1932

Abstract

Mating produces profound changes in the behavior of female flies, such as an increase in oviposition, reduction in sexual receptivity, increase in feeding, and even excretion. Many of these changes are produced by copulation, sperm, and accessory gland products that males transfer to females during mating. Our knowledge on the function of the male ejaculate and its effect on female insects is still incipient. In this article, we review peri- and postcopulatory behaviors in tephritid flies. We address the effects of male copulatory behavior; copula duration; and the male ejaculate, sperm, and accessory gland products on female remating behavior. Many species from these families are pests of economic importance; thus, understanding male mating effects on female behavior contributes to both developing more effective environmentally friendly control methods and furthering our understanding of evolutionary implications of intersexual competition and sexual conflict.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-113618
2023-01-23
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120220-113618.html?itemId=/content/journals/10.1146/annurev-ento-120220-113618&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abraham S, Cladera J, Goane L, Vera MT. 2012. Factors affecting Anastrepha fraterculus female receptivity modulation by accessory gland products. J. Insect Physiol. 58:11–6
    [Google Scholar]
  2. 2.
    Abraham S, Contreras-Navarro Y, Pérez-Staples D. 2016. Female age determines remating behavior in wild Mexican fruit flies. J. Insect Behav. 29:3340–54
    [Google Scholar]
  3. 3.
    Abraham S, Díaz V, Castillo GM, Pérez-Staples D. 2018. Sequential mate choice in the South American fruit fly: the role of male nutrition, female size and host availability on female remating behaviour. Ethol. Ecol. Evol. 30:4348–61
    [Google Scholar]
  4. 4.
    Abraham S, Díaz V, Moyano A, Castillo G, Rull J et al. 2021. Irradiation dose does not affect male reproductive organ size, sperm storage, and female remating propensity in Ceratitis capitata. Bull. Entomol. Res. 111:182–90
    [Google Scholar]
  5. 5.
    Abraham S, Goane L, Cladera J, Vera MT. 2011. Effects of male nutrition on sperm storage and remating behavior in wild and laboratory Anastrepha fraterculus (Diptera: Tephritidae) females. J. Insect Physiol. 57:111501–9
    [Google Scholar]
  6. 6.
    Abraham S, Goane L, Rull J, Cladera J, Willink E, Vera MT. 2011. Multiple mating in Anastrepha fraterculus females and its relationship with fecundity and fertility. Entomol. Exp. Appl. 141:115–24
    [Google Scholar]
  7. 7.
    Abraham S, Lara-Pérez LA, Rodríguez C, Contreras-Navarro Y, Nuñez-Beverido N et al. 2016. The male ejaculate as inhibitor of female remating in two tephritid flies. J. Insect Physiol. 88:40–47
    [Google Scholar]
  8. 8.
    Abraham S, Liendo MC, Devescovi F, Peralta PA, Yusef V et al. 2013. Remating behavior in Anastrepha fraterculus (Diptera: Tephritidae) females is affected by male juvenile hormone analog treatment but not by male sterilization. Bull. Entomol. Res. 103:3310–17
    [Google Scholar]
  9. 9.
    Abraham S, Moyano A, Murillo Dasso S, Van Nieuwenhove G, Ovruski S, Pérez-Staples D. 2020. Male accessory gland depletion in a tephritid fly affects female fecundity independently of sperm depletion. Behav. Ecol. Sociobiol. 74:560
    [Google Scholar]
  10. 10.
    Abraham S, Nuñez-Beverido N, Contreras-Navarro Y, Pérez-Staples D. 2014. Female receptivity in Anastrepha ludens (Diptera: Tephritidae) is not modulated by male accessory gland products. J. Insect Physiol. 70:41–48
    [Google Scholar]
  11. 11.
    Abraham S, Rull J, Mendoza M, Liendo MC, Devescovi F et al. 2014. Differences in sperm storage and remating propensity between adult females of two morphotypes of the Anastrepha fraterculus (Diptera: Tephritidae) cryptic species complex. Bull. Entomol. Res. 104:3376–82
    [Google Scholar]
  12. 12.
    Adnan SM, Farhana I, Rempoulakis P, Taylor PW. 2020. Methoprene-induced matings of young Queensland fruit fly males are effective at inducing sexual inhibition in females. J. Appl. Entomol. 144:6500–8
    [Google Scholar]
  13. 13.
    Adnan SM, Pérez-Staples D, Taylor PW. 2020. Dietary methoprene treatment promotes rapid development of reproductive organs in male Queensland fruit fly. J. Insect Physiol. 126:104094
    [Google Scholar]
  14. 14.
    Ahmed KA, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. 2022. Population differences and domestication effects on mating and remating frequencies in Queensland fruit fly. Sci. Rep. 12:153
    [Google Scholar]
  15. 15.
    Akter H, Taylor PW. 2018. Sexual inhibition of female Queensland fruit flies mated by males treated with raspberry ketone supplements as immature adults. J. Appl. Entomol. 142:4380–87
    [Google Scholar]
  16. 16.
    Allinghi A, Gramajo C, Willink E, Vilardi J. 2007. Induction of sterility in Anastrepha fraterculus (Diptera: Tephritidae) by gamma radiation. Fla. Entomol. 90:196–102
    [Google Scholar]
  17. 17.
    Aluja M, Norrbom AL. 2000. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior Boca Raton, FL: CRC Press
  18. 18.
    Aluja M, Piñero J, Jácome I, Díaz-Fleischer F, Sivinski J. 2000. Behavior of flies in the genus Anastrepha (Trypteinae: Toxotrypanini). See Reference 17 375–408
  19. 19.
    Aluja M, Rull J, Sivinski J, Trujillo G, Pérez-Staples D. 2009. Male and female condition influence mating performance and sexual receptivity in two tropical fruit flies (Diptera: Tephritidae) with contrasting life histories. J. Insect Physiol. 55:121091–98
    [Google Scholar]
  20. 20.
    Arredondo J, Tejeda MT, Ruiz L, Meza JS, Pérez-Staples D. 2017. Timing of irradiation and male mating history effects on female remating in Anastrepha ludens (Diptera: Tephritidae). Fla. Entomol. 100:3566–70
    [Google Scholar]
  21. 21.
    Barton-Browne L. 1957. An investigation of the low frequency of mating of the Queensland fruit fly Strumeta tryoni (Frogg). Aust. J. Zool. 5:2159–63
    [Google Scholar]
  22. 22.
    Bertin S, Scolari F, Guglielmino CR, Bonizzoni M, Bonomi A et al. 2010. Sperm storage and use in polyandrous females of the globally invasive fruitfly, Ceratitis capitata. J. Insect Physiol. 56:111542–51
    [Google Scholar]
  23. 23.
    Blay S, Yuval B. 1997. Nutritional correlates of reproductive success of male Mediterranean fruit flies (Diptera: Tephritidae). Anim. Behav. 54:59–66
    [Google Scholar]
  24. 24.
    Blay S, Yuval B. 1999. Oviposition and fertility in the Mediterranean fruit fly (Diptera: Tephritidae): effects of male and female body size and the availability of sperm. Ann. Entomol. Soc. Am. 92:278–84
    [Google Scholar]
  25. 25.
    Bonizzoni M, Gomulski LM, Mossinson S, Guglielmino CR, Malacrida AR et al. 2006. Is polyandry a common event among wild populations of the pest Ceratitis capitata?. J. Econ. Entomol. 99:41420–29
    [Google Scholar]
  26. 26.
    Bonizzoni M, Katsoyannos BI, Marguerie R, Guglielmino CR, Gasperi G et al. 2002. Microsatellite analysis reveals remating by wild Mediterranean fruit fly females, Ceratitis capitata. Mol. Ecol. 11:101915–21First report on molecular techniques to determine multiple paternity in wild females.
    [Google Scholar]
  27. 27.
    Boyce AM. 1934. Bionomics of the walnut husk fly. Rhagoletis completa. Hilgardia 8:11363–579
    [Google Scholar]
  28. 28.
    Briceño RD, Orozco D, Quintero JL, Hanson P, del Refugio Hernández M. 2011. Copulatory behaviour and the process of intromission in Anastrepha ludens (Diptera: Tephtiridae). Int. J. Trop. Biol. 59:1291–97
    [Google Scholar]
  29. 29.
    Catalá-Oltra M, Llácer E, Dembilio O, Pla I, Urbaneja A, Pérez-Hedo M. 2021. Remating in Ceratitis capitata sterile males: implications in sterile insect technique programmes. J. Appl. Entomol. 145:10958–65
    [Google Scholar]
  30. 30.
    Catalá-Oltra M, Llácer E, Urbaneja A, Pérez-Hedo M. 2020. Development and validation of real-time PCR method to estimate stored sperm in the spermathecae of Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 113:31471–78First report on using molecular techniques to determine sperm quantity stored.
    [Google Scholar]
  31. 31.
    Cavalloro R, Delrio G. 1974. Mating behavior and competitiveness of gamma-irradiated olive fruit flies. J. Econ. Entomol. 67:2253–55
    [Google Scholar]
  32. 32.
    Condon MA, Norrbom AL. 2000. Behaviour of flies in the genus Blepharoneura (Blepharoneurinae). See Reference 17 157–74
  33. 33.
    Contreras-Navarro Y, Pérez-Staples D, Orozco-Dávila D, Díaz-Fleischer F. 2020. Pre- and post-copulatory competitiveness of the genetic sexing strain Tapachula-7 of Anastrepha ludens (Diptera: Tephritidae). J. Econ. Ecol. 113:52163–70
    [Google Scholar]
  34. 34.
    Córdova-García G, Esquivel CJ, Pérez-Staples D, Ruiz-May R, Herrera-Cruz M et al. 2022. Characterization of reproductive proteins in the Mexican fruit fly points towards the evolution of novel functions. Proc. R. Soc. B. In press .
    [Google Scholar]
  35. 35.
    Córdova-García G, Sirot L, Abraham S, Díaz-Fleischer F, Flores-Estevez N et al. 2021. Mating, but not male accessory gland products, changes female response to olfactory cues in Anastrepha fruit flies. Front. Physiol. 12:714247
    [Google Scholar]
  36. 36.
    Cornelius ML, Nergel L, Duan JJ, Messing RH. 2000. Responses of female oriental fruit flies (Diptera: Tephritidae) to protein and host fruit odors in field cage and open field tests. Environ. Entomol. 29:114–19
    [Google Scholar]
  37. 37.
    Costa AM, Anjos-Duarte CS, Roriz AKP, Dias VS, Joachim-Bravo IS. 2012. Male diet and age influence to inhibit female remating in Ceratitis capitata (Diptera: Tephritidae). J. Appl. Entomol. 136:6456–63
    [Google Scholar]
  38. 38.
    Cruz C, Tayler A, Whyard S. 2018. RNA interference-mediated knockdown of male fertility genes in the Queensland fruit fly Bactrocera tryoni (Diptera: Tephritidae). Insects 9:336
    [Google Scholar]
  39. 39.
    Davies SJ, Chapman T. 2006. Identification of genes expressed in the accessory glands of male Mediterranean fruit flies (Ceratitis capitata). Insect Biochem. Mol. Biol. 36:11846–56
    [Google Scholar]
  40. 40.
    Devescovi F, Hurtado J, Taylor PW. 2021. Mating-induced changes in responses of female Queensland fruit fly to male pheromones and fruit: a mechanism for mating-induced sexual inhibition. J. Insect Physiol. 129:104195
    [Google Scholar]
  41. 41.
    Dhakal P, Fritz AH, Fritz GN. 2018. Sperm storage patterns in doubly mated female Anastrepha suspensa (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 111:255–61
    [Google Scholar]
  42. 42.
    Dickens JC, Solis E, Hart W. 1982. Sexual development and mating behavior of the Mexican fruit fly, Anastrepha ludens (Loew). Southwest Entomol. 7:19–15
    [Google Scholar]
  43. 43.
    Dodson G. 1978. Morphology of the reproductive system in Anastrepha suspensa (Loew) and notes on related species. Fla. Entomol. 61:4231–39
    [Google Scholar]
  44. 44.
    Dodson G. 2000. Behavior of the Phytalminae and the evolution of the Antlers in Tephritid flies. See Reference 17 175–86
  45. 45.
    Eberhard WG. 2000. Sexual behavior and sexual selection in the Mediterranean fruit fly, Ceratitis capitata (Dacinae: Ceratidini). See Reference 17 459–90
  46. 46.
    Eberhard WG. 2005. Threading a needle with reinforced thread: intromission in Ceratitis capitata (Diptera, Tephritidae). Can. Entomol. 137:2174–81
    [Google Scholar]
  47. 47.
    Eberhard WG. 2009. Postcopulatory sexual selection: Darwin's omission and its consequences. PNAS 106:110025–32
    [Google Scholar]
  48. 48.
    Eberhard WG, Pereira F. 1995. The process of intromission in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). J. Entomol. 102:3–499–120Demonstrates the mechanics of the male aculeus during mating.
    [Google Scholar]
  49. 49.
    FAO/IAEA/USDA 2019. Product quality control for sterile mass-reared and released Tephritid fruit flies, version 7.0 Rep., FAO/IAEA Progr Nucl. Tech. Food Agric., IAEA Vienna:
  50. 50.
    Field SA, Yuval B. 1999. Nutritional status affects copula duration in the Mediterranean fruit fly, Ceratitis capitata (Insecta Tephritidae). Ethol. Ecol. Evol. 11:161–70
    [Google Scholar]
  51. 51.
    Fritz AH. 2002. A single, abdominal ganglion in Anastrepha suspensa (Diptera: Tephritidae) and its innervation of the female sperm storage organs. Ann. Entomol. Soc. Am. 95:1103–8
    [Google Scholar]
  52. 52.
    Fritz AH. 2004. Sperm storage patterns in singly mated females of the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 97:61328–35
    [Google Scholar]
  53. 53.
    Fritz AH. 2009. Sperm storage is not subject to cephalic control in the Caribbean fruit fly, Anastrepha suspensa. J. Insect Behav. 22:5412–22
    [Google Scholar]
  54. 54.
    Fritz AH, Turner F. 2002. A light and electron microscopical study of the spermathecae and ventral receptacle of Anastrepha suspensa (Diptera: Tephritidae) and implications in female influence of sperm storage. Arthropod Struct. 30:4293–313
    [Google Scholar]
  55. 55.
    Gabrieli P, Scolari F, Di Cosimo A, Savini G, Fumagalli M et al. 2016. Sperm-less males modulate female behaviour in Ceratitis capitata (Diptera: Tephritidae). Insect Biochem. Mol. Biol. 79:13–26
    [Google Scholar]
  56. 56.
    Gallardo-Ortiz U, Pérez-Staples D, Liedo P, Toledo J. 2018. Sexual competitiveness, field survival, and dispersal of Anastrepha obliqua (Diptera: Tephritidae) fruit flies irradiated at different doses. J. Econ. Entomol. 111:2761–69
    [Google Scholar]
  57. 57.
    Gavriel S, Gazit Y, Yuval B. 2009. Remating by female Mediterranean fruit flies (Ceratitis capitata, Diptera: Tephritidae): temporal patterns and modulation by male condition. J. Insect Physiol. 55:7637–42
    [Google Scholar]
  58. 58.
    Gerofotis CD, Yuval B, Ioannou CS, Nakas CT, Papadopoulos NT. 2015. Polygyny in the olive fly—effects on male and female fitness. Behav. Ecol. Sociobiol. 69:81323–32
    [Google Scholar]
  59. 59.
    Gliksman D, Yuval B. 2010. Intromission induces and insemination reduces female immune response in the Medfly. J. Insect Behav. 23:2149–58
    [Google Scholar]
  60. 60.
    Gomulski LM, Dimopoulos G, Xi Z, Scolari F, Gabrieli P et al. 2012. Transcriptome profiling of sexual maturation and mating in the Mediterranean Fruit Fly, Ceratitis capitata. PLOS ONE 7:e30857
    [Google Scholar]
  61. 61.
    Gregoriou M-E, Mathiopoulos KD. 2020. Knocking down the sex peptide receptor by dsRNA feeding results in reduced oviposition rate in olive fruit flies. Arch. Insect Biochem. Physiol. 104:2e21665
    [Google Scholar]
  62. 62.
    Gregoriou M-E, Reczko M, Kakani EG, Tsoumani KT, Mathiopoulos KD. 2021. Decoding the reproductive system of the olive fruit fly, Bactrocera oleae. Genes 12:3355
    [Google Scholar]
  63. 63.
    Guerfali MM, Chevrier C. 2020. Determinant factors for sperm transfer and sperm storage within Ceratitis capitata (Diptera: Tephritidae) and impact on sterile insect technique. J. Radiat. Res. Appl. Sci. 13:1792–807
    [Google Scholar]
  64. 64.
    Guerfali MM, Parker A, Fadhl S, Hemdane H, Raies A, Chevrier C. 2011. Fitness and reproductive potential of irradiated mass-reared Mediterranean fruit fly males Ceratitis capitata (Diptera: Tephritidae): lowering radiation doses. Fla. Entomol. 94:41042–50
    [Google Scholar]
  65. 65.
    Gui S-H, Pei Y-X, Xu L, Wang W-P, Jiang H-B et al. 2018. Function of the natalisin receptor in mating of the Oriental fruit fly, Bactrocera dorsalis (Hendel) and testing of peptidomimetics. PLOS ONE 13:2e0193058
    [Google Scholar]
  66. 66.
    Haq IU, Vreysen MJB, Abd-Alla A, Hendrichs J 2013. Ability of genetic sexing strain male melon flies (Diptera: Tephritidae) to suppress wild female remating: implications for SIT. Fla. Entomol. 96:3839–49
    [Google Scholar]
  67. 67.
    Haq IU, Vreysen MJB, Teal PEA, Hendrichs J. 2014. Methoprene application and diet protein supplementation to male melon fly, Bactrocera cucurbitae, modifies female remating behavior. Insect Sci 21:5637–46
    [Google Scholar]
  68. 68.
    Harmer AMT, Radhakrishnan P, Taylor PW. 2006. Remating inhibition in female Queensland fruit flies: effects and correlates of sperm storage. J. Insect Physiol. 52:2179–86
    [Google Scholar]
  69. 69.
    Headrick D, Goeden R. 2000. Behavior of flies in the subfamily Tephritinae. See Reference 17 671–707
  70. 70.
    Hendrichs J, Reyes J. 1987. Reproductive behaviour and post-mating female guarding in the monophagous multivoltine Dacus longistylus (Wied.) (Diptera: Tephritidae). Fruit Flies: Proceedings of the Second International Symposium AP Economopoulos 16–21 Amsterdam: Elsevier
    [Google Scholar]
  71. 71.
    Herrera-Cruz M, Abraham S, Nuñez-Beverido N, Flores-Estévez N, Reyes-Hernández M et al. 2018. Male age and strain affect ejaculate quality in the Mexican fruit fly. Insect Sci 25:4703–11
    [Google Scholar]
  72. 72.
    Itô Y, Yamagishi M. 1989. Sperm competition in the melon fly, Dacus cucurbitae (Diptera: Tephritidae): effects of sequential matings with normal and virgin or non-virgin sterile males. Appl. Entomol. Zool. 24:4466–77
    [Google Scholar]
  73. 73.
    Iwahashi O. 2001. Aedeagal length of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), and its sympatric species in Thailand and the evolution of a longer and shorter aedeagus in the parapatric species of B. dorsalis. Appl. Entomol. Zool. 36:3289–97
    [Google Scholar]
  74. 74.
    Jang EB. 1995. Effects of mating and accessory gland injections on olfactory-mediated behavior in the female Mediterranean fruit fly, Ceratitis capitata. J. Insect Physiol. 41:8705–10First report of function of MAGs in tephritids demonstrating an olfactory switch in females.
    [Google Scholar]
  75. 75.
    Jang EB, McInnis DO, Kurashima R, Carvalho LA. 1999. Behavioural switch of female Mediterranean fruit fly, Ceratitis capitata: mating and oviposition activity in outdoor field cages in Hawaii. Agric. For. Entomol. 1:179–84
    [Google Scholar]
  76. 76.
    Jang EB, McInnis DO, Lance DR, Carvalho LA. 1998. Mating-induced changes in olfactory-mediated behavior of laboratory-reared normal, sterile, and wild female Mediterranean fruit flies (Diptera: Tephritidae) mated to conspecific males. Ann. Entomol. Soc. Am. 91:1139–44
    [Google Scholar]
  77. 77.
    Katiyar KP, Ramirez E. 1970. Mating frequency and fertility of Mediterranean fruit fly females alternately mated with normal and irradiated males. J. Econ. Entomol. 63:1247–50
    [Google Scholar]
  78. 78.
    Kovac D. 2015. Reproductive behavior and basic biology of the oriental bamboo-inhabiting Anoplomus rufipes and a comparison with frugivorous Dacinae fruit flies. Insects 6:4869–96
    [Google Scholar]
  79. 79.
    Kraaijeveld K, Chapman T. 2004. Effects of male sterility on female remating in the Mediterranean fruit fly, Ceratitis capitata. Proc. R. Soc. Lond. B 271:4209–11
    [Google Scholar]
  80. 80.
    Kuba H, Itô Y. 1993. Remating inhibition in the melon fly, Bactrocera (=Dacus) cucurbitae (Diptera: Tephritidae): copulation with spermless males inhibits female remating. J. Ethol. 11:23–28First report of sperm-depleted males inhibiting female remating; suggests other components of the ejaculate inhibit.
    [Google Scholar]
  81. 81.
    Kuba H, Soemori H. 1988. Characteristics of copulation duration, hatchability of eggs and remating intervals in the melon fly, Dacus cucurbitae Coquillet (Diptera: Tephritidae). Jpn. J. Appl. Entomol. Zool. 32:4321–24
    [Google Scholar]
  82. 82.
    Kumaran N, Balagawi S, Schutze MK, Clarke AR. 2013. Evolution of lure response in Tephritid fruit flies: phytochemicals as drivers of sexual selection. Anim. Behav. 85:4781–89
    [Google Scholar]
  83. 83.
    Kumaran N, van der Burg CA, Qin Y, Cameron SL, Clarke AR, Prentis PJ. 2018. Plant-mediated female transcriptomic changes post-mating in a tephritid fruit fly, Bactrocera tryoni. Genome Biol. Evol. 10:194–107
    [Google Scholar]
  84. 84.
    Kuriwada T, Kumano N, Shiromoto K, Haraguchi D, Matsuyama T, Kohama T. 2014. Female preference did not evolve under laboratory conditions in the solanaceous fruit fly Bactrocera latifrons. Int. J. Pest Manag. 60:3160–65
    [Google Scholar]
  85. 85.
    Landeta-Escamilla A, Hernández E, Arredondo J, Díaz-Fleischer F, Pérez-Staples D. 2016. Male irradiation affects female remating behavior in Anastrepha serpentina (Diptera: Tephritidae). J. Insect Physiol. 85:17–22
    [Google Scholar]
  86. 86.
    Landolt PJ. 1994. Mating frequency of the papaya fruit fly (Diptera: Tephritidae) with and without host fruit. Fla. Entomol. 77:3305–12
    [Google Scholar]
  87. 87.
    Lentz AJ, Miller JR, Spencer JL, Keller JE. 2009. Effect of male accessory gland extracts on female oviposition and sexual receptivity of the Caribbean fruit fly (Diptera; Tephritidae). Fla. Entomol. 92:415–20
    [Google Scholar]
  88. 88.
    Leopold RA, Terranova AC, Swilley EM. 1971. Mating refusal in Musca domestica: effects of repeated mating and decerebration upon frequency and duration of copulation. J. Exp. Zool. 176:3353–59
    [Google Scholar]
  89. 89.
    Maktura GC, Paranhos BJ, Marques-Souza H. 2021. RNAi in fruit flies (Diptera: Tephritidae): successes and challenges. J. Appl. Entomol. 145:8740–56
    [Google Scholar]
  90. 90.
    Marchini D, Bene GD, Falso LF, Dallai R. 2001. Structural organization of the copulation site in the Medfly Ceratitis capitata (Diptera: Tephritidae) and observations on sperm transfer and storage. Arthropod Struct. 30:39–54Comprehensive description of the ventral receptacle.
    [Google Scholar]
  91. 91.
    Mazomenos B, Nation JL, Coleman WJ, Dennis KC, Esponda R. 1977. Reproduction in Caribbean fruit flies: comparisons between a laboratory strain and a wild strain. Fla. Entomol. 60:2139–44
    [Google Scholar]
  92. 92.
    Meats A, Leighton SM. 2004. Protein consumption by mated, unmated, sterile and fertile adults of the Queensland fruit fly, Bactrocera tryoni and its relation to egg production. Physiol. Entomol. 29:2176–82
    [Google Scholar]
  93. 93.
    Meza JS, Arredondo J, Orozco D, Pérez-Staples D. 2014. Disparity in sexual behaviour between wild and mass-reared Mexican fruit flies. Physiol. Entomol. 39:3263–70
    [Google Scholar]
  94. 94.
    Miyatake T, Chapman T, Partridge L. 1999. Mating-induced inhibition of remating in female Mediterranean fruit flies, Ceratitis capitata. J. Insect Physiol. 45:111021–28First report of castration and penis cutting in tephritids, showing effects of ejaculate on female remating.
    [Google Scholar]
  95. 95.
    Morelli R, Paranhos BJ, Coelho AM, Castro R, Garziera L et al. 2013. Exposure of sterile Mediterranean fruit fly (Diptera: Tephritidae) males to ginger root oil reduces female remating. J. Appl. Entomol. 137:75–82
    [Google Scholar]
  96. 96.
    Mossinson S, Yuval B. 2003. Regulation of sexual receptivity of female Mediterranean fruit flies: old hypotheses revisited and a new synthesis proposed. J. Insect Physiol. 49:6561–67Review on remating suggests sperm are necessary for short-term inhibition and MAGs for long-term sexual inhibition.
    [Google Scholar]
  97. 97.
    Nagel P, Peveling R 2021. Environment and the sterile insect technique. Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management VA Dyck, J Hendrichs, AS Robinson 753–80 Abingdon-on-Thames, UK: Taylor & Francis
    [Google Scholar]
  98. 98.
    Novelo-Rincón LF, Montoya P, Hernández-Ortíz V, Liedo P, Toledo J. 2009. Mating performance of sterile Mexican fruit fly Anastrepha ludens (Dipt., Tephritidae) males used as vectors of Beauveria bassiana (Bals.) Vuill. J. Appl. Entomol. 133:9–10702–10
    [Google Scholar]
  99. 99.
    Opp SB, Ziegner J, Bui N, Prokopy RJ. 1990. Factors influencing estimates of sperm competition in Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 83:3521–26
    [Google Scholar]
  100. 100.
    Papadopoulos NT, Carey JR, Liedo P, Müller H-G, Sentürk D. 2009. Virgin females compete for mates in the male lekking species Ceratitis capitata. Physiol. Entomol. 34:3238–45
    [Google Scholar]
  101. 101.
    Papanastasiou SA, Diamantidis AD, Nakas CT, Carey JR, Papadopoulos NT. 2011. Dual reproductive cost of aging in male medflies: dramatic decrease in mating competitiveness and gradual reduction in mating performance. J. Insect Physiol. 57:101368–74
    [Google Scholar]
  102. 102.
    Pérez J, Mendez V, Yuval B, Taylor PW. 2021. Domestication-related changes in sexual performance of Queensland fruit fly. Insect Sci. 28:51491–503
    [Google Scholar]
  103. 103.
    Pérez-Staples D, Abraham S, Herrera-Cruz M, Reyes-Hernández M, Tejeda MT et al. 2018. Evolutionary consequences of desiccation resistance in the male ejaculate. Evol. Biol. 45:156–66
    [Google Scholar]
  104. 104.
    Perez-Staples D, Aluja M. 2006. Sperm allocation and cost of mating in a tropical Tephritid fruit fly. J. Insect Physiol. 52:8839–45
    [Google Scholar]
  105. 105.
    Pérez-Staples D, Córdova-García G, Aluja M. 2014. Sperm dynamics and cryptic male choice in Tephritid flies. Anim. Behav. 89:131–39
    [Google Scholar]
  106. 106.
    Perez-Staples D, Harmer AMT, Collins SR, Taylor PW. 2008. Potential for pre-release diet supplements to increase the sexual performance and longevity of male Queensland fruit flies. Agric. For. Entomol. 10:3255–62
    [Google Scholar]
  107. 107.
    Perez-Staples D, Harmer AMT, Taylor PW. 2007. Sperm storage and utilization in female Queensland fruit flies (Bactrocera tryoni). Physiol. Entomol. 32:2127–35
    [Google Scholar]
  108. 108.
    Pérez-Staples D, Shelly TE, Yuval B. 2013. Female mating failure and the failure of “mating” in sterile insect programs. Entomol. Exp. Appl. 146:166–78
    [Google Scholar]
  109. 109.
    Pérez-Staples D, Weldon CW, Radhakrishnan P, Prenter J, Taylor PW. 2010. Control of copula duration and sperm storage by female Queensland fruit flies. J. Insect Physiol. 56:121755–62
    [Google Scholar]
  110. 110.
    Pérez-Staples D, Weldon CW, Taylor PW. 2011. Sex differences in developmental response to yeast hydrolysate supplements in adult Queensland fruit fly. Entomol. Exp. Appl. 141:2103–13
    [Google Scholar]
  111. 111.
    Perry JC, Sirot L, Wigby S. 2013. The seminal symphony: how to compose an ejaculate. Trends Ecol. Evol. 28:7414–22
    [Google Scholar]
  112. 112.
    Porter BA. 1928. The apple maggot Tech. Bull., U. S. Dept. Agric. Washington, DC:
  113. 113.
    Pritchard G. 1967. Laboratory observations on the mating behaviour of the island fruit fly Rioxa pornia (Diptera: Tephritidae). J. Aust. Entomol. Soc. 6:127–32
    [Google Scholar]
  114. 114.
    Radhakrishnan P, Nair S, Raftos D, Taylor PW. 2008. Transfer and fate of male ejaculate in female Queensland fruit flies. Physiol. Entomol. 33:4302–9
    [Google Scholar]
  115. 115.
    Radhakrishnan P, Pérez-Staples D, Weldon CW, Taylor PW. 2009. Multiple mating and sperm depletion in male Queensland fruit flies: effects on female remating behaviour. Anim. Behav. 78:4839–46
    [Google Scholar]
  116. 116.
    Radhakrishnan P, Taylor PW. 2007. Seminal fluids mediate sexual inhibition and short copula duration in mated female Queensland fruit flies. J. Insect Physiol. 53:7741–45
    [Google Scholar]
  117. 117.
    Radhakrishnan P, Taylor PW. 2008. Ability of male Queensland fruit flies to inhibit receptivity in multiple mates, and the associated recovery of accessory glands. J. Insect. Physiol. 54:421–28
    [Google Scholar]
  118. 118.
    Ramírez-Santos E, Rendón P, Ruiz-Montoya L, Toledo J, Liedo P. 2017. Effect of irradiation doses on sterility and biological security in a genetically modified strain of the Mediterranean fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 110:41483–94
    [Google Scholar]
  119. 119.
    Reyes-Hernández M, Córdova-García G, Díaz-Fleischer F, Flores-Estévez N, Pérez-Staples D. 2021. Oviposition after sex: mated Anastrepha ludens (Diptera: Tephritidae) females increase oviposition without receiving an ejaculate. Can. Entomol. 153:5524–37
    [Google Scholar]
  120. 120.
    Reyes-Hernández M, del Castillo RM, Abraham S, Arredondo J, Pérez-Staples D. 2021. Feeding on methoprene increases male accessory gland size and body protein in the Mexican fruit fly. Physiol. Entomol. 46:2128–37
    [Google Scholar]
  121. 121.
    Reyes-Hernández M, Pérez-Staples D. 2017. Mating senescence and male reproductive organ size in the Mexican fruit fly. Physiol. Entomol. 42:126–35
    [Google Scholar]
  122. 122.
    Reyes-Hernández M, Thimmappa R, Abraham S, Pagadala Damodaram KJ, Pérez-Staples D 2019. Methyl eugenol effects on Bactrocera dorsalis male total body protein, reproductive organs and ejaculate. J. Appl. Entomol. 143:3177–86
    [Google Scholar]
  123. 123.
    Robacker DC, Ingle SJ, Hart WG. 1985. Mating frequency and response to male-produced pheromone by virgin and mated females of the Mexican fruit fly. Southwest Entomol. 10:3215–21
    [Google Scholar]
  124. 124.
    Roets PD, Bosua H, Archer RC, Weldon CW. 2018. Life-history and demographic traits of the marula fruit fly Ceratitis cosyra: potential consequences of host specialization. Physiol. Entomol. 43:4259–67
    [Google Scholar]
  125. 125.
    Rosetto M, Marchini D, de Filippis T, Ciolfi S, Frati F et al. 2003. The ceratotoxin gene family in the medfly Ceratitis capitata and the Natal fruit fly Ceratitis rosa (Diptera: Tephritidae). Heredity 90:5382–89
    [Google Scholar]
  126. 126.
    Rull J, Abraham S, Schlisermann P, Ordano M, Ovruski S. 2017. Mating behavior and basic biology of Haywardina cuculi (Diptera: Tephritidae), a poorly known species exhibiting high variability in copulation duration. J. Insect Behav. 30:4439–53
    [Google Scholar]
  127. 127.
    Rull J, Abraham S, Tadeo E, Rodriguez CL. 2016. Life history and mating behavior of Rhagoletis solanophaga (Diptera: Tephritidae), a non-diapausing species with highly variable mating duration. J. Insect Behav. 29:6629–42
    [Google Scholar]
  128. 128.
    Rull J, Brunel O, Mendez ME. 2005. Mass rearing history negatively affects mating success of male Anastrepha ludens (Diptera: Tephritidae) reared for sterile insect technique programs. J. Econ. Entomol. 98:51510–16
    [Google Scholar]
  129. 129.
    Sánchez-Rosario M, Pérez-Staples D, Toledo J, Valle-Mora J, Liedo P. 2017. Artificial selection on mating competitiveness of Anastrepha ludens for sterile insect technique application. Entomol. Exp. Appl. 162:2133–47
    [Google Scholar]
  130. 130.
    Saul SH, Tam SYT, McInnis DO. 1988. Relationship between sperm competition and copulation duration in the Mediterranean fruit fly (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 81:3498–502
    [Google Scholar]
  131. 131.
    Scolari F, Gomulski LM, Ribeiro JMC, Siciliano P, Meraldi A et al. 2012. Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly, Ceratitis capitata. PLOS ONE 7:10e46812
    [Google Scholar]
  132. 132.
    Scolari F, Khamis FM, Pérez-Staples D. 2021. Beyond sperm and male accessory gland proteins: exploring insect reproductive metabolomes. Front. Physiol. 12:729440Review of the metabolomics approach to studying the male ejaculate.
    [Google Scholar]
  133. 133.
    Scolari F, Yuval B, Gomulski LM, Schetelig MF, Gabrieli P et al. 2014. Polyandry in the medfly—shifts in paternity mediated by sperm stratification and mixing. BMC Genet 15:Suppl. 2S10
    [Google Scholar]
  134. 134.
    Seo S, Vargas RI, Gilmore J, Kurashima R, Fujimoto M. 1990. Sperm transfer in normal and gamma-irradiated, laboratory-reared Mediterranean fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 83:1949–53
    [Google Scholar]
  135. 135.
    Severin HHP, Severin HC, Hartung WJ. 1914. The ravages, life history, weights of stages, natural enemies and methods of control of the melon fly (Dacus cucurbitae Coq.). Ann. Entomol. Soc. Am. 7:3177–207
    [Google Scholar]
  136. 136.
    Shadmany J, Lee SF, Nguyen TNM, Taylor PW. 2021. Patterns of sperm use by twice-mated female Queensland fruit flies. Insect Sci In press
    [Google Scholar]
  137. 137.
    Shadmany J, Lee SF, Taylor PW. 2021. Patterns of sperm storage in twice-mated Queensland fruit flies. J. Insect Physiol. 133:104289
    [Google Scholar]
  138. 138.
    Shadmany J, Lee SF, Taylor PW. 2021. Real-time PCR-based Y-specific sperm quantification assay in Queensland fruit fly: insights to patterns of sperm storage. Insect. Mol. Biol. 30:3315–24
    [Google Scholar]
  139. 139.
    Shelly TE. 2019. Ability of sterile males to inhibit female remating in the melon fly Zeugodacus cucurbitae (Diptera: Tephritidae). Fla. Entomol. 102:1278–80
    [Google Scholar]
  140. 140.
    Shelly TE. 2020. Ability of sterile males to inhibit female remating in the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Proc. Hawaii Entomol. Soc. 52:15–23
    [Google Scholar]
  141. 141.
    Shelly TE, Edu J, Pahio E. 2004. Sterile males of the Mediterranean fruit fly exposed to ginger root oil induce female remating: implications for the sterile insect technique (Diptera: Tephritidae). Fla. Entomol. 87:4628–29
    [Google Scholar]
  142. 142.
    Shelly TE, Edu J, Pahio E. 2007. Age-dependent variation in mating success of sterile male Mediterranean fruit flies (Diptera: Tephritidae): implications for sterile insect technique. J. Econ. Entomol. 100:41180–87
    [Google Scholar]
  143. 143.
    Shoukry A. 1973. Mating behaviour and competitiveness of sterile adult Mediterranean fruit fly Ceratitis capitata Wied. in Egypt. J. Appl. Entomol. 74:366–70
    [Google Scholar]
  144. 144.
    Siemers BM, Kriner E, Kaipf I, Simon M, Greif S. 2012. Bats eavesdrop on the sound of copulating flies. Curr. Biol. 22:14563–64
    [Google Scholar]
  145. 145.
    Sirot L, Bansal R, Esquivel CJ, Arteaga-Vázquez M, Herrera-Cruz M et al. 2021. Post-mating gene expression of Mexican fruit fly females: disentangling the effects of the male accessory glands. Insect Mol. Biol. 30:5480–96
    [Google Scholar]
  146. 146.
    Sivinski J, Heath RR. 1988. Effects of oviposition on remating, response to pheromones, and longevity in the female Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 81:61021–24
    [Google Scholar]
  147. 147.
    Sivinski J, Smittle B. 1987. Male transfer of materials to mates in the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae). Fla. Entomol. 70:2233–38
    [Google Scholar]
  148. 148.
    Solinas M, Nuzzaci G. 1984. Functional anatomy of Dacus aleae Gmel. female genitalia in relation to insemination and fertilization processes. Entomologica 19:135–65
    [Google Scholar]
  149. 149.
    Song SD, Drew RAI, Hughes JM. 2007. Multiple paternity in a natural population of a wild tobacco fly, Bactrocera cacuminata (Diptera: Tephritidae), assessed by microsatellite DNA markers. Mol. Ecol. 16:112353–61
    [Google Scholar]
  150. 150.
    Sutter A, Price TA, Wedell N. 2021. The impact of female mating strategies on the success of insect control technologies. Curr. Opin. Insect Sci. 45:75–83
    [Google Scholar]
  151. 151.
    Taylor PW, Kaspi R, Mossinson S, Yuval B. 2001. Age-dependent insemination success of sterile Mediterranean fruit flies. Entomol. Exp. Appl. 98:127–33
    [Google Scholar]
  152. 152.
    Taylor PW, Kaspi R, Yuval B. 2000. Copula duration and sperm storage in Mediterranean fruit flies from a wild population. Physiol. Entomol. 25:194–99
    [Google Scholar]
  153. 153.
    Taylor PW, Yuval B. 1999. Postcopulatory sexual selection in Mediterranean fruit flies: advantages for large and protein-fed males. Anim. Behav. 58:2247–54
    [Google Scholar]
  154. 154.
    Teruya T, Isobe K. 1982. Sterilization of the melon fly, Dacus cucurbitae Coquillet (Diptera, Tephritidae), with gamma-radiation: mating behaviour and fertility of females alternately mated with normal and irradiated males. Appl. Entomol. Zool. 17:1111–18
    [Google Scholar]
  155. 155.
    Thomas DB, Leal SN, Conway HE. 2014. Copula duration, insemination, and sperm allocation in Anastrepha ludens (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 107:4858–65
    [Google Scholar]
  156. 156.
    Tian C-B, Wei D, Xiao L-F, Dou W, Liu H, Wang J-J. 2017. Comparative transcriptome analysis of three Bactrocera dorsalis (Diptera: Tephritidae) organs to identify functional genes in the male accessory glands and ejaculatory duct. Fla. Entomol. Soc. 100:142–51
    [Google Scholar]
  157. 157.
    Toledo J, Campos SE, Flores S, Liedo P, Barrera JF et al. 2007. Horizontal transmission of Beauveria bassiana in Anastrepha ludens (Diptera: Tephritidae) under laboratory and field cage conditions. J. Econ. Entomol. 100:2291–97
    [Google Scholar]
  158. 158.
    Tsiropoulos GJ, Tzanakakis ME. 1970. Mating frequency and inseminating capacity of radiation-sterilized and normal males of the olive fruit fly. Ann. Entomol. Soc. Am. 63:41007–10
    [Google Scholar]
  159. 159.
    Twig E, Yuval B. 2005. Function of multiple sperm storage organs in female Mediterranean fruit flies (Ceratitis capitata, Diptera: Tephritidae). J. Insect Physiol. 51:167–74Review on sperm storage dynamics.
    [Google Scholar]
  160. 160.
    Vera MT, Cladera JL, Calcagno G, Vilardi JC, McInnis DO. 2003. Remating of wild Ceratitis capitata (Diptera: Tephritidae) females in field cages. Ann. Entomol. Soc. Am. 96:4563–70
    [Google Scholar]
  161. 161.
    Verónica-Murrieta B, Meza JS, Baena ML, Alvarado-Castillo G, Pérez-Staples D. 2021. Polyandrous Mexican fruit flies: second male paternity and biological attributes of transgenic strains. Insects 13:15
    [Google Scholar]
  162. 162.
    Vijaysegaran S, Walter GH, Drew RAI. 2002. Influence of adult diet on the development of the reproductive system and mating ability of Queensland fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). J. Trop. Agric. Food Sci. 30:1119–36
    [Google Scholar]
  163. 163.
    Webster RP, Stoffolano JG. 1978. The influence of diet on the maturation of the reproductive system of the apple maggot, Rhagoletis pomonella. Ann. Entomol. Soc. Am. 71:6844–49
    [Google Scholar]
  164. 164.
    Wei D, Feng Y-C, Wei D-D, Yuan G-R, Dou W, Wang J-J. 2015. Female remating inhibition and fitness of Bactrocera dorsalis (Diptera: Tephritidae) associated with male accessory glands. Fla. Entomol. 98:152–58
    [Google Scholar]
  165. 165.
    Wei D, Liu Y-W, Zhang S-Y, Xu H-Q, Smagghe G, Wang J-J. 2021. A male accessory gland specific gene takeout2 regulates male mating success in Bactrocera dorsalis. Entomol. Gen. 41:6579–89
    [Google Scholar]
  166. 166.
    Wei D, Tian C-B, Liu S-H, Wang T, Smagghe G et al. 2016. Transcriptome analysis to identify genes for peptides and proteins involved in immunity and reproduction from male accessory glands and ejaculatory duct of Bactrocera dorsalis. Peptides 80:48–60
    [Google Scholar]
  167. 167.
    Weldon CW, Terblanche JS, Bousa H, Malod K, Chown SL 2022. Male Mediterranean fruit flies prefer warmer temperatures that improve sexual performance. J. Thermal Biol 108:103298
    [Google Scholar]
  168. 168.
    Zouros E, Krimbas CB. 1970. Frequency of female digamy in a natural population of the olive fruit fly Dacus oleae as found by using enzyme polymorphism. Entomol. Exp. Appl. 13:11–9
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-113618
Loading
/content/journals/10.1146/annurev-ento-120220-113618
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error