1932

Abstract

Phosphorus security is emerging as one of the twenty-first century's greatest global sustainability challenges. Phosphorus has no substitute in food production, and the use of phosphate fertilizers in the past 50 years has boosted crop yields and helped feed billions of people. However, these advantages have come at a serious cost. Mobilizing phosphate rock into the environment at rates vastly faster than the natural cycle has not only polluted many of the world's freshwater bodies and oceans, but has also created a human dependence on a single nonrenewable resource. The 2008 phosphate price spike attracted unprecedented attention to this global situation. This review provides an updated and integrated synthesis of the biophysical, social, geopolitical, and institutional challenges and opportunities for food security. Remaining phosphorus resources are becoming increasingly scarce, expensive, and inequitably distributed. All farmers require fertilizers, yet a sixth of the world's farmers and their families are too poor to access fertilizer markets. Inefficient use of this fossil resource from mine to field to fork calls for substantial reduction in demand through efficiency and recycling. Phosphorus governance at global, regional, and local scales is required to stimulate and support context-specific sustainable strategies to ensure all the world's farmers have sufficient access to phosphorus to feed the world and ensure ecosystem integrity and farmer livelihoods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-010213-113300
2014-10-17
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/energy/39/1/annurev-environ-010213-113300.html?itemId=/content/journals/10.1146/annurev-environ-010213-113300&mimeType=html&fmt=ahah

Literature Cited

  1. 1. FAO 2002. The State of Food Insecurity in the World Rome: Food Agric. Org. [Google Scholar]
  2. 2. IAASTD 2008. Global report. Agriculture at a crossroads. Int. Assess. Agric. Knowl., Sci. Technol. Dev., Johannesburg, South Africa, April. http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf [Google Scholar]
  3. 3. IFPRI 2002. Reaching Sustainable Food Security for All by 2020: Getting the Priorities and Responsibilities Right Washington, DC: Int. Food Policy Res. Inst. [Google Scholar]
  4. Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC. 4.  et al. 2013. Policy: sustainable development goals for people and planet. Nature 495:305–7 [Google Scholar]
  5. Cordell D, Drangert J-O, White S. 5.  2009. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19:2292–305 [Google Scholar]
  6. Johnston AE. 6.  2000. Soil and Plant Phosphate Paris: Int. Fertil. Ind. Assoc. [Google Scholar]
  7. Liebig J. 7.  1840. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie [Organic chemistry in its applications to agriculture and physiology]. Braunschweig, Ger: Friedrich Vieweg [Google Scholar]
  8. Stewart W, Hammond L. Kauwenbergh SJ. 8. , Van 2005. Phosphorus as a natural resource. Phosphorus: Agriculture and the Environment, Agronomy Monograph No. 463–21 Madison: Am. Soc. Agron., Crop Sci. Soc. Am., Soil Sci. Soc. Am. [Google Scholar]
  9. Brink JW. 9.  1978. World resources of phosphorus. Phosphorus in the Environment: Its Chemistry and Biochemistry: Ciba Foundation Symposium 57 (New Series)23–48 Amsterdam: Excerpta Medica [Google Scholar]
  10. Smil V. 10.  2000. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25:53–88 [Google Scholar]
  11. Ashley K, Cordell D, Mavinic D. 11.  2011. A brief history of phosphorus: from the philosopher's stone to nutrient recovery and re-use. Chemosphere 84:6737–46 [Google Scholar]
  12. Mårald E. 12.  1998. I mötet mellan jordbruk och kemi: agrikulturkemins framväxt på lantbruksakademiens experimentalfält 1850–1907 Umeå, Swed: Inst. Idéhist., Univ. Umeå [Google Scholar]
  13. 13. IFPRI 2002. Green Revolution: Curse or Blessing? Washington, DC: Int. Food Policy Res. Inst. [Google Scholar]
  14. Roy RN, Finck A, Blair GJ, Tandon HLS. 14.  2006. Plant nutrition for food security: a guide for integrated nutrient management FAO Fertil. Plant Nutr. Bull. 16, Food Agric. Org., Rome [Google Scholar]
  15. Lavelle P, Dugdale R, Scholes R, Berhe AA, Carpenter E. 15.  et al. 2005. Nutrient cycling. Ecosystems and Human Well-being: Current State and Trends 1 R Hassan, R Scholes, N Ash 331–53 Millenn. Ecosyst. Assess. Ser Washington, DC: Island http://www.millenniumassessment.org/documents/document.281.aspx.pdf [Google Scholar]
  16. 16. World Resources Institute 2008. Eutrophication & hypoxia map data set. Added September 2013. http://www.wri.org/resources/data-sets/eutrophication-hypoxia-map-data-set
  17. Asimov I. 17.  1974. Asimov on Chemistry New York: Doubleday [Google Scholar]
  18. Prud'homme M. 18.  2010. World phosphate rock flows, losses and uses Presented at Int. Fertil. Ind. Assoc. Phosphates Int. Conf., March 22–24, Brussels [Google Scholar]
  19. Cordell D, White S. 19.  2014. Phosphorus security: global non-governance of a critical resource for food security. Edward Elgar Encyclopedia of Global Environmental Politics and Governance Cheltenham, UK: Edward Elgar. In press [Google Scholar]
  20. Liu Y, Villalba G, Ayres RU, Schroder H. 20.  2008. Global phosphorus flows and environmental impacts from a consumption perspective. J. Ind. Ecol. 12:2229–47 [Google Scholar]
  21. Smit AL, Bindraban PS, Schröder JJ, Conijn JG, van der Meer HG. 21.  2009. Phosphorus in agriculture: global resources, trends and developments Rep. Steer. Comm. Technol. Assess., Minist. Agric. Nat. Food Qualit., Plant Res. Int., Wageningen Univ., Wageningen, Neth. [Google Scholar]
  22. Bennett E, Carpenter S, Caraco N. 22.  2001. Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–34 [Google Scholar]
  23. Sutton MA, Bleeker A, Howard CM, Bekunda M, Grizzetti B. 23.  et al. 2012. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution Edinburgh: Cent. Ecol. Hydrol. [Google Scholar]
  24. Filippelli GM. 24.  2011. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere 84:6759–66 [Google Scholar]
  25. Villalba G, Liu Y, Schroder H, Ayres RU. 25.  2008. Global phosphorus flows in the industrial economy from a production perspective. J. Ind. Ecol. 12:4557–69 [Google Scholar]
  26. 26. PotashCorp 2011. Nutrients: phosphate. 2011 Online Overview39–44 Saskatoon, Can: PotashCorp http://www.potashcorp.com/industry_overview/2011 [Google Scholar]
  27. Cordell D, White S. 27.  2013. Sustainable phosphorus measures: strategies and technologies for achieving phosphorus security. Agronomy 3:186–116 [Google Scholar]
  28. Heffer P. 28.  2011. Medium-term outlook for global fertilizer demand 2010/11 – 2015/16 Presented at 79th IFA Annu. Conf., Montreal, Can., May 23–25 [Google Scholar]
  29. Bouwman AF, Beusen AHW, Billen G. 29.  2009. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 23:GB0A04 [Google Scholar]
  30. Syers K, Johnston AE, Curtin D. 30.  2008. Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soils phosphorus behaviour with agronomic information FAO Fertil. Plant Nutr. Bull. 18, Food Agric. Org, Rome [Google Scholar]
  31. Jönsson H, Stintzing AR, Vinnerås B, Salomon E. 31.  2004. Guidelines on the Use of Urine and Faeces in Crop Production Stockholm: EcoSanRes, Stockholm Environ. Inst. [Google Scholar]
  32. Diaz R, Rosenberg R. 32.  2008. Spreading dead zones and consequences for marine ecosystems. Science 321:5891926–29 [Google Scholar]
  33. 33. HELCOM 2005. Nutrient pollution to the Baltic Sea in 2000. Baltic Sea Environ. Proc. (BSEP) No. 100, Helsinki Comm., Baltic Marine Environ. Prot. Comm. Helsinki: HELCOM http://www.helcom.fi/lists/publications/bsep100.pdf [Google Scholar]
  34. Chudleigh P, Simpson S. 34.  2000. The National Eutrophication Management Program—A Review Canberra, Aust: Land Water Resour. Res. Dev. Corp. [Google Scholar]
  35. Dodds W, Bouska W, Eitzmann J, Pilger T, Pitts K. 35.  et al. 2009. Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43:112–19 [Google Scholar]
  36. Neset TSS, Andersson L. 36.  2008. Environmental impact of food production and consumption—from phosphorus leakage and resource depletion to recycling. Water for Food J Förare 99–108 Stockholm: Swed. Res. Counc. Formas http://www.formas.se/PageFiles/5492/WaterforFood.pdf [Google Scholar]
  37. Larsen T, Maurer M, Udert KM, Lienert J. 37.  2007. Nutrient cycles and resource management: implications for the choice of wastewater treatment technology. Water Sci. Technol. 56:5229–37 [Google Scholar]
  38. Sharpley A, Withers PJA, Abdalla CW, Dodd AR. 38.  2005. Strategies for the sustainable management of phosphorus. Phosphorus: Agriculture and the Environment, Agronomy Monograph No. 46. Madison, WI: Am. Soc. Agron., Crop Sci. Soc. Am., Soil Sci. Soc. Am. [Google Scholar]
  39. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III. 39.  et al. 2009. A safe operating space for humanity. Nature 461:472–75 [Google Scholar]
  40. Carpenter S, Bennett E. 40.  2011. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6:1014009 [Google Scholar]
  41. Cordell D. 41.  2010. The story of phosphorus: sustainability implications of global phosphorus scarcity for food security. PhD Thesis, Dep. Water Environ. Stud., Tema Inst., Linköping Univ., Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-53430 [Google Scholar]
  42. Esrey S, Andersson I, Hillers A, Sawyer R. 42.  2001. Closing the Loop: Ecological Sanitation for Food Security Mexico: UNDP & SIDA [Google Scholar]
  43. 43. UN Gen. Assem. Resolut 2000. United Nations Millennium Declaration UN Doc. A/RES/55/2. http://undocs.org/A/RES/55/2 [Google Scholar]
  44. 44. FAO 2005. FAO Reform: A Vision for the Twenty-First Century Rome: Food Agric. Org. [Google Scholar]
  45. 45. Millenn. Ecosyst. Assess 2005. Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island [Google Scholar]
  46. 46. UNEP 2007. The International Panel on the Sustainable Use of Natural Resources Paris: Div. Technol. Ind. Econ., Sustain. Consum. Prod. Branch [Google Scholar]
  47. 47. HCSS 2012. Risks and opportunities in the global phosphate rock market: robust strategies in times of uncertainty Rep. No. 17/12/12, Hague Cent. Strateg. Stud., The Hague. http://www.hcss.nl/reports/download/116/2053 [Google Scholar]
  48. Gilbert N. 48.  2009. The disappearing nutrient. Nature 461:716–18 [Google Scholar]
  49. Vaccari DA. 49.  2009. Phosphorus: a looming crisis. Sci. Am. 300:654–59 [Google Scholar]
  50. Ulrich A, Schnug E. 50.  2013. The modern phosphorus sustainability movement: a profiling experiment. Sustainability 5:114523–45 [Google Scholar]
  51. Pellerin S, Neset TSS, van Dijk K. 51.  2013. Trends in phosphorus research over the last four decades: a bibliometric analysis Presented at Eur. Sustain. Phosphorus Conf., March 6–7, Brussels [Google Scholar]
  52. Bekunda M, Cordell D, Corman J, Rosemarin A, Salcedo I. 52.  et al. 2011. Phosphorus and food production. UNEP Yearbook 2011: Emerging Issues in Our Global Environment35–46 Nairobi, Kenya: UN Environ. Programme http://www.unep.org/yearbook/2011 [Google Scholar]
  53. Pretty J, Sutherland WJ, Ashby J, Auburn J, Baulcombe D. 53.  et al. 2010. The top 100 questions of importance to the future of global agriculture. Int. J. Agric. Sustain. 8:4219–36 [Google Scholar]
  54. Cooper C, Giurco D. 54.  2009. The mineral resources landscape—an expanded conceptualisation of minerals sustainability. Proc. Sustain. Dev. Indic. Miner. Ind. (SDIMI) Conf., Gold Coast, Aust., July 6–8 D Brereton, P Bangerter, G Corder, K Gollogly, S Green , et al., pp. 115–22 Carlton, Aust: Australas. Inst. Min. Metall. [Google Scholar]
  55. Van Kauwenbergh SJ. 55.  2010. World phosphate rock reserves and resources Tech. Bull. T-75, Int. Fertil. Dev. Cent. (IFDC), Muscle Shoals, AL [Google Scholar]
  56. Jasinski SM. 56.  2008. Phosphate rock Miner. Commod. Summ., US Geol. Surv., Reston, VA. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2008-phosp.pdf [Google Scholar]
  57. Jasinski SM. 57.  2009. Phosphate rock Miner. Commod. Summ., US Geol. Surv., Reston, VA. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2009-phosp.pdf [Google Scholar]
  58. Jasinski SM. 58.  2010. Phosphate rock Miner. Commod. Summ., US Geol. Surv., Reston, VA. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2010-phosp.pdf [Google Scholar]
  59. Jasinski SM. 59.  2011. Phosphate rock Miner. Commod. Summ., US Geol. Surv., Reston, VA. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2011-phosp.pdf [Google Scholar]
  60. Jasinski SM. 60.  2012. Phosphate rock Miner. Commod. Summ., US Geol. Surv., Reston, VA. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2012-phosp.pdf [Google Scholar]
  61. Jasinski SM. 61.  2013. Phosphate rock Miner. Commod. Summ., US Geol. Surv., Reston, VA. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2013-phosp.pdf [Google Scholar]
  62. Hilton J, Johnston AE, Dawson CJ. 62.  2010. The phosphate life cycle: rethinking the options for a finite resource. Proc. Int. Fertil. Soc. No. 6681–44 Strensall, UK: IFS [Google Scholar]
  63. Fixen P. 63.  2009. Phosphorus: world wide supplies and efficiency Presented at Manitoba Agron. Conf., Winnipeg, Manitoba, Dec. 16 [Google Scholar]
  64. Mohr S, Evans G. 64.  2013. Projections of future phosphorus production. PHILICA.COM July 9, article 380. http://philica.com/display_article.php?article_id=380 [Google Scholar]
  65. Cordell D, White S. 65.  2011. Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3:102027–49 [Google Scholar]
  66. Cordell D, White S, Lindström T. 66.  2011. Peak phosphorus: the crunch time for humanity?. Sustain. Rev. 2:21 [Google Scholar]
  67. Van Vuuren DPP, Bouwman AF, Beusen AHW. 67.  2010. Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob. Environ. Change 20:3428–39 [Google Scholar]
  68. Walan P. 68.  2013. Modeling of peak phosphorus a study of bottlenecks and implications Master's Thesis, Dep. Earth Sci., Uppsala Univ., Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205108 [Google Scholar]
  69. Cordell D, Neset TSS, White S, Drangert J-O. 69.  2009. Preferred future phosphorus scenarios: a framework for meeting long-term phosphorus needs for global food demand. Proc. Int. Conf. Nutr. Recovery Wastewater Streams, Vancouver, Can., May 10–13 K Ashley, D Mavinic, F Koch 23–43 London: IWA [Google Scholar]
  70. Scholz R, Wellmer F-W. 70.  2013. Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus?. Glob. Environ. Change 23:111–27 [Google Scholar]
  71. Edixhoven JD, Gupta J, Savenije HHG. 71.  2013. Recent revisions of phosphate rock reserves and resources: reassuring or misleading? An in-depth literature review of global estimates of phosphate rock reserves and resources. Earth Syst. Dyn. Discuss. 4:21005–34 [Google Scholar]
  72. May D, Prior T, Cordell D, Giurco D. 72.  2011. Peak minerals: theoretical foundations and practical application. Nat. Resour. Res. 21:143–60 [Google Scholar]
  73. Höök M, Aleklett K. 73.  2010. Trends in U.S. recoverable coal supply estimates and future production outlooks. Nat. Resour. Res. 19:3189–208 [Google Scholar]
  74. Vaccari D, Strigul N. 74.  2011. Extrapolating phosphorus production to estimate resource reserves. Chemosphere 84:6792–97 [Google Scholar]
  75. Schröder JJ, Cordell D, Smit AL, Rosemarin A. 75.  2010. Sustainable use of phosphorus Rep. 357, EU Tender ENV.B.1/ETU/2009/0025, Plant Res. Int., Wageningen, Neth. [Google Scholar]
  76. Senthilkumar K, Nesme T, Mollier A, Pellerin S. 76.  2011. Regional-scale phosphorus flows and budgets within France: the importance of agricultural production systems. Nutr. Cycl. Agroecosyst. 92:21–15 [Google Scholar]
  77. Smit AL, van Middelkoop JC, van Dijk W, van Reuler H, de Buck AJ, van de Sanden PACM. 77.  2010. A quantification of phosphorus flows in the Netherlands through agricultural production, industrial processing and households Rep. 364, Plant Res. Int., Wageningen, Neth. [Google Scholar]
  78. Suh S, Yee S. 78.  2011. Phosphorus use-efficiency of agriculture and food system in the US. Chemosphere 84:6806–13 [Google Scholar]
  79. Cordell D, Neset TSS, Prior T. 79.  2012. The phosphorus mass balance: identifying “hotspots” in the food system as a roadmap to phosphorus security. Curr. Opin. Biotech. 23:839–45 [Google Scholar]
  80. Gumbo B. 80.  2005. Short-cutting the phosphorus cycle in urban ecosystems PhD Thesis, Delft Univ. Technol., UNESCO-IHE Inst. Water Educ., Delft, Neth. [Google Scholar]
  81. Cordell D, Jackson M, White S. 81.  2013. Phosphorus flows through the Australian food system: identifying intervention points as a roadmap to phosphorus security. Environ. Sci. Policy 29:87–102 [Google Scholar]
  82. Matsubae-Yokoyama K, Kubo H, Nakajima K, Nagasaka T. 82.  2009. A material flow analysis of phosphorus in Japan: the iron and steel industry as a major phosphorus source. J. Ind. Ecol. 13:5687–705 [Google Scholar]
  83. Baccini P, Brunner PH. 83.  1991. Metabolism of the Anthroposphere Berlin/New: Springer [Google Scholar]
  84. Pellerin S, Nesme T. 84.  2011. Studies on P cycle at the country scale: system approach, justification, scope and importance. Eur. Sci. Workshop., INRA-ENITA, Bordeaux, France, July 5. http://www.bordeaux–aquitaine.inra.fr/tcem_eng/sem [Google Scholar]
  85. 85. IFPRI 2003. Ending Hunger by 2050: Crucial Investments and Policies Washington, DC: Int. Food Policy Res. Inst. [Google Scholar]
  86. 86. IATP 2005. Ten ways to fix agricultural trade: benchmarking for the Hong Kong Ministerial, excerpted from “Sailing Close To The Wind: Navigating The Hong Kong WTO Ministerial.” IATP Fact Sheet, Nov. 17, Inst. Agric. Trade Policy, Geneva. [Google Scholar]
  87. 87. Chemon Int., Int. Cent. Soil Fertil. Agric. Dev 2007. Fertilizer Supply and Costs in Africa Muscle Shoals, AL: Int. Fertil. Dev. Cent. [Google Scholar]
  88. Runge-Metzger A. 88.  1995. Closing the cycle: obstacles to efficient P management for improved global food security. Phosphorus in the Global Environment: Transfers, Cycles and Management H Tiessen 27–42 SCOPE 54 Chichester, UK: Wiley. [Google Scholar]
  89. Fresco L. 89.  2003. Plant nutrients: what we know, guess and do not know Presented at IFA/FAO Agric. Conf., “Global Food Security and the Role of Sustainability Fertilization,” Rome, March 26–28 [Google Scholar]
  90. 90. IANS 2008. Farmer killed in stampede during fertiliser sale. Indo-Asian News Serv. July 30 [Google Scholar]
  91. von Horn J, Sartorius C. 91.  2009. Impact of supply and demand on the price development of phosphate (fertilizer). International Conference on Nutrient Recovery from Wastewater Streams Vancouver D Mavinic, K Ashley, F Koch 45–54 London: IWA [Google Scholar]
  92. Smaling EMA, Nandwa SM, Janssen BH. 92.  1997. Soil fertility in Africa is at stake. Replenishing Soil Fertility in Africa RJ Buresh, PA Sanchez, F Calhoun 47–62 SSSA Spec. Publ. No. 51 Madison, WI: Soil Sci. Soc . Am., Am. Soc. Agron. [Google Scholar]
  93. 93. IFA 2012. Debunking ten myths about phosphate rock production: trends from 1992 to 2011 Issue Brief, Feb. 14, Int. Fertil. Ind. Assoc., Paris. http://www.fertilizer.org/en/images/Library_Downloads/2011_ifa_10myths_pr.pdf [Google Scholar]
  94. Cooper J, Lombardi R, Boardman D, Carlielle-Marquet C. 94.  2011. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 57:78–86 [Google Scholar]
  95. 95. Eur. Comm 2013. Consultative communication on the sustainable use of phosphorus. Rep. COM(2013) 517 final, Eur. Comm., Brussels. http://ec.europa.eu/environment/consultations/phosphorus_en.htm [Google Scholar]
  96. Lewis A. 96.  2011. Morocco's fish fight: high stakes over Western Sahara. BBC News December 15 [Google Scholar]
  97. Corell H. 97.  2002. Letter dated 29 January 2002 from the Under-Secretary-General for Legal Affairs, the Legal Counsel, addressed to the President of the Security Council UN Secur. Counc., S/2002/161. http://www.un.org/en/peacekeeping/missions/minurso/documents.shtml [Google Scholar]
  98. Smith JJP. 98.  2011. The taking of the Sahara: the role of natural resources in the continuing occupation of Western Sahara Work. Pap., in preparation, Ottawa [Google Scholar]
  99. Hagen E. 99.  2008. One more shipping company quits Western Sahara assignments. Norwatch June 5. http://www.framtiden.no/english/weapon/one-more-shipping-company-quits-western-sahara-assignments.html [Google Scholar]
  100. 100. Fertil. Week 2008. Industry ponders the impact of China's trade policy. Thurs. Mark. Rep. April 24 [Google Scholar]
  101. Pahl-Wostl C. 101.  2009. A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Glob. Environ. Change 19:354–65 [Google Scholar]
  102. 102. GPRI 2013. Blueprint for global phosphorus security. 3rd Sustain. Phosphorus Summit, Feb. 29–March 2, Univ. Technol., Sydney http://sustainablepsummit.net/content/blueprint-global-phosphorus-security [Google Scholar]
  103. Neset TSS, Cordell D. 103.  2012. Global phosphorus scarcity: identifying synergies for a sustainable future. J. Sci. Food Agric. 92:12–6 [Google Scholar]
  104. Delgado-Baquerizo M, Maestre FT, Antonio Gallardo, Bowker MA, Wallenstein MD. 104.  et al. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–76 [Google Scholar]
  105. 105. UN 2007. World population prospects, the 2006 revision—highlights Work. Pap. No. ESA/P/WP.202, UN Dep. Econ. Soc. Aff., Popul. Div., New York. http://www.un.org/esa/population/publications/wpp2006/WPP2006_Highlights_rev.pdf [Google Scholar]
  106. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS. 106.  et al. 2011. Solutions for a cultivated planet. Nature 478:7369337–42 [Google Scholar]
  107. Tilman D, Balzer C, Hill J, Befort BL. 107.  2011. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 108:5020260–64 [Google Scholar]
  108. Alexandratos N, Bruinsma J. 108.  2012. World agriculture towards 2030/2050 the 2012 revision ESA Work. Pap. No. 12-03, Agric. Dev. Econ. Div., Food Agric. Organ. http://www.fao.org/3/a-ap106e.pdf [Google Scholar]
  109. McKay AD, Miezitis Y, Porritt K, Britt AF, Champion DC. 109.  et al. 2014. Australia's Identified Mineral Resources 2013 Canberra, Aust: Geosci. Aust http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_78988 [Google Scholar]
  110. 110. UNEP 2001. Environmental Aspects of Phosphate and Potash Mining Paris: UN Environ. Programme, Int. Fertil. Ind. Assoc. [Google Scholar]
  111. Cordell D, Neset T-SS. 111.  2014. Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Glob. Environ. Change 24:108–22 [Google Scholar]
  112. MacDonald GK, Bennett EM, Potter PA, Ramankutty N. 112.  2011. Agronomic phosphorus imbalances across the world's croplands. Proc. Natl. Acad. Sci. USA 108:73086–91 [Google Scholar]
  113. Schröder JJ, Smit AL, Cordell D, Rosemarin A. 113.  2011. Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84:6822–31 [Google Scholar]
  114. Townsend AR, Porder S. 114.  2012. Agricultural legacies, food production and its environmental consequences. Proc. Natl. Acad. Sci. USA 109:165917–18 [Google Scholar]
  115. 115. Eur. Fertil. Manuf. Assoc 2000. Phosphorus: Essential Element for Food Production. Brussels: Eur. Fertil. Manuf. Assoc. [Google Scholar]
  116. 116. IFA 2013. IFADATA Int. Feril. Ind. Assoc., Paris, updated July. http://ifadata.fertilizer.org/ucSearch.aspx [Google Scholar]
  117. Heffer P, Prud'homme M. 117.  2013. Fertilizer outlook 2013–2017 Presented at 81st IFA Annu. Conf., Chicago, May 20–22 [Google Scholar]
  118. 118. FAO 2007. Introduction. Food For the Cities Rome: Food Agric. Organ. U.N ftp://ftp.fao.org/docrep/fao/011/ak003e/ak003e00.pdf [Google Scholar]
  119. Biermann F. 119.  2007. “Earth system governance” as a crosscutting theme of global change research. Glob. Environ. Change 17:3–4326–37 [Google Scholar]
  120. Koch A, McBratney A, Lal R. 120.  2012. Put soil security on the global agenda. Nature 492:186 [Google Scholar]
  121. Nelson R, Kokic P, Crimp S, Martin P, Meinke H. 121.  et al. 2010. The vulnerability of Australian rural communities to climate variability and change: Part II—integrating impacts with adaptive capacity. Environ. Sci. Policy 13:118–27 [Google Scholar]
  122. Cordell D, Rosemarin A, Schröder JJ, Smit AL. 122.  2011. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84:6747–58 [Google Scholar]
  123. Childers DL, Caple Z, Carlielle-Marquet C, Cordell D, Gerhart V. 123.  et al. 2013. Future scenarios for the sustainable use of global phosphorus resources. Phosphorus, Food, and Our Future KA Wyant, JR Corman, JJ Elser 183–98 New York: Oxford Univ. Press [Google Scholar]
  124. Childers D, Corman J, Edwards M, Elser J. 124.  2011. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61:2117–24 [Google Scholar]
  125. Smaling E, Fresco L, de Jager A. 125.  1996. Classifying, monitoring and improving soil nutrient stocks and flows in African agriculture. AMBIO: J. Hum. Environ. 25:8492–96 [Google Scholar]
  126. Simpson R, Oberson A, Culvenor RA, Ryan M, Veneklaas E. 126.  et al. 2011. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120 [Google Scholar]
  127. Sartorius C, Von Horn J, Tettenborn F. 127.  Phosphorus recovery from wastewater—state-of-the-art and future potential Presented at Int. Conf. “Nutrient Recovery and Management 2011: Inside and Outside the Fence,” Miami, FL, Jan. 9–12 [Google Scholar]
  128. Rittmann BE, Mayer B, Westerhoff P, Edwards M. 128.  2011. Capturing the lost phosphorus. Chemosphere 84:6846–53 [Google Scholar]
  129. Cordell D, Mikhailovich N, Mohr S, Jacobs B, White S. 129.  2013. Australian sustainable phosphorus futures—Phase II: Adapting to future phosphorus scarcity. Inst. Sustain. Futur., Univ. Technol., Sydney, for the Rural Ind. Res. Dev. Corp., Aust. Gov., Canberra. https://rirdc.infoservices.com.au/items/14-039 [Google Scholar]
  130. 130. Eur. Comm 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. O.J (L 327) 22/12/2000 P. 0001-0073 [Google Scholar]
  131. Hein L, Leemans R. 131.  2012. The impact of first-generation biofuels on the depletion of the global phosphorus reserve. Ambio 41:4341–49 [Google Scholar]
  132. Edwards M. 132.  2008. Green Algae Strategy: End Oil Imports and Engineer Sustainable Food and Fuel Tempe, AZ: Green Indep. [Google Scholar]
  133. Metson G, Bennett E, Elser J. 133.  2012. The role of diet in phosphorus demand. Environ. Res. Lett. 7:4044043 [Google Scholar]
  134. Smil V. 134.  2007. Policy for improved efficiency in the food chain Presented at World Water Week, SIWI Seminar: “Water for Food, Bio-fuels or Ecosystems?” Aug. 12–18, Stockholm [Google Scholar]
  135. Linderholm K, Tillman A-M, Mattsson JE. 135.  2012. Life cycle assessment of phosphorus alternatives for Swedish agriculture. Resour. Conserv. Recycl. 66:27–39 [Google Scholar]
  136. Dunstan C, Langham E, Ison N. 136.  2009. 20 policy tools for developing distributed energy Work. Pap. 4.2, Intell. Grid Res. Program Proj. 4, Inst. Sustain. Futur., Sydney [Google Scholar]
  137. 137. Naturvårdsverkets 2013. Hållbar återföring av fosfor: Naturvårdsverkets redovisning av ett uppdrag från regeringen. Rapp. 6580, Naturvårdsverket, Stockholm. http://www.naturvardsverket.se/Documents/publikationer6400/978-91-620-6580-5.pdf [Google Scholar]
  138. Gilbert N. 138.  2009. Digital soil map for Africa launched. Nature News Jan. 13, doi: 10.1038/news.2009.17 [Google Scholar]
  139. Devarajan S, Fisher AC. 139.  1981. Hotelling's “economics of exhaustible resources”: fifty years later. J. Econ. Lit. 19:165–73 [Google Scholar]
  140. Seyhan D, Weikard H-P, Ierland E van. 140.  2012. An economic model of long-term phosphorus extraction and recycling. Resour. Conserv. Recycl. 61:103–8 [Google Scholar]
  141. Mitchell RB, Clark W, Cash DW, Dickson NM. 141.  2006. Global Environmental Assessments: Information and Influence Cambridge, MA: MIT Press [Google Scholar]
  142. Robinson J. 142.  1990. Futures under glass: a recipe for people who hate to predict. Futures 22:820–42 [Google Scholar]
  143. Ison R, Maiteny PT, Carr S. 143.  1997. Systems methodologies for sustainable natural resources research and development. Agric. Syst. 55:2257–72 [Google Scholar]
  144. 144. GPRI 2010. GPRI statement on global phosphorus scarcity Sept. 26. http://phosphorusfutures.net/files/GPRI_Statement_responseIFDC_final.pdf [Google Scholar]
  145. Emsley J. 145.  2000. The 13th Element: The Sordid Tale of Murder, Fire, and Phosphorus New York: Wiley [Google Scholar]
/content/journals/10.1146/annurev-environ-010213-113300
Loading
/content/journals/10.1146/annurev-environ-010213-113300
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error