1932

Abstract

Human use of land has been transforming Earth's ecology for millennia. From hunting and foraging to burning the land to farming to industrial agriculture, increasingly intensive human use of land has reshaped global patterns of biodiversity, ecosystems, landscapes, and climate. This review examines recent evidence from archaeology, paleoecology, environmental history, and model-based reconstructions that reveal a planet largely transformed by land use over more than 10,000 years. Although land use has always sustained human societies, its ecological consequences are diverse and sometimes opposing, both degrading and enriching soils, shrinking wild habitats and shaping novel ones, causing extinctions of some species while propagating and domesticating others, and both emitting and absorbing the greenhouse gases that cause global climate change. By transforming Earth's ecology, land use has literally paved the way for the Anthropocene. Now, a better future depends on land use strategies that can effectively sustain people together with the rest of terrestrial nature on Earth's limited land.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012220-010822
2021-10-18
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/energy/46/1/annurev-environ-012220-010822.html?itemId=/content/journals/10.1146/annurev-environ-012220-010822&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ellis EC. 2011. Anthropogenic transformation of the terrestrial biosphere. Proc. R. Soc. A: Math. Phys. Eng. Sci. 369:1010–35
    [Google Scholar]
  2. 2. 
    Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Klein Goldewijk K, Verburg PH 2013. Used planet: a global history. PNAS 110:7978–85
    [Google Scholar]
  3. 3. 
    Hurtt GC, Chini L, Sahajpal R, Frolking S, Bodirsky BL et al. 2020. Harmonization of global land-use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13:5425–64
    [Google Scholar]
  4. 4. 
    Klein Goldewijk K, Beusen A, Doelman J, Stehfest E. 2017. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 9:927–53
    [Google Scholar]
  5. 5. 
    Ellis EC, Gauthier N, Klein Goldewijk K, Bird RB, Boivin N et al. 2021. People have shaped most of terrestrial nature for at least 12,000 years. PNAS 118:e2023483118
    [Google Scholar]
  6. 6. 
    Venter O, Sanderson EW, Magrach A, Allan JR, Beher J et al. 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7:12558
    [Google Scholar]
  7. 7. 
    Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6:439–47
    [Google Scholar]
  8. 8. 
    Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N. 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeography 19:589–606
    [Google Scholar]
  9. 9. 
    Kennedy CM, Oakleaf JR, Theobald DM, Baruch-Mordo S, Kiesecker J. 2019. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25:811–26
    [Google Scholar]
  10. 10. 
    Riggio J, Baillie JEM, Brumby S, Ellis E, Kennedy CM et al. 2020. Global human influence maps reveal clear opportunities in conserving Earth's remaining intact terrestrial ecosystems. Glob. Change Biol. 26:4344–56
    [Google Scholar]
  11. 11. 
    Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:eaax3100
    [Google Scholar]
  12. 12. 
    IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.) 2019. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services S Díaz, J Settele, ES Brondízio, HT Ngo, M Guèze, et al Bonn, Ger.: IPBES Secr.
  13. 13. 
    WWF (World Wide Fund Nat.) 2020. Living Planet Report 2020: bending the curve of biodiversity loss Rep., WWF Gland, Switz:.
  14. 14. 
    Pereira HM, Navarro LM, Martins IS. 2012. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37:25–50
    [Google Scholar]
  15. 15. 
    IPCC (Intergov. Panel Clim. Change) 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Geneva, Switz: IPCC
  16. 16. 
    McGill BJ, Dornelas M, Gotelli NJ, Magurran AE. 2015. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30:104–13
    [Google Scholar]
  17. 17. 
    Ellis EC. 2015. Ecology in an anthropogenic biosphere. Ecol. Monogr. 85:287–331
    [Google Scholar]
  18. 18. 
    Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A et al. 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1:e1500052
    [Google Scholar]
  19. 19. 
    Young HS, McCauley DJ, Galetti M, Dirzo R. 2016. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47:333–58
    [Google Scholar]
  20. 20. 
    Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G et al. 2016. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. PNAS 113:6388–96
    [Google Scholar]
  21. 21. 
    Kirch PV. 2005. Archaeology and global change: the Holocene record. Annu. Rev. Environ. Resour. 30:409–40
    [Google Scholar]
  22. 22. 
    Stephens L, Fuller D, Boivin N, Rick T, Gauthier N et al. 2019. Archaeological assessment reveals Earth's early transformation through land use. Science 365:897–902
    [Google Scholar]
  23. 23. 
    Roberts N. 2019. How humans changed the face of Earth. Science 365:865–66
    [Google Scholar]
  24. 24. 
    Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA et al. 2011. The human dimension of fire regimes on Earth. J. Biogeography 38:2223–36
    [Google Scholar]
  25. 25. 
    Barlow J, Gardner TA, Lees AC, Parry L, Peres CA. 2012. How pristine are tropical forests? An ecological perspective on the pre-Columbian human footprint in Amazonia and implications for contemporary conservation. Biol. Conserv. 151:45–49
    [Google Scholar]
  26. 26. 
    Root-Bernstein M, Ladle R. 2019. Ecology of a widespread large omnivore, Homo sapiens, and its impacts on ecosystem processes. Ecol. Evol. 9:10874–94
    [Google Scholar]
  27. 27. 
    Bliege Bird R, Nimmo D 2018. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2:1050–52
    [Google Scholar]
  28. 28. 
    Müller J, Kirleis W. 2019. The concept of socio-environmental transformations in prehistoric and archaic societies in the Holocene: an introduction to the special issue. Holocene 29:1517–30
    [Google Scholar]
  29. 29. 
    Fuller DQ, Denham T, Arroyo-Kalin M, Lucas L, Stevens CJ et al. 2014. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. PNAS 111:6147–52
    [Google Scholar]
  30. 30. 
    Smith BD. 2011. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Philos. Trans. R. Soc. B: Biol. Sci. 366:836–48
    [Google Scholar]
  31. 31. 
    Smith BD. 2012. A cultural niche construction theory of initial domestication. Biol. Theory 6:260–71
    [Google Scholar]
  32. 32. 
    Piperno DR. 2017. Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research. PNAS 114:6429–37
    [Google Scholar]
  33. 33. 
    Zeder MA. 2018. Why evolutionary biology needs anthropology: evaluating core assumptions of the extended evolutionary synthesis. Evol. Anthropol.: Issues News Rev. 27:267–84
    [Google Scholar]
  34. 34. 
    Meyfroidt P, Roy Chowdhury R, de Bremond A, Ellis EC, Erb KH et al. 2018. Middle-range theories of land system change. Glob. Environ. Change 53:52–67
    [Google Scholar]
  35. 35. 
    Verburg PH, Crossman N, Ellis EC, Heinimann A, Hostert P et al. 2015. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12:29–41
    [Google Scholar]
  36. 36. 
    Ellis EC, Magliocca NR, Stevens CJ, Fuller DQ. 2018. Evolving the Anthropocene: linking multi-level selection with long-term social-ecological change. Sustain. Sci 13:119–28
    [Google Scholar]
  37. 37. 
    Hill K, Barton M, Hurtado AM. 2009. The emergence of human uniqueness: characters underlying behavioral modernity. Evol. Anthropol.: Issues News Rev. 18:187–200
    [Google Scholar]
  38. 38. 
    Reyes-García V, Pyhälä A 2017. Hunter-Gatherers in a Changing World New York: Springer
  39. 39. 
    Sullivan AP, Bird DW, Perry GH. 2017. Human behaviour as a long-term ecological driver of non-human evolution. Nat. Ecol. Evol. 1:0065
    [Google Scholar]
  40. 40. 
    Smith BD. 2001. Low-level food production. J. Archaeol. Res. 9:1–43
    [Google Scholar]
  41. 41. 
    Chase-Dunn CK, Lerro B 2013. Social Change: Globalization from the Stone Age to the Present Boulder, CO: Paradigm Publ.
  42. 42. 
    Fuller DQ, Kingwell-Banham E, Lucas L, Murphy C, Stevens CJ. 2015. Comparing pathways to agriculture. Archaeol. Int. 18:61–66
    [Google Scholar]
  43. 43. 
    Ullah IIT, Kuijt I, Freeman J. 2015. Toward a theory of punctuated subsistence change. PNAS 112:9579–84
    [Google Scholar]
  44. 44. 
    Fuller DQ. 2007. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100:903–24
    [Google Scholar]
  45. 45. 
    Freeman J. 2012. Alternative adaptive regimes for integrating foraging and farming activities. J. Archaeol. Sci. 39:3008–17
    [Google Scholar]
  46. 46. 
    Denevan WM. 2016. After 1492: nature rebounds. Geogr. Rev. 106:381–98
    [Google Scholar]
  47. 47. 
    Butzer KW. 2012. Collapse, environment, and society. PNAS 109:3632–39
    [Google Scholar]
  48. 48. 
    Koch A, Brierley C, Maslin MM, Lewis SL. 2019. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quat. Sci. Rev. 207:13–36
    [Google Scholar]
  49. 49. 
    Turner BL II, Butzer KW. 1992. The Columbian Encounter and land-use change. Environ.: Sci. Policy Sustain. Dev. 34:16–44
    [Google Scholar]
  50. 50. 
    Noss RF. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4:355–64
    [Google Scholar]
  51. 51. 
    Bogaard A, Fochesato M, Bowles S. 2019. The farming-inequality nexus: new insights from ancient Western Eurasia. Antiquity 93:1129–43
    [Google Scholar]
  52. 52. 
    Nolan PD, Lenski G. 2014. Human Societies: An Introduction to Macrosociology Oxford, UK: Oxford Univ. Press
  53. 53. 
    Morrison KD, Hammer E, Boles O, Madella M, Whitehouse N et al. 2021. Mapping past human land use using archaeological data: a new classification for global land use synthesis and data harmonization. PLOS ONE 16:e0246662
    [Google Scholar]
  54. 54. 
    Marlowe FW. 2005. Hunter-gatherers and human evolution. Evol. Anthropol.: Issues News Rev. 14:54–67
    [Google Scholar]
  55. 55. 
    Ungar PS, Grine FE, Teaford MF. 2006. Diet in early Homo: a review of the evidence and a new model of adaptive versatility. Annu. Rev. Anthropol. 35:209–28
    [Google Scholar]
  56. 56. 
    Guagnin M, Perri AR, Petraglia MD. 2018. Pre-Neolithic evidence for dog-assisted hunting strategies in Arabia. J. Anthropol. Archaeol. 49:225–36
    [Google Scholar]
  57. 57. 
    Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning J-C Terborgh JW. 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. PNAS 113:838–46
    [Google Scholar]
  58. 58. 
    Gill JL. 2014. Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytologist 201:1163–69
    [Google Scholar]
  59. 59. 
    Andermann T, Faurby S, Turvey ST, Antonelli A, Silvestro D. 2020. The past and future human impact on mammalian diversity. Sci. Adv. 6:eabb2313
    [Google Scholar]
  60. 60. 
    Zeder MA. 2012. The Broad Spectrum Revolution at 40: resource diversity, intensification, and an alternative to optimal foraging explanations. J. Anthropol. Archaeol. 31:241–64
    [Google Scholar]
  61. 61. 
    Bird DW, Bliege Bird R, Codding BF 2016. Pyrodiversity and the anthropocene: the role of fire in the broad spectrum revolution. Evol. Anthropol.: Issues News Rev. 25:105–16
    [Google Scholar]
  62. 62. 
    Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L et al. 2014. Current perspectives and the future of domestication studies. PNAS 111:6139–46
    [Google Scholar]
  63. 63. 
    Smith BD. 2007. Niche construction and the behavioral context of plant and animal domestication. Evol. Anthropol.: Issues News Rev. 16:188–99
    [Google Scholar]
  64. 64. 
    Scherjon F, Bakels C, MacDonald K, Roebroeks W. 2015. Burning the land: an ethnographic study of off-site fire use by current and historically documented foragers and implications for the interpretation of past fire practices in the landscape. Curr. Anthropol. 56:299–326
    [Google Scholar]
  65. 65. 
    Bliege Bird R, McGuire C, Bird DW, Price MH, Zeanah D, Nimmo DG 2020. Fire mosaics and habitat choice in nomadic foragers. PNAS 117:12904–14
    [Google Scholar]
  66. 66. 
    Lightfoot K, Cuthrell R, Striplen C, Hylkema M. 2013. Rethinking the study of landscape management practices among hunter-gatherers in North America. Am. Antiquity 78:285–301
    [Google Scholar]
  67. 67. 
    Munoz SE, Mladenoff DJ, Schroeder S, Williams JW. 2014. Defining the spatial patterns of historical land use associated with the indigenous societies of eastern North America. J. Biogeography 41:2195–210
    [Google Scholar]
  68. 68. 
    Roberts P, Hunt C, Arroyo-Kalin M, Evans D, Boivin N. 2017. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 3:17093
    [Google Scholar]
  69. 69. 
    Bowles S, Choi J-K. 2019. The Neolithic agricultural revolution and the origins of private property. J. Political Econ. 127:2186–228
    [Google Scholar]
  70. 70. 
    Zeder MA. 2015. Core questions in domestication research. PNAS 112:3191–98
    [Google Scholar]
  71. 71. 
    Iriarte J, Elliott S, Maezumi SY, Alves D, Gonda R et al. 2020. The origins of Amazonian landscapes: plant cultivation, domestication and the spread of food production in tropical South America. Quat. Sci. Rev. 248:106582
    [Google Scholar]
  72. 72. 
    Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L et al. 2011. Multidisciplinary perspectives on banana (Musa spp.) domestication. PNAS 108:11311–18
    [Google Scholar]
  73. 73. 
    van Vliet N, Mertz O, Heinimann A, Langanke T, Pascual U et al. 2012. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Glob. Environ. Change 22:418–29
    [Google Scholar]
  74. 74. 
    Kingwell-Banham E, Fuller DQ. 2012. Shifting cultivators in South Asia: expansion, marginalisation and specialisation over the long term. Quat. Int. 249:84–95
    [Google Scholar]
  75. 75. 
    Lombardo U, Iriarte J, Hilbert L, Ruiz-Pérez J, Capriles JM, Veit H. 2020. Early Holocene crop cultivation and landscape modification in Amazonia. Nature 581:190–93
    [Google Scholar]
  76. 76. 
    Maezumi SY, Alves D, Robinson M, de Souza JG, Levis C et al. 2018. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4:540–47
    [Google Scholar]
  77. 77. 
    McMichael CNH, Bush MB. 2019. Spatiotemporal patterns of pre-Columbian people in Amazonia. Quat. Res. 92:53–69
    [Google Scholar]
  78. 78. 
    Chase AF, Chase DZ. 2016. Urbanism and anthropogenic landscapes. Annu. Rev. Anthropol. 45:361–76
    [Google Scholar]
  79. 79. 
    Fuller DQ, Stevens CJ. 2019. Between domestication and civilization: the role of agriculture and arboriculture in the emergence of the first urban societies. Vegetation Hist. Archaeobotany 28:263–82
    [Google Scholar]
  80. 80. 
    Larson G, Fuller DQ. 2014. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45:115–36
    [Google Scholar]
  81. 81. 
    Zeder MA 2012. Pathways to animal domestication. Biodiversity in Agriculture: Domestication, Evolution and Sustainability P Gepts, TR Famula, RL Bettinger 227–59 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  82. 82. 
    Gifford-Gonzalez D 2017. Pastoralism in sub-Saharan Africa. The Oxford Handbook of Zooarchaeology U Albarella, M Rizzetto, H Russ, K Vickers, S Viner-Daniels 396–410 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  83. 83. 
    Marom N, Bar-Oz G. 2013. The prey pathway: a regional history of cattle (Bos taurus) and pig (Sus scrofa) domestication in the northern Jordan Valley, Israel. PLOS ONE 8:e55958
    [Google Scholar]
  84. 84. 
    Prendergast ME, Lipson M, Sawchuk EA, Olalde I, Ogola CA et al. 2019. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365:eaaw6275
    [Google Scholar]
  85. 85. 
    Arbuckle BS, Hammer EL. 2019. The rise of pastoralism in the ancient Near East. J. Archaeol. Res. 27:391–449
    [Google Scholar]
  86. 86. 
    Kay AU, Fuller DQ, Neumann K, Eichhorn B, Höhn A et al. 2019. Diversification, intensification and specialization: changing land use in Western Africa from 1800 BC to AD 1500. J. World Prehistory 32:179–228
    [Google Scholar]
  87. 87. 
    Smith ME 2017. How can archaeologists identify early cities? Definitions, types, and attributes. Eurasia at the Dawn of History: Urbanization and Social Change M Fernández-Götz, D Krausse 153–68 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  88. 88. 
    Lal R, Reicosky DC, Hanson JD. 2007. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res 93:1–12
    [Google Scholar]
  89. 89. 
    Ellis EC, Wang SM. 1997. Sustainable traditional agriculture in the Tai Lake Region of China. Agric. Ecosyst. Environ. 61:177–93
    [Google Scholar]
  90. 90. 
    Inomata T, Triadan D, Vázquez López VA, Fernandez-Diaz JC, Omori T et al. 2020. Monumental architecture at Aguada Fénix and the rise of Maya civilization. Nature 582:530–33
    [Google Scholar]
  91. 91. 
    Beach T, Luzzadder-Beach S, Krause S, Guderjan T, Valdez F et al. 2019. Ancient Maya wetland fields revealed under tropical forest canopy from laser scanning and multiproxy evidence. PNAS 116:21469–77
    [Google Scholar]
  92. 92. 
    Allué E, Murphy C, Kingwell-Banham E, Bohingamuwa W, Adikari G et al. 2021. A step forward in tropical anthracology: understanding woodland vegetation and wood uses in ancient Sri Lanka based on charcoal records from Mantai, Kirinda and Kantharodai. Quat. Int59394236–47
    [Google Scholar]
  93. 93. 
    Landis DA. 2017. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 18:1–12
    [Google Scholar]
  94. 94. 
    Rudel TK, Meyfroidt P, Chazdon R, Bongers F, Sloan S et al. 2020. Whither the forest transition? Climate change, policy responses, and redistributed forests in the twenty-first century. Ambio 49:74–84
    [Google Scholar]
  95. 95. 
    Sanderson EW, Walston J, Robinson JG. 2018. From bottleneck to breakthrough: urbanization and the future of biodiversity conservation. BioScience 68:412–26
    [Google Scholar]
  96. 96. 
    Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C et al. 2018. Trends in global agricultural land use: implications for environmental health and food security. Annu. Rev. Plant Biol. 69:789–815
    [Google Scholar]
  97. 97. 
    Doyle MW, Havlick DG. 2009. Infrastructure and the environment. Annu. Rev. Environ. Resour. 34:349–73
    [Google Scholar]
  98. 98. 
    Alberti M, Palkovacs EP, Roches SD, Meester LD, Brans KI et al. 2020. The complexity of urban eco-evolutionary dynamics. BioScience 70:772–93
    [Google Scholar]
  99. 99. 
    Martin LJ, Quinn JE, Ellis EC, Shaw MR, Dorning MA et al. 2014. Biodiversity conservation opportunities across the world's anthromes. Divers. Distrib. 20:745–55
    [Google Scholar]
  100. 100. 
    Ellis EC, Pascual U, Mertz O. 2019. Ecosystem services and nature's contribution to people: negotiating diverse values and trade-offs in land systems. Curr. Opin. Environ. Sustain. 38:86–94
    [Google Scholar]
  101. 101. 
    Kremen C, Merenlender AM. 2018. Landscapes that work for biodiversity and people. Science 362:eaau6020
    [Google Scholar]
  102. 102. 
    Garibaldi LA, Oddi FJ, Miguez FE, Bartomeus I, Orr MC et al. 2020. Working landscapes need at least 20% native habitat. Conserv. Lett. 14:e12773
    [Google Scholar]
  103. 103. 
    Seddon AWR, Mackay AW, Baker AG, Birks HJB, Breman E et al. 2014. Looking forward through the past: identification of fifty priority research questions in palaeoecology. J. Ecol. 102:256–67
    [Google Scholar]
  104. 104. 
    Harrison SP, Gaillard MJ, Stocker BD, Vander Linden M, Klein Goldewijk K et al. 2020. Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments. Geosci. Model Dev. 13:805–24
    [Google Scholar]
  105. 105. 
    Purugganan MD, Fuller DQ. 2011. Archaeological data reveal slow rates of evolution during plant domestication. Evolution 65:171–83
    [Google Scholar]
  106. 106. 
    Castillo CC, Bellina B, Fuller DQ. 2016. Rice, beans and trade crops on the early maritime Silk Route in Southeast Asia. Antiquity 90:1255–69
    [Google Scholar]
  107. 107. 
    Denham T, Barton H, Castillo C, Crowther A, Dotte-Sarout E et al. 2020. The domestication syndrome in vegetatively propagated field crops. Ann. Bot. 125:581–97
    [Google Scholar]
  108. 108. 
    Hofman CA, Rick TC, Fleischer RC, Maldonado JE. 2015. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends Ecol. Evol. 30:540–49
    [Google Scholar]
  109. 109. 
    Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R et al. 2019. The formation of human populations in South and Central Asia. Science 365:eaat7487
    [Google Scholar]
  110. 110. 
    Bevan A, Colledge S, Fuller D, Fyfe R, Shennan S, Stevens C. 2017. Holocene fluctuations in human population demonstrate repeated links to food production and climate. PNAS 114:E10524–31
    [Google Scholar]
  111. 111. 
    Bellwood P. 2009. The dispersals of established food-producing populations. Curr. Anthropol. 50:621–26
    [Google Scholar]
  112. 112. 
    Boivin N, Petraglia M, Crassard R 2017. Human Dispersal and Species Movement: From Prehistory to the Present Cambridge, UK: Cambridge Univ. Press
  113. 113. 
    Winchell F, Stevens CJ, Murphy C, Champion L, Fuller D. 2017. Evidence for sorghum domestication in fourth millennium BC eastern Sudan: spikelet morphology from ceramic impressions of the Butana Group. Curr. Anthropol. 58:673–83
    [Google Scholar]
  114. 114. 
    Luo L, Wang X, Guo H, Lasaponara R, Zong X et al. 2019. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: a review of the century (1907–2017). Remote Sensing Environ 232:111280
    [Google Scholar]
  115. 115. 
    Evans DH, Fletcher RJ, Pottier C, Chevance J-B, Soutif D et al. 2013. Uncovering archaeological landscapes at Angkor using lidar. PNAS 110:12595–600
    [Google Scholar]
  116. 116. 
    Marchant R, Richer S, Boles O, Capitani C, Courtney-Mustaphi CJ et al. 2018. Drivers and trajectories of land cover change in East Africa: human and environmental interactions from 6000 years ago to present. Earth-Sci. Rev. 178:322–78
    [Google Scholar]
  117. 117. 
    Klein Goldewijk K, Beusen A, Janssen P. 2010. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene 20:565–73
    [Google Scholar]
  118. 118. 
    Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Klein Goldewijk K. 2011. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21:775–91
    [Google Scholar]
  119. 119. 
    Klein Goldewijk K, Dekker SC, van Zanden JL. 2017. Per-capita estimations of long-term historical land use and the consequences for global change research. J. Land Use Sci. 12:313–37
    [Google Scholar]
  120. 120. 
    Klein Goldewijk K, Verburg PH. 2013. Uncertainties in global-scale reconstructions of historical land use: an illustration using the HYDE data set. Landscape Ecol 28:861–77
    [Google Scholar]
  121. 121. 
    Kay AU, Kaplan JO. 2015. Human subsistence and land use in sub-Saharan Africa, 1000 BC to AD 1500: a review, quantification, and classification. Anthropocene 9:14–32
    [Google Scholar]
  122. 122. 
    Scarborough VL, Isendahl C. 2020. Distributed urban network systems in the tropical archaeological record: toward a model for urban sustainability in the era of climate change. Anthropocene Rev 7:208–30
    [Google Scholar]
  123. 123. 
    Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C et al. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:aad2622
    [Google Scholar]
  124. 124. 
    Ellis EC. 2019. Sharing the land between nature and people. Science 364:1226–28
    [Google Scholar]
  125. 125. 
    Wolff S, Schrammeijer EA, Schulp CJE, Verburg PH. 2018. Meeting global land restoration and protection targets: What would the world look like in 2050?. Glob. Environ. Change 52:259–72
    [Google Scholar]
  126. 126. 
    Zhang M, Wei X. 2021. Deforestation, forestation, and water supply. Science 371:990–91
    [Google Scholar]
  127. 127. 
    Semper-Pascual A, Burton C, Baumann M, Decarre J, Gavier-Pizarro G et al. 2021. How do habitat amount and habitat fragmentation drive time-delayed responses of biodiversity to land-use change?. Proc. R. Soc. B: Biol. Sci. 288:20202466
    [Google Scholar]
  128. 128. 
    Polaina E, González-Suárez M, Kuemmerle T, Kehoe L, Revilla E. 2018. From tropical shelters to temperate defaunation: the relationship between agricultural transition stage and the distribution of threatened mammals. Glob. Ecol. Biogeography 27:647–57
    [Google Scholar]
  129. 129. 
    Polaina E, González-Suárez M, Revilla E. 2019. The legacy of past human land use in current patterns of mammal distribution. Ecography 42:1623–35
    [Google Scholar]
  130. 130. 
    Newbold T, Hudson LN, Contu S, Hill SLL, Beck J et al. 2018. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLOS Biol 16:e2006841
    [Google Scholar]
  131. 131. 
    Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S et al. 2020. Fire and biodiversity in the Anthropocene. Science 370:eabb0355
    [Google Scholar]
  132. 132. 
    Boivin N, Crowther A. 2021. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5:273–84
    [Google Scholar]
  133. 133. 
    Garnett ST, Burgess ND, Fa JE, Fernández-Llamazares Á, Molnár Z et al. 2018. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1:369–74
    [Google Scholar]
  134. 134. 
    O'Bryan CJ, Garnett ST, Fa JE, Leiper I, Rehbein JA et al. 2021. The importance of indigenous peoples’ lands for the conservation of terrestrial mammals. Conserv. Biol 35:10028
    [Google Scholar]
  135. 135. 
    Schuster R, Germain RR, Bennett JR, Reo NJ, Arcese P. 2019. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101:1–6
    [Google Scholar]
  136. 136. 
    Reyes-García V, Fernández-Llamazares Á, McElwee P, Molnár Z, Öllerer K et al. 2019. The contributions of Indigenous Peoples and local communities to ecological restoration. Restoration Ecol 27:3–8
    [Google Scholar]
  137. 137. 
    Barthel S, Crumley C, Svedin U. 2013. Bio-cultural refugia—safeguarding diversity of practices for food security and biodiversity. Glob. Environ. Change 23:1142–52
    [Google Scholar]
  138. 138. 
    Eriksson O. 2021. The importance of traditional agricultural landscapes for preventing species extinctions. Biodivers. Conserv. 30:1341–57
    [Google Scholar]
  139. 139. 
    Duncan RP, Boyer AG, Blackburn TM. 2013. Magnitude and variation of prehistoric bird extinctions in the Pacific. PNAS 110:6436–41
    [Google Scholar]
  140. 140. 
    Fletcher M-S, Hall T, Alexandra AN 2021. The loss of an indigenous constructed landscape following British invasion of Australia: an insight into the deep human imprint on the Australian landscape. Ambio 50:138–49
    [Google Scholar]
  141. 141. 
    Tucker MA, Santini L, Carbone C, Mueller T. 2021. Mammal population densities at a global scale are higher in human-modified areas. Ecography 44:1–13
    [Google Scholar]
  142. 142. 
    Cook-Patton S, Weller D, Rick T, Parker J 2014. Ancient experiments: forest biodiversity and soil nutrients enhanced by Native American middens. Landscape Ecol 29:979–87
    [Google Scholar]
  143. 143. 
    Fisher JA, Shackelford N, Hocking MD, Trant AJ, Starzomski BM. 2019. Indigenous peoples’ habitation history drives present-day forest biodiversity in British Columbia's coastal temperate rainforest. People Nat 1:103–14
    [Google Scholar]
  144. 144. 
    Guimarães PR Jr., Galetti M, Jordano P. 2008. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLOS ONE 3:e1745
    [Google Scholar]
  145. 145. 
    Marshall F, Reid REB, Goldstein S, Storozum M, Wreschnig A et al. 2018. Ancient herders enriched and restructured African grasslands. Nature 561:387–90
    [Google Scholar]
  146. 146. 
    Palace MW, McMichael CNH, Braswell BH, Hagen SC, Bush MB et al. 2017. Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere 8:e02035
    [Google Scholar]
  147. 147. 
    Abbott BW, Bishop K, Zarnetske JP, Minaudo C, Chapin FS et al. 2019. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 12:533–40
    [Google Scholar]
  148. 148. 
    Brown AG, Tooth S, Bullard JE, Thomas DSG, Chiverrell RC et al. 2017. The geomorphology of the Anthropocene: emergence, status and implications. Earth Surf. Process. Landforms 42:71–90
    [Google Scholar]
  149. 149. 
    Tarolli P, Cao W, Sofia G, Evans D, Ellis EC. 2019. From features to fingerprints: a general diagnostic framework for anthropogenic geomorphology. Prog. Phys. Geogr.: Earth Environ. 43:95–128
    [Google Scholar]
  150. 150. 
    Certini G, Scalenghe R. 2011. Anthropogenic soils are the golden spikes for the Anthropocene. Holocene 21:1269–74
    [Google Scholar]
  151. 151. 
    Lu C, Tian H. 2017. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9:181–92
    [Google Scholar]
  152. 152. 
    Ruddiman WF, Fuller DQ, Kutzbach JE, Tzedakis PC, Kaplan JO et al. 2016. Late Holocene climate: natural or anthropogenic?. Rev. Geophys. 54:93–118
    [Google Scholar]
  153. 153. 
    Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC. 2018. Classifying drivers of global forest loss. Science 361:1108–11
    [Google Scholar]
  154. 154. 
    Kirby KR, Gray RD, Greenhill SJ, Jordan FM, Gomes-Ng S et al. 2016. D-PLACE: a global database of cultural, linguistic and environmental diversity. PLOS ONE 11:e0158391
    [Google Scholar]
  155. 155. 
    Reba M, Reitsma F, Seto KC. 2016. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000. Sci. Data 3:160034
    [Google Scholar]
  156. 156. 
    Turchin P, Currie T, Collins C, Levine J, Oyebamiji O et al. 2021. An integrative approach to estimating productivity in past societies using Seshat: Global History Databank. Holocene 31:1055–65
    [Google Scholar]
  157. 157. 
    Carleton WC, Groucutt HS. 2021. Sum things are not what they seem: problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 31:630–43
    [Google Scholar]
  158. 158. 
    Levis C, Costa FRC, Bongers F, Peña-Claros M, Clement CR et al. 2017. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355:925–31
    [Google Scholar]
  159. 159. 
    Magliocca NR, Ellis EC. 2016. Evolving human landscapes: a virtual laboratory approach. J. Land Use Sci. 11:642–71
    [Google Scholar]
  160. 160. 
    Barton CM, Ullah IIT, Bergin SM, Sarjoughian HS, Mayer GR et al. 2016. Experimental socioecology: integrative science for anthropocene landscape dynamics. Anthropocene 13:34–45
    [Google Scholar]
  161. 161. 
    Locke H, Ellis EC, Venter O, Schuster R, Ma K et al. 2019. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl. Sci. Rev. 6:1080–82
    [Google Scholar]
  162. 162. 
    Wintle BA, Kujala H, Whitehead A, Cameron A, Veloz S et al. 2019. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. PNAS 116:909–14
    [Google Scholar]
  163. 163. 
    Lambin EF, Meyfroidt P. 2011. Global land use change, economic globalization, and the looming land scarcity. PNAS 108:3465–72
    [Google Scholar]
  164. 164. 
    Fisher C. 2020. Archaeology for sustainable agriculture. J. Archaeol. Res. 28:393–441
    [Google Scholar]
  165. 165. 
    Barnosky AD, Hadly EA, Gonzalez P, Head J, Polly PD et al. 2017. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355:eaah4787
    [Google Scholar]
  166. 166. 
    Rights Resour. Initiat 2020. Rights-based conservation: the path to preserving Earth's biological and cultural diversity? Rep., Rights and Resources Washington, DC: https://rightsandresources.org/publication/rights-based-conservation
  167. 167. 
    Adade Williams P, Sikutshwa L, Shackleton S 2020. Acknowledging indigenous and local knowledge to facilitate collaboration in landscape approaches—lessons from a systematic review. Land 9:331
    [Google Scholar]
  168. 168. 
    Lake FK, Wright V, Morgan P, McFadzen M, McWethy D, Stevens-Rumann C. 2017. Returning fire to the land: celebrating traditional knowledge and fire. J. Forestry 115:343–53
    [Google Scholar]
  169. 169. 
    Costanza KKL, Livingston WH, Kashian DM, Slesak RA, Tardif JC et al. 2017. The precarious state of a cultural keystone species: tribal and biological assessments of the role and future of black ash. J. Forestry 115:435–46
    [Google Scholar]
  170. 170. 
    Fernández-Llamazares Á, Terraube J, Gavin MC, Pyhälä A, Siani SMO et al. 2020. Reframing the wilderness concept can bolster collaborative conservation. Trends Ecol. Evol. 35:P750–53
    [Google Scholar]
  171. 171. 
    Svenning J-C. 2020. Rewilding should be central to global restoration efforts. One Earth 3:657–60
    [Google Scholar]
  172. 172. 
    Schell CJ, Dyson K, Fuentes TL, Des Roches S, Harris NC et al. 2020. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369:eaay4497
    [Google Scholar]
  173. 173. 
    Ellis EC. 2019. To conserve nature in the Anthropocene, Half Earth is not nearly enough. One Earth 1:163–67
    [Google Scholar]
  174. 174. 
    Plowright RK, Reaser JK, Locke H, Woodley SJ, Patz JA et al. 2021. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet. Health 5:E237–45
    [Google Scholar]
  175. 175. 
    Sayer J, Sunderland T, Ghazoul J, Pfund J-L, Sheil D et al. 2013. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. PNAS 110:8349–56
    [Google Scholar]
  176. 176. 
    Pereira LM, Davies KK, den Belder E, Ferrier S, Karlsson-Vinkhuyzen S et al. 2020. Developing multiscale and integrative nature-people scenarios using the Nature Futures Framework. People Nat 2:1172–95
    [Google Scholar]
  177. 177. 
    Rasmussen LV, Coolsaet B, Martin A, Mertz O, Pascual U et al. 2018. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 1:275–82
    [Google Scholar]
  178. 178. 
    Holl KD, Brancalion PHS. 2020. Tree planting is not a simple solution. Science 368:580–81
    [Google Scholar]
  179. 179. 
    Betts MG, Wolf C, Pfeifer M, Banks-Leite C, Arroyo-Rodríguez V et al. 2019. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366:1236–39
    [Google Scholar]
  180. 180. 
    Ramankutty N, Foley JA. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13:997–1027
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012220-010822
Loading
/content/journals/10.1146/annurev-environ-012220-010822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error