:731–33
    [Google Scholar]
  100. 100.
    Pasini A, Parra JRP, Lopes JM. 2007. Artificial diet for rearing Doru luteipes (Scudder) (Dermaptera: Forficulidae), a predator of the fall armyworm, Spodopterafrugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotrop. Entomol. 36:308–11
    [Google Scholar]
  101. 101.
    Pavinato VAC, Martinelli S, de Lima PF, Zucchi MI, Omoto C. 2013. Microsatellite markers for genetic studies of the fall armyworm, Spodoptera frugiperda. Genet. Mol. Res. 12:370–80
    [Google Scholar]
  102. 102.
    Pitre HN. 1988. Relationship of fall armyworm (Lepidoptera: Noctuidae) from Florida, Honduras, Jamaica, and Mississippi: susceptibility to insecticides with reference to migration. Fla. Entomol. 71:56–61
    [Google Scholar]
  103. 103.
    Pomari-Fernandes A, de Freitas Bueno A, De Bortoli SA, Favetti BM. 2018. Dispersal capacity of the egg parasitoid Telenomus remus Nixon (Hymenoptera: Platygastridae) in maize and soybean crops. Biol. Control 126:158–68
    [Google Scholar]
  104. 104.
    Pomari-Fernandes A, de Freitas Bueno A, Oliveira de Freitas Bueno RC, Menezes A Jr., Prado Fernandes Fonseca AC. 2013. Releasing number of Telenomus remus (Nixon) (Hymenoptera: Platygastridae) against Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in corn, cotton and soybean. Cienc. Rural 43:377–82
    [Google Scholar]
  105. 105.
    Popham HJR, Rowley DL, Harrison RL. 2021. Differential insecticidal properties of Spodoptera frugiperda multiple nucleopolyhedrovirus isolates against corn-strain and rice-strain fall armyworm, and genomic analysis of three isolates. J. Invertebr. Pathol. 183:107561
    [Google Scholar]
  106. 106.
    Prowell DP, McMichael M, Silvain JF. 2004. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97:1034–44
    [Google Scholar]
  107. 107.
    Quisenberry SS, Whitford F. 1988. Evaluation of bermudagrass resistance to fall armyworm (Lepidoptera: Noctuidae): influence of host strain and dietary conditioning. J. Econ. Entomol. 81:1463–68
    [Google Scholar]
  108. 108.
    Rane R, Walsh TK, Lenancker P, Gock A, Dao TH et al. 2022. Complex multiple introductions drive fall armyworm invasions into Asia and Australia. bioRxiv 2022.06.11.495773. https://doi.org/10.1101/2022.06.11.495773
    [Crossref]
  109. 109.
    Riley CV. 1870. The fall armyworm. Prodenia autumnalis, n. sp. Am. Entomol. Bot. 2:363–65
    [Google Scholar]
  110. 110.
    Saldamando-Benjumea CI, Estrada-Piedrahíta K, Velásquez-Vélez MI, Bailey RI. 2014. Assortative mating and lack of temporality between corn and rice strains of Spodoptera frugiperda (Lepidoptera, Noctuidae) from central Colombia. J. Insect Behav. 27:555–66
    [Google Scholar]
  111. 111.
    Scheidegger L, Niassy S, Midega C, Chiriboga X, Delabays N et al. 2021. The role of Desmodium intortum, Brachiaria sp. and Phaseolus vulgaris in the management of fall armyworm Spodoptera frugiperda (J. E. Smith) in maize cropping systems in Africa. Pest Manag. Sci. 77:2350–57
    [Google Scholar]
  112. 112.
    Schlum KA, Lamour K, de Bortoli CP, Banerjee R, Meagher R et al. 2021. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genom. 22:179
    [Google Scholar]
  113. 113.
    Schöfl G, Dill A, Heckel DG, Groot AT. 2011. Allochronic separation versus mate choice: nonrandom patterns of mating between fall armyworm host strains. Am. Nat. 177:470–85
    [Google Scholar]
  114. 114.
    Schöfl G, Heckel DG, Groot AT. 2009. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: evidence for differing modes of inheritance. J. Evol. Biol. 22:1447–59
    [Google Scholar]
  115. 115.
    Shylesha AN, Jalali SK, Gupta A, Varshney R, Venkatesan T et al. 2018. Studies on new invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control 32:145–51
    [Google Scholar]
  116. 116.
    Sisay B, Simiyu J, Malusi P, Likhayo P, Mendesil E et al. 2018. First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. J. Appl. Entomol. 142:800–4
    [Google Scholar]
  117. 117.
    Sisay B, Tefera T, Wakgari M, Ayalew G, Mendesil E. 2019. The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects 10:2
    [Google Scholar]
  118. 118.
    Smith JE, Abbot J. 1797. The Natural History of the Rarer Lepidopterous Insects of Georgia. Including Their Systematic Characters, the Particulars of the Several Metamorphoses, and the Plants on Which They Feed. Collected From the Observation of Mr. John Abbot, Many Years Resident in That Country London: T. Bensley
    [Google Scholar]
  119. 119.
    Song Y, Yang X, Zhang H, Zhang D, He W et al. 2021. Interference competition and predation between invasive and native herbivores in maize. J. Pest Sci. 94:1053–63
    [Google Scholar]
  120. 120.
    Sparks AN. 1980. Pheromones: potential for use in monitoring and managing populations of the fall armyworm. Fla. Entomol. 63:406–10
    [Google Scholar]
  121. 121.
    Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD et al. 2010. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103:1031–38
    [Google Scholar]
  122. 122.
    Sun X-x, Hu C-x, Jia H-r, Wu Q-l, Shen X-j et al. 2021. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. J. Integr. Agric. 20:664–72
    [Google Scholar]
  123. 123.
    Tay WT, Behere GT, Batterham P, Heckel DG. 2010. Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes. BMC Evol. Biol. 10:144
    [Google Scholar]
  124. 124.
    Tay WT, Rane R, Padovan A, Walsh T, Elfekih S et al. 2022. Global FAW population genomic signature supports complex introduction events across the Old World. Commun. Biol. 5:297
    [Google Scholar]
  125. 125.
    Tay WT, Rane RV, James W, Gordon KHJ, Downes S et al. 2022. Resistance bioassays and allele characterisation inform analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) introduction pathways in Asia and Australia. J. Econ. Entomol. 115: In press
    [Google Scholar]
  126. 126.
    Tefera T, Goftishu M, Ba M, Muniappan R. 2019. A Guide to Biological Control of Fall Armyworm in Africa Using Egg Parasitoids Nairobi, Kenya: italicicipe
    [Google Scholar]
  127. 127.
    Tepa-Yotto GT, Meagher RL, Winsou JK, Dahoueto BTA, Tamò M et al. 2022. Monitoring Spodoptera frugiperda in Benin: assessing the influence of trap type, pheromone blends, and habitat on pheromone trapping. Fla. Entomol. 105:71–78
    [Google Scholar]
  128. 128.
    Tessnow AE, Gilligan TM, Burkness E, De Bortoli CP, Jurat-Fuentes JL et al. 2021. Novel real-time PCR based assays for differentiating fall armyworm strains using four single nucleotide polymorphisms. PeerJ 9:e12195
    [Google Scholar]
  129. 129.
    Tumlinson JH, Mitchell ER, Teal PEA, Heath RR, Mengelkoch LJ. 1986. Sex pheromone of fall armyworm, Spodoptera frugiperda (J.E. Smith)—identification of components critical to attraction in the field. J. Chem. Ecol. 12:1909–26
    [Google Scholar]
  130. 130.
    Unbehend M, Hänniger S, Meagher RL, Heckel DG, Groot AT. 2013. Pheromonal divergence between two strains of Spodoptera frugiperda. J. Chem. Ecol. 39:364–76
    [Google Scholar]
  131. 131.
    Unbehend M, Hänniger S, Vásquez GM, Juárez ML, Reisig D et al. 2014. Geographic variation in sexual attraction of Spodoptera frugiperda corn- and rice-strain males to pheromone lures. PLOS ONE 9:11
    [Google Scholar]
  132. 132.
    Varella AC, Menezes-Netto AC, Alonso JDD, Caixeta DF, Peterson RKD, Fernandes OA. 2015. Mortality dynamics of Spodoptera frugiperda (Lepidoptera: Noctuidae) immatures in maize. PLOS ONE 10:12
    [Google Scholar]
  133. 133.
    Veenstra KH, Pashley DP, Ottea JA. 1995. Host-plant adaptation in fall armyworm host strains: comparison of food consumption, utilization, and detoxication enzyme activities. Ann. Entomol. Soc. Am. 88:80–91
    [Google Scholar]
  134. 134.
    Vickery RA. 1929. Studies on the fall army worm in the Gulf coast district of Texas Tech. Bull. 138 U. S. Dep. Agric. Washington, DC:
    [Google Scholar]
  135. 135.
    Vieira NF, Pomari-Fernandes A, Lemes AAF, Vacari AM, De Bortoli SA, de Freitas, Bueno A. 2017. Cost of production of Telenomus remus (Hymenoptera: Platygastridae) grown in natural and alternative hosts. J. Econ. Entomol. 110:2724–26
    [Google Scholar]
  136. 136.
    Vu TP. 2008. Insect pests of turf grass, biology, ecology and the control of Herpetogramma phaeoptralis (Guenée) in Hà Ni in Spring Summer 2008 MSc Thesis Hà Ni Agric. Univ. Vietnam:
    [Google Scholar]
  137. 137.
    Wang W, He P, Zhang Y, Liu T, Jing X, Zhang S. 2020. The population growth of Spodoptera frugiperda on six cash crop species and implications for its occurrence and damage potential in China. Insects 11:639
    [Google Scholar]
  138. 138.
    Westbrook J, Fleischer S, Jairam S, Meagher R, Nagoshi R. 2019. Multigenerational migration of fall armyworm, a pest insect. Ecosphere 10:11e02919
    [Google Scholar]
  139. 139.
    Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S. 2016. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60:255–67
    [Google Scholar]
  140. 140.
    Wiltshire EP. 1977. Middle East Lepidoptera, XXXVII: notes on the Spodoptera litura (F.)-group (Noctuidae—Trifinae). Proc. Br. Entomol. Nat. Hist. Soc. 10:92–96
    [Google Scholar]
  141. 141.
    Wu Q-L, He L-M, Shen X-J, Jiang Y-Y, Liu J et al. 2019. Estimation of the potential infestation area of newly-invaded fall armyworm Spodoptera frugiperda in the Yangtze River Valley of China. Insects 10:298
    [Google Scholar]
  142. 142.
    Xiao H, Ye X, Xu H, Mei Y, Yang Y et al. 2020. The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Mol. Ecol. Resour. 20:1050–68
    [Google Scholar]
  143. 143.
    Yainna S, Nègre N, Silvie PJ, Brévault T, Tay WT et al. 2021. Geographic monitoring of insecticide resistance mutations in native and invasive populations of the fall armyworm. Insects 12:468
    [Google Scholar]
  144. 144.
    Yang F, Morsello S, Head GP, Sansone C, Huang F et al. 2017. F2 screen, inheritance and cross-resistance of field-derived Vip3A resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) collected from Louisiana, USA. Pest Manag. Sci. 74:1769–78
    [Google Scholar]
  145. 145.
    Yathom S, Chen M, Tam S 1981. The use of traps baited with species-specific pheromones for the detection of Spodoptera frugiperda. Phytoparasitica 9:221
    [Google Scholar]
  146. 146.
    Young JR, McMillan WW. 1979. Differential feeding by two strains of fall armyworm larvae on carbaryl treated surfaces. J. Econ. Entomol. 72:202–3
    [Google Scholar]
  147. 147.
    Yu S. 1991. Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pestic. Biochem. Physiol. 39:84–91
    [Google Scholar]
  148. 148.
    Zeng G, Zhi J-R, Zhang C-R, Zhang T, Ye J-Q et al. 2021. Orius similis (Hemiptera: Anthocoridae): a promising candidate predator of Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 114:582–89
    [Google Scholar]
  149. 149.
    Zhang L, Jin M, Zhang D, Jiang Y, Liu J et al. 2019. Molecular identification of invasive fall armyworm Spodoptera frugiperda in Yunnan Province. Plant Prot. 45:19–24
    [Google Scholar]
  150. 150.
    Zhang L, Liu B, Zheng W, Liu C, Zhang D et al. 2020. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. 20:1682–96
    [Google Scholar]
  151. 151.
    Zimmerman EC. 1958. Insects of Hawaii Honolulu, HI: Univ. Hawaii Press
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-102548
Loading
/content/journals/10.1146/annurev-ento-120220-102548
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error