1932

Abstract

Community monitoring can track environmental phenomena, resource use, and natural resource management processes of concern to community members. It can also contribute to planning and decision-making and empower community members in resource management. While community monitoring that addresses the environmental crisis is growing, it also gathers data on other global challenges: climate change, social welfare, and health. Some environmental community monitoring programs are challenged by limited collective action and community participation, insufficient state responsiveness to data and proposals, and lack of sustainability over time. Additionally, community members monitoring the environment are increasingly harassed and sometimes killed. Community monitoring is more effective with improved data collection, improved data management and sharing, andstronger efforts to meet community information needs, enable conflict resolution, and strengthen self-determination. Other promising areas for development are further incorporating governance issues, embracing integrated approaches at the community level, and establishing stronger links to national and global frameworks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012220-022325
2022-10-17
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-012220-022325.html?itemId=/content/journals/10.1146/annurev-environ-012220-022325&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bonebrake TC, Brown CJ, Bell JD, Blanchard JL, Chauvenet A et al. 2018. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biol. Rev. 93:284–305
    [Google Scholar]
  2. 2.
    Metcalfe DB, Hermans TD, Ahlstrand J, Becker M, Berggren M et al. 2018. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2:1443–48
    [Google Scholar]
  3. 3.
    Moussy C, Burfield IJ, Stephenson PJ, Newton AF, Butchart SH et al. 2022. A quantitative global review of species population monitoring. Conserv. Biol. 36:1e13721
    [Google Scholar]
  4. 4.
    IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.) 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services S Díaz, J Settele, ES Brondízio, HT Ngo, M Guèze Bonn, Ger: IPBES Secr 56 pp . Summarizes policy recommendations about Indigenous and local knowledge systems and biodiversity.
    [Google Scholar]
  5. 5.
    Almond REA, Grooten M, Peterson T, eds. 2020. Living Planet Report 2020: Bending the curve of biodiversity loss Gland, Switz.: World Wildlife Fund https://www.zsl.org/sites/default/files/LPR%202020%20Full%20report.pdf
    [Google Scholar]
  6. 6.
    Secretariat of the Convention on Biological Diversity 2020. Global Biodiversity Outlook 5 – Summary for Policy Makers Montreal: Convention on Biological Diversity https://www.cbd.int/gbo5
    [Google Scholar]
  7. 7.
    Hecker S, Haklay M, Bowser A, Makuch Z, Vogel J. 2018. Citizen Science: Innovation in Open Science, Society and Policy London: UCL Press
    [Google Scholar]
  8. 8.
    Lepczyk CA, Boyle OD, Vargo TLV, eds. 2020. Handbook of Citizen Science in Ecology and Conservation Oakland: Univ. Calif. Press
    [Google Scholar]
  9. 9.
    Skarlatidou A, Haklay M. 2021. Geographic Citizen Science Design: No One Left Behind London: UCL Press
    [Google Scholar]
  10. 10.
    Vohland K, Land-Zandstra A, Ceccaroni L, Lemmens R, Perelló J et al., eds. 2021. The Science of Citizen Science Cham, Switz.: Springer Nature
    [Google Scholar]
  11. 11.
    Fraisl D, Hager G, Bedessem B, Gold M, Hsing P-Y et al. 2022. Citizen science in environmental and ecological sciences. Nat. Rev. Methods Primers 2:64
    [Google Scholar]
  12. 12.
    Pimm SL, Alibhai S, Bergl R, Dehgan A, Giri C et al. 2015. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30:11685–96
    [Google Scholar]
  13. 13.
    Hollings T, Burgman M, van Andel M, Gilbert M, Robinson T, Robinson A 2018. How do you find the green sheep? A critical review of the use of remotely sensed imagery to detect and count animals. Methods Ecol. Evol. 9:4881–92
    [Google Scholar]
  14. 14.
    Danielsen F, Enghoff M, Poulsen MK, Funder M, Jensen PM, Burgess ND. 2021. The concept, practice, application, and results of locally based monitoring of the environment. BioScience 71:5484–502
    [Google Scholar]
  15. 15.
    Wiseman ND, Bardsley DK. 2016. Monitoring to learn, learning to monitor: a critical analysis of opportunities for Indigenous community-based monitoring of environmental change in Australian rangelands. Geogr. Res. 54:152–71
    [Google Scholar]
  16. 16.
    Pocock MJ, Chandler M, Bonney R, Thornhill I, Albin A et al. 2018. A vision for global biodiversity monitoring with citizen science. Adv. Ecol. Res. 59:169–223
    [Google Scholar]
  17. 17.
    Skutsch M 2011. Community Forest Monitoring for the Carbon Market: Opportunities Under REDD London: Earthscan
    [Google Scholar]
  18. 18.
    Guijt I. 1999. Participatory monitoring and evaluation for natural resource management and research Chatham, UK: Nat. Resour. Inst https://www.fsnnetwork.org/sites/default/files/participatory_monitoring_and_evaluation.pdf
    [Google Scholar]
  19. 19.
    Lawrence A 2010. Taking Stock of Nature: Participatory Biodiversity Assessment for Policy, Planning and Practice Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  20. 20.
    Danielsen F, Burgess ND, Balmford A. 2005. Monitoring matters: examining the potential of locally-based approaches. Biodivers. Conserv. 14:112507–42
    [Google Scholar]
  21. 21.
    Conrad CC, Hilchey KG. 2011. A review of citizen science and community-based environmental monitoring: issues and opportunities. Environ. Monitor. Assess. 176:1273–91
    [Google Scholar]
  22. 22.
    Johnson N, Alessa L, Behe C, Danielsen F, Gearheard S et al. 2015. The contributions of community-based monitoring and traditional knowledge to Arctic observing networks: reflections on the state of the field. Arctic 68:28–40
    [Google Scholar]
  23. 23.
    Danielsen F, Johnson N, Lee O, Fidel M, Iversen L et al. 2020. Community-Based Monitoring in the Arctic Fairbanks: Univ. Alaska Press128 pp.
    [Google Scholar]
  24. 24.
    Slough T, Rubenson D, Rodriguez FA, Del Carpio MB, Buntaine MT et al. 2021. Adoption of community monitoring improves common pool resource management across contexts. PNAS 118:29e2015367118
    [Google Scholar]
  25. 25.
    Danielsen F, Jensen PM, Burgess ND, Altamirano R, Alviola PA et al. 2014. A multicountry assessment of tropical resource monitoring by local communities. BioScience 64:3236–51
    [Google Scholar]
  26. 26.
    Johnson N, Druckenmiller ML, Danielsen F, Pulsifer PL. 2021. The use of digital platforms for community-based monitoring. BioScience 71:5452–66
    [Google Scholar]
  27. 27.
    IUCN (Int. Union Conserv. Nat.) 2020. IUCN global standard for NbS. . IUCN https://www.iucn.org/theme/nature-based-solutions/resources/iucn-global-standard-nbs
    [Google Scholar]
  28. 28.
    UNEA (UN Environ. Assem.) 2022. Nature-based solutions for supporting sustainable development, UNEA Resolut. 5/5, UN Environ Assem.. 5th Assem. Nairobi, UNEA:
  29. 29.
    Gurney GG, Darling ES, Ahmadia GN, Agostini VN, Ban NC et al. 2021. Biodiversity needs every tool in the box: use OECMs. Nature 595:7869646–49
    [Google Scholar]
  30. 30.
    Büscher B, Fletcher R. 2019. Towards convivial conservation. Conserv. Soc. 17:3283–96
    [Google Scholar]
  31. 31.
    Counsell S. 2022. Will global spatial planning save the world's biodiversity? (No, it won't.) For those engaged in developing the new Global Biodiversity Framework: four lessons from the past, and a warning for the future. REDD-Monitor Feb. 11. https://redd-monitor.org/2022/02/11/will-global-spatial-planning-save-the-worlds-biodiversity-no-it-wont-for-those-engaged-in-developing-the-new-global-biodiversity-framework-four-lessons-from-the-past-and-a-war/
    [Google Scholar]
  32. 32.
    Fairhead J, Leach M, Scoones I. 2012. Green grabbing: a new appropriation of nature?. J. Peasant Stud. 39:2237–61
    [Google Scholar]
  33. 33.
    Surma K. 2022. Conservation has a human rights problem. Can the new UN Biodiversity Plan solve it?. Inside Climate News Feb. 14. https://insideclimatenews.org/news/14022022/conservation-has-a-human-rights-problem-can-the-new-un-biodiversity-plan-solve-it/
    [Google Scholar]
  34. 34.
    Bingham H, Lewis E, Belle E, Stewart J, Klimmek H et al., eds. 2021. Protected Planet Report 2020: Tracking Progress Towards Global Targets for Protected and Conserved Areas Cambridge, UK; Gland, Switz: UNEP-WCMC; IUCN https://livereport.protectedplanet.net/
    [Google Scholar]
  35. 35.
    Eitzel MV, Cappadonna JL, Santos-Lang C, Duerr RE, Virapongse A et al. 2017. Citizen science terminology matters: exploring key terms. Citiz. Sci. Theory Pract. 2:1)
    [Google Scholar]
  36. 36.
    Haklay M, Fraisl D, Greshake Tzovaras B, Hecker S, Gold M et al. 2021. Contours of citizen science: a vignette study. R. Soc. Open Sci. 8:8202108
    [Google Scholar]
  37. 37.
    Vann-Sander S, Clifton J, Harvey E 2016. Can citizen science work? Perceptions of the role and utility of citizen science in a marine policy and management context. Mar. Policy 72:82–93
    [Google Scholar]
  38. 38.
    Reid RS, Nkedianye D, Said MY, Kaelo D, Neselle M et al. 2009. Evolution of models to support community and policy action with science: balancing pastoral livelihoods and wildlife conservation in savannas of East Africa. PNAS 113:174579–84
    [Google Scholar]
  39. 39.
    Bonney R, Ballard H, Jordan R, McCallie E, Phillips T et al. 2009. Public participation in scientific research: defining the field and assessing its potential for informal science education. A CAISE inquiry group report Rep. Cent. Adv. Informal Sci. Educ. Washington, DC:
    [Google Scholar]
  40. 40.
    Chandler M, See L, Copas K, Bonde AM, López BC et al. 2017. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213:280–94
    [Google Scholar]
  41. 41.
    Gardiner MM, Roy HE. 2021. The role of community science in entomology. Annu. Rev. Entomol. 67:437–56
    [Google Scholar]
  42. 42.
    Kragh G, Poulsen MK, Iversen L, Cheeseman T, Danielsen F. 2022. Mobilizing collective intelligence for adapting to climate change in the Arctic: the case of monitoring Svalbard's and Greenland's environment by expedition cruises. The Routledge Handbook of Collective Intelligence for Democracy and Governance S Boucher, CA Hallin, L Paulson London: Routledge. In press
    [Google Scholar]
  43. 43.
    Cooper CB, Hawn CL, Larson LR, Parrish JK, Bowser G et al. 2021. Inclusion in citizen science: the conundrum of rebranding. Science 372:65491386–88
    [Google Scholar]
  44. 44.
    Brondízio ES, Aumeeruddy-Thomas Y, Bates P, Carino J, Fernández-Llamazares Á et al. 2021. Locally based, regionally manifested, and globally relevant: Indigenous and local knowledge, values, and practices for nature. Annu. Rev. Environ. Resour. 46:481–509
    [Google Scholar]
  45. 45.
    Tengö M, Austin BJ, Danielsen F, Fernández-Llamazares Á. 2021. Creating synergies between citizen science and Indigenous and local knowledge. BioScience 71:5503–18
    [Google Scholar]
  46. 46.
    Varghese J, Crawford SS. 2021. A cultural framework for Indigenous, Local, and Science knowledge systems in ecology and natural resource management. Ecol. Monogr. 91:1e01431
    [Google Scholar]
  47. 47.
    Lyver P, Timoti P, Jones CJ, Richardson SJ, Tahi BL, Greenhalgh S. 2017. An indigenous community-based monitoring system for assessing forest health in New Zealand. Biodivers. Conserv. 26:133183–212
    [Google Scholar]
  48. 48.
    Parry L, Peres CA. 2015. Evaluating the use of local ecological knowledge to monitor hunted tropical-forest wildlife over large spatial scales. Ecol. Soc. 20:315
    [Google Scholar]
  49. 49.
    Cuyler C, Daniel CJ, Enghoff M, Levermann N, Møller-Lund N et al. 2020. Using local ecological knowledge as evidence to guide management: a community-led harvest calculator for muskoxen in Greenland. Conserv. Sci. Pract. 2:e159
    [Google Scholar]
  50. 50.
    Basdew M, Jiri O, Mafongoya PL. 2017. Integration of indigenous and scientific knowledge in climate adaptation in KwaZulu-Natal, South Africa. Change Adapt. Socio-Ecol. Syst. 3:156–67
    [Google Scholar]
  51. 51.
    Ferraro PJ, Agrawal A. 2021. Synthesizing evidence in sustainability science through harmonized experiments: community monitoring in common pool resources. PNAS 118:29e2106489118
    [Google Scholar]
  52. 52.
    Kullenberg C, Kasperowski D. 2016. What is citizen science?–A scientometric meta-analysis. PLOS ONE 11:1e0147152
    [Google Scholar]
  53. 53.
    Cohen A, Matthew M, Neville KJ, Wrightson K. 2021. Colonialism in community-based monitoring: knowledge systems, finance, and power in Canada. Ann. Am. Assoc. Geogr. 111:7
    [Google Scholar]
  54. 54.
    Kahsay GA, Bulte E. 2021. Internal versus top-down monitoring in community resource management: experimental evidence from Ethiopia. J. Econ. Behav. Organ. 189:111–31
    [Google Scholar]
  55. 55.
    Epstein G, Pittman J, Alexander SM, Berdej S, Dyck T et al. 2015. Institutional fit and the sustainability of social–ecological systems. Curr. Opin. Environ. Sustain. 14:34–40
    [Google Scholar]
  56. 56.
    Stelzenmüller V, Cormier R, Gee K, Shucksmith R, Gubbins M et al. 2021. Evaluation of marine spatial planning requires fit for purpose monitoring strategies. J. Environ. Manag. 278:111545
    [Google Scholar]
  57. 57.
    Ekstrom JA, Young OR. 2009. Evaluating functional fit between a set of institutions and an ecosystem. Ecol. Soc. 14:216
    [Google Scholar]
  58. 58.
    Rai RK, van den Homberg MJ, Ghimire GP, McQuistan C. 2020. Cost-benefit analysis of flood early warning system in the Karnali River Basin of Nepal. Int. J. Disaster Risk Reduct. 47:101534
    [Google Scholar]
  59. 59.
    Lindstrom E, Gunn J, Fischer A, McCurdy A, Glover LK. 2017 (2012). A framework for ocean observing. By the Task Team for an Integrated Framework for Sustained Ocean Observing Rep. UNESCO Paris: https://unesdoc.unesco.org/ark:/48223/pf0000211260
    [Google Scholar]
  60. 60.
    Starkweather S, Larsen JR, Kruemmel E, Eicken H, Arthurs D et al. 2021. Sustaining Arctic Observing Networks’(SAON) Roadmap for Arctic Observing and Data Systems (ROADS). Arctic 74:Suppl. 156–68
    [Google Scholar]
  61. 61.
    Eicken H, Danielsen F, Sam JM, Fidel M, Johnson N et al. 2021. Connecting top-down and bottom-up approaches in environmental observing. BioScience 71:5467–83
    [Google Scholar]
  62. 62.
    Rijke J, Brown R, Zevenbergen C, Ashley R, Farrelly M et al. 2012. Fit-for-purpose governance: a framework to make adaptive governance operational. Environ. Sci. Policy 22:73–84
    [Google Scholar]
  63. 63.
    Ostrom E. 2007. A diagnostic approach for going beyond panaceas. PNAS 104:3915181–87
    [Google Scholar]
  64. 64.
    Pratihast AK, DeVries B, Avitabile V, De Bruin S, Herold M, Bergsma A 2016. Design and implementation of an interactive web-based near real-time forest monitoring system. PLOS ONE 11:e0150935
    [Google Scholar]
  65. 65.
    Carlson T, Cohen A. 2018. Linking community-based monitoring to water policy: perceptions of citizen scientists. J. Environ. Manag. 219:168–77
    [Google Scholar]
  66. 66.
    Wilson NJ, Mutter E, Inkster J, Satterfield T. 2018. Community-based monitoring as the practice of Indigenous governance: a case study of Indigenous-led water quality monitoring in the Yukon River Basin. J. Environ. Manag. 210:290–98
    [Google Scholar]
  67. 67.
    Gharesifard M, Wehn U, van der Zaag P. 2019. Context matters: a baseline analysis of contextual realities for two community-based monitoring initiatives of water and environment in Europe and Africa. J. Hydrol. 579:124144
    [Google Scholar]
  68. 68.
    Del Carpio MB, Alpizar F, Ferraro PJ 2021. Community-based monitoring to facilitate water management by local institutions in Costa Rica. PNAS 118:29e2015177118
    [Google Scholar]
  69. 69.
    Murthy MSR, Gilani H, Karky BS, Sharma E, Sandker M et al. 2017. Synergizing community-based forest monitoring with remote sensing: a path to an effective REDD+ MRV system. Carbon Balance Manag 12:19
    [Google Scholar]
  70. 70.
    Parker K, Elmes A, Boucher P, Hallett RA, Thompson JE et al. 2021. Crossing the great divide: bridging the researcher–practitioner gap to maximize the utility of remote sensing for invasive species monitoring and management. Remote Sens. 13:204142
    [Google Scholar]
  71. 71.
    Huggel C, Stone D, Eicken H, Hansen G. 2015. Potential and limitations of the attribution of climate change impacts for informing loss and damage discussions and policies. Clim. Change 133:3453–67
    [Google Scholar]
  72. 72.
    Lam S, Dodd W, Skinner K, Papadopoulos A, Zivot C et al. 2019. Community-based monitoring of Indigenous food security in a changing climate: global trends and future directions. Environ. Res. Lett. 14:7073002Assesses global Indigenous food security monitoring and Indigenous engagement in community monitoring.
    [Google Scholar]
  73. 73.
    Sufri S, Dwirahmadi F, Phung D, Rutherford S 2020. A systematic review of community engagement (CE) in disaster early warning systems (EWSs). Prog. Disaster Sci. 5:100058
    [Google Scholar]
  74. 74.
    Rustagi D, Engel S, Kosfeld M. 2010. Conditional cooperation and costly monitoring explain success in forest commons management. Science 330:6006961–65
    [Google Scholar]
  75. 75.
    Enghoff M, Vronski N, Shadrin V, Sulyandziga R, Danielsen F. 2019. INTAROS Community-based monitoring capacity development process in Yakutia and Komi Republic, Arctic Russia Rep. Integr. Arct. Obs. Syst. Bergen, Norway:55 http://dx.doi.org/10.25607/OBP-1834
    [Crossref] [Google Scholar]
  76. 76.
    Johnson JE, Hooper E, Welch DJ. 2020. Community marine monitoring toolkit: a tool developed in the Pacific to inform community-based marine resource management. Mar. Pollut. Bull. 159:111498
    [Google Scholar]
  77. 77.
    Christensen D, Hartman AC, Samii C. 2021. Citizen monitoring promotes informed and inclusive forest governance in Liberia. PNAS 118:29e2015169118
    [Google Scholar]
  78. 78.
    Petrov AN, Hinzman LD, Kullerud L, Degai TS, Holmberg L et al. 2020. Building resilient Arctic science amid the COVID-19 pandemic. Nat. Commun. 11:16278
    [Google Scholar]
  79. 79.
    Whitcraft A, Becker-Reshef I, Justice C. 2015. A framework for defining spatially explicit Earth observation requirements for a global agricultural monitoring initiative (GEOGLAM). Remote Sens. 7:1461–81
    [Google Scholar]
  80. 80.
    Wehn U, Almomani A. 2019. Incentives and barriers for participation in community-based environmental monitoring and information systems: a critical analysis and integration of the literature. Environ. Sci. Policy 101:341–57
    [Google Scholar]
  81. 81.
    Amos HM, Starke MJ, Rogerson TM, Colón Robles M, Andersen T et al. 2020. GLOBE Observer data: 2016–2019. Earth Space Sci 7:8e2020EA001175
    [Google Scholar]
  82. 82.
    Le Billon P, Menton M. 2021. Environmental Defenders: Deadly Struggles for Life and Territory London: Routledge 282 pp .
    [Google Scholar]
  83. 83.
    McKay AJ, Johnson CJ. 2017. Confronting barriers and recognizing opportunities: developing effective community-based environmental monitoring programs to meet the needs of Aboriginal communities. Environ. Impact Assess. Rev. 64:16–25
    [Google Scholar]
  84. 84.
    Reed G, Brunet ND, Natcher DC. 2020. Can indigenous community-based monitoring act as a tool for sustainable self-determination?. Extr. Ind. Soc. 7:41283–91
    [Google Scholar]
  85. 85.
    Cooperman A, McLarty AR, Seim B. 2021. Understanding uptake of community groundwater monitoring in rural Brazil. PNAS 118:29e2015174118
    [Google Scholar]
  86. 86.
    Ahtuangaruak R. 2015. Broken promises: the future of Arctic development and elevating the voices of those most affected by it–Alaska Natives. Politics Groups Identities 3:4673–77
    [Google Scholar]
  87. 87.
    Commodore A, Wilson S, Muhammad O, Svendsen E, Pearce J 2017. Community-based participatory research for the study of air pollution: a review of motivations, approaches, and outcomes. Environ. Monit. Assess. 189:8378
    [Google Scholar]
  88. 88.
    Eisenbarth S, Graham L, Rigterink AS. 2021. Can community monitoring save the commons? Evidence on forest use and displacement. PNAS 118:29e2015172118
    [Google Scholar]
  89. 89.
    Funder M, Danielsen F, Ngaga Y, Nielsen MR, Poulsen MK. 2013. Reshaping conservation: the social dynamics of participatory monitoring in Tanzania's community-managed forests. Conserv. Soc. 11:3218–32
    [Google Scholar]
  90. 90.
    Brofeldt S, Argyriou D, Turreira-García N, Meilby H, Danielsen F, Theilade I. 2018. Community-based monitoring of tropical forest crimes and forest resources using information and communication technology—experiences from Prey Lang, Cambodia. Citiz. Sci. Theory Pract. 3:2)
    [Google Scholar]
  91. 91.
    Moustard F, Haklay M, Lewis J, Albert A, Moreu M et al. 2021. Using Sapelli in the field: methods and data for an inclusive citizen science. Front. Ecol. Evol. 9:362
    [Google Scholar]
  92. 92.
    Gruber M, Hagendorfer-Jauk G. 2021. Empowerment and participation by the means of Citizen Science–methodological approaches and experiences from projects in rural areas. Proc. Sci. https://doi.org/10.22323/1.393.0006
    [Crossref] [Google Scholar]
  93. 93.
    Van De Gevel J, van Etten J, Deterding S. 2020. Citizen science breathes new life into participatory agricultural research. A review. Agron. Sustain. Dev. 40:535
    [Google Scholar]
  94. 94.
    Walker D, Forsythe N, Parkin G, Gowing J. 2016. Filling the observational void: scientific value and quantitative validation of hydrometeorological data from a community-based monitoring programme. J. Hydrol. 538:713–25
    [Google Scholar]
  95. 95.
    Quintana A, Basurto X, Van Dyck SR, Weaver AH 2020. Political making of more-than-fishers through their involvement in ecological monitoring of protected areas. Biodivers. Conserv. 29:143899–923
    [Google Scholar]
  96. 96.
    Thompson KL, Lantz T, Ban N. 2020. A review of Indigenous knowledge and participation in environmental monitoring. Ecol. Soc. 25:210
    [Google Scholar]
  97. 97.
    Turreira-García N, Meilby H, Brofeldt S, Argyriou D, Theilade I. 2018. Who wants to save the forest? Characterizing community-led monitoring in Prey Lang, Cambodia. Environ. Manag. 61:61019–30
    [Google Scholar]
  98. 98.
    Constantino PAL, Carlos HSA, Ramalho EE, Rostant L, Marinelli CE et al. 2012. Empowering local people through community-based resource monitoring: a comparison of Brazil and Namibia. Ecol. Soc. 17:422
    [Google Scholar]
  99. 99.
    Storey RG, Wright-Stow A, Kin E, Davies-Colley RJ, Stott R 2016. Volunteer stream monitoring: Do the data quality and monitoring experience support increased community involvement in freshwater decision making?. Ecol. Soc. 21:432
    [Google Scholar]
  100. 100.
    Camino M, Thompson J, Andrade L, Cortez S, Matteucci SD, Altrichter M. 2020. Using local ecological knowledge to improve large terrestrial mammal surveys, build local capacity and increase conservation opportunities. Biol. Conserv. 244:108450
    [Google Scholar]
  101. 101.
    Ahmad A, Gary D, Putra W, Sagita N, Adirahmanta SN, Miller AE. 2021. Leveraging local knowledge to estimate wildlife densities in Bornean tropical rainforests. Wildl. Biol. 2021:11–15
    [Google Scholar]
  102. 102.
    Brittain S, Rowcliffe MJ, Kentatchime F, Tudge SJ, Kamogne-Tagne CT, Milner-Gulland EJ. 2022. Comparing interview methods with camera trap data to inform occupancy models of hunted mammals in forest habitats. Conserv. Sci. Pract. 4:4e12637
    [Google Scholar]
  103. 103.
    Braga-Pereira F, Morcatty TQ, El Bizri HR, Tavares AS, Mere-Roncal C et al. 2022. Congruence of local ecological knowledge (LEK)-based methods and line-transect surveys in estimating wildlife abundance in tropical forests. Methods Ecol. Evol. 13:3743–56
    [Google Scholar]
  104. 104.
    Reges HW, Doesken N, Turner J, Newman N, Bergantino A, Schwalbe Z. 2016. CoCoRaHS: the evolution and accomplishments of a volunteer rain gauge network. Bull. Am. Meteorol. Soc. 97:101831–46
    [Google Scholar]
  105. 105.
    Bonney R. 2021. Expanding the impact of citizen science. BioScience 71:5448–51
    [Google Scholar]
  106. 106.
    Butt N, Epps K, Overman H, Iwamura T, Fragoso JM. 2015. Assessing carbon stocks using indigenous peoples’ field measurements in Amazonian Guyana. Forest Ecol. Manag. 338:191–99
    [Google Scholar]
  107. 107.
    Boissière M, Herold M, Atmadja S, Sheil D. 2017. The feasibility of local Participation in Measuring, Reporting and Verification (PMRV) for REDD+. PLOS ONE 12:5e0176897Investigates community participation in monitoring forest degradation.
    [Google Scholar]
  108. 108.
    Kress WJ, Garcia-Robledo C, Soares JV, Jacobs D, Wilson K et al. 2018. Citizen science and climate change: mapping the range expansions of native and exotic plants with the mobile app Leafsnap. BioScience 68:5348–58
    [Google Scholar]
  109. 109.
    Pecl GT, Stuart-Smith J, Walsh P, Bray DJ, Kusetic M et al. 2019. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. 6:349
    [Google Scholar]
  110. 110.
    Beeden R, Turner M, Dryden J, Merida F, Goudkamp K et al. 2014. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef. Environ. Monit. Assess. 186:128527–40
    [Google Scholar]
  111. 111.
    Walker DW, Smigaj M, Tani M 2021. The benefits and negative impacts of citizen science applications to water as experienced by participants and communities. Wiley Interdiscip. Rev. Water 8:1e1488
    [Google Scholar]
  112. 112.
    Little KE, Hayashi M, Liang S. 2016. Community-based groundwater monitoring network using a citizen-science approach. Groundwater 54:3317–24
    [Google Scholar]
  113. 113.
    Shinbrot XA, Muñoz-Villers L, Mayer A, López-Portillo M, Jones K et al. 2020. Quiahua, the first citizen science rainfall monitoring network in Mexico: filling critical gaps in rainfall data for evaluating a payment for hydrologic services program. Citiz. Sci. Theory Pract. 5:1)
    [Google Scholar]
  114. 114.
    Bremer S, Haque MM, Aziz SB, Kvamme S. 2019.. ‘ My new routine’: assessing the impact of citizen science on climate adaptation in Bangladesh. Environ. Sci. Policy 94:245–57
    [Google Scholar]
  115. 115.
    Rasmussen JF, Friis-Hansen E, Funder M. 2018. Collaboration between meso-level institutions and communities to facilitate climate change adaptation in Ghana. Climate Dev 11:4
    [Google Scholar]
  116. 116.
    Douxchamps S, Debevec L, Giordano M, Barron J. 2017. Monitoring and evaluation of climate resilience for agricultural development–a review of currently available tools. World Dev. Perspect. 5:10–23
    [Google Scholar]
  117. 117.
    Choptiany J, Graub B, Phillips S, Colozza D, Dixon J 2015. Self-Evaluation and Holistic Assessment of Climate Resilience of Farmers and Pastoralists Rome: FAO166 https://www.fao.org/3/i4495e/i4495e.pdf
    [Google Scholar]
  118. 118.
    Hicks A, Barclay J, Chilvers J, Armijos MT, Oven K et al. 2019. Global mapping of citizen science projects for disaster risk reduction. Front. Earth Sci. 7:226
    [Google Scholar]
  119. 119.
    Paul JD, Buytaert W, Allen S, Ballesteros-Cánovas JA, Bhusal J et al. 2018. Citizen science for hydrological risk reduction and resilience building. Wiley Interdiscip. Rev. Water 5:1e1262
    [Google Scholar]
  120. 120.
    Wolff E. 2021. The promise of a “people-centred” approach to floods: types of participation in the global literature of citizen science and community-based flood risk reduction in the context of the Sendai Framework. Prog. Disaster Sci. 10:100171
    [Google Scholar]
  121. 121.
    Zulkafli Z, Perez K, Vitolo C, Buytaert W, Karpouzoglou T et al. 2017. User-driven design of decision support systems for polycentric environmental resources management. Environ. Model. Softw. 88:58–73
    [Google Scholar]
  122. 122.
    Reyes C, Due E. 2009. Fighting Poverty with Facts: Community-Based Monitoring Systems Ottawa, Can: Int. Dev. Res. Cent.
    [Google Scholar]
  123. 123.
    Boo FL, Leer J, Kamei A. 2020. Community Monitoring Improves Public Service Provision at Scale: Experimental Evidence from a Child Development Program in Nicaragua New York: Inter-Am. Dev. Bank http://dx.doi.org/10.18235/0002869
    [Crossref] [Google Scholar]
  124. 124.
    Misra SS. 2015. Community-based monitoring and grievance redressal in schools in Delhi Pamphlet, Oxfam India New Delhi:4 pp.
    [Google Scholar]
  125. 125.
    Godinot X, Walker R. 2020. Poverty in all its forms: determining the dimensions of poverty through merging knowledge. Dimensions of Poverty V Beck, H Hahn, R Lepenies 263–79 Cham, Switz: Springer
    [Google Scholar]
  126. 126.
    Osinski A. 2021. From consultation to coproduction: a comparison of participation in poverty research. J. Particip. Res. Methods 2:118875
    [Google Scholar]
  127. 127.
    Bray R, de Laat M, Godinot X, Ugarte A, Walker R. 2020. Realising poverty in all its dimensions: a six-country participatory study. World Dev 134:105025
    [Google Scholar]
  128. 128.
    Ketema D, Tewolde A, Seyoum S. 2020. Using a community-based monitoring system (CBMS) to investigate progress on the Sustainable Development Goals in Ethiopia: Gobessa Town, Mitana Gado Kebele (Shirka Wereda), and Wereda 10 (Addis Ababa) Work. Pap. CBMS-2020-07 Partnersh. Econ. Policy Nairobi, Kenya:
    [Google Scholar]
  129. 129.
    Molina E, Carella L, Pacheco A, Cruces G, Gasparini L. 2017. Community monitoring interventions to curb corruption and increase access and quality in service delivery: a systematic review. J. Dev. Effect. 9:4462–99
    [Google Scholar]
  130. 130.
    Osogo A. 2017. Community Score Card on livelihood development, infrastructure and security; West Pokot and Baringo Counties of Kenya Rep. Konrad Adenauer Stiftug Nairobi, Kenya: 50 pp .
    [Google Scholar]
  131. 131.
    Rebecca S, Rono-Bett K, Kenei S. 2017. Citizen-generated data and sustainable development: evidence from case studies in Kenya and Uganda Bristol, UK: Dev. Initiat 44 pp .
    [Google Scholar]
  132. 132.
    Fox JA. 2015. Social accountability: What does the evidence really say?. World Dev 72:346–61
    [Google Scholar]
  133. 133.
    Ringold D, Holla A, Koziol M, Srinivasan S. 2011. Citizens and Service Delivery: Assessing the Use of Social Accountability Approaches in Human Development Sectors Washington, DC: World Bank
    [Google Scholar]
  134. 134.
    Den Broeder L, Devilee J, Van Oers H, Schuit AJ, Wagemakers A 2018. Citizen Science for public health. Health Promot. Int. 33:3505–14
    [Google Scholar]
  135. 135.
    Wiggins A, Wilbanks J. 2019. The rise of citizen science in health and biomedical research. Am. J. Bioethics 19:83–14
    [Google Scholar]
  136. 136.
    Alaska Ocean Observing System 2022. Alaska Harmful Algal Bloom Network. Alaska Ocean Observing System https://legacy.aoos.org/alaska-hab-network/
    [Google Scholar]
  137. 137.
    Varsavsky T, Graham MS, Canas LS, Ganesh S, Pujol JC et al. 2021. Detecting COVID-19 infection hotspots in England using large-scale self-reported data from a mobile application: a prospective, observational study. Lancet Public Health 6:1e21–29
    [Google Scholar]
  138. 138.
    Beatty AL, Peyser ND, Butcher XE, Carton TW, Olgin JE et al. 2021. The COVID-19 Citizen Science Study: protocol for a longitudinal digital health cohort study. JMIR Res. Protoc. 10:8e28169
    [Google Scholar]
  139. 139.
    Murindahabi MM, Asingizwe D, Poortvliet PM, van Vliet AJ, Hakizimana E et al. 2018. A citizen science approach for malaria mosquito surveillance and control in Rwanda. NJAS-Wagening. J. Life Sci. 86–87:101–10
    [Google Scholar]
  140. 140.
    Björkman M, Svensson J. 2010. When is community-based monitoring effective? Evidence from a randomized experiment in primary health in Uganda. J. Eur. Econ. Assoc. 8:2–3571–81
    [Google Scholar]
  141. 141.
    Gullo S, Galavotti C, Altman L. 2016. A review of CARE's community score card experience and evidence. Health Policy Plann 31:101467–78
    [Google Scholar]
  142. 142.
    Kiracho EE, Namuhani N, Apolot RR, Aanyu C, Mutebi A et al. 2020. Influence of community scorecards on maternal and newborn health service delivery and utilization. Int. J. Equity Health 19:1145
    [Google Scholar]
  143. 143.
    Baptiste S, Manouan A, Garcia P, Etya'ale H, Swan T, Jallow W. 2020. Community-led monitoring: When community data drives implementation strategies. Curr. HIV/AIDS Rep. 17:5415–21
    [Google Scholar]
  144. 144.
    Kipp A, Cunsolo A, Gillis D, Sawatzky A, Harper SL. 2019. The need for community-led, integrated and innovative monitoring programmes when responding to the health impacts of climate change. Int. J. Circumpolar Health 78:21517581
    [Google Scholar]
  145. 145.
    Palmer JR, Oltra A, Collantes F, Delgado JA, Lucientes J et al. 2017. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8:1916
    [Google Scholar]
  146. 146.
    Pomeroy-Stevens A, Afdhal M, Mishra N, Farnham Egan K, Christianson K, Bachani D 2020. Engaging citizens via journey maps to address urban health issues. Environ. Health Insights 14:1178630220963126
    [Google Scholar]
  147. 147.
    Groulx M, Brisbois MC, Lemieux CJ, Winegardner A, Fishback L. 2017. A role for nature-based citizen science in promoting individual and collective climate change action? A systematic review of learning outcomes. Sci. Commun. 39:145–76
    [Google Scholar]
  148. 148.
    Work C, Scheidel A, Theilade I, Sothea S, Song D 2021. Engaged research uncovers the grey areas and trade-offs in climate justice. Indigenous Peoples, Heritage and Landscape in the Asia Pacific. Knowledge Co-Production and Empowerment S Acabado, D Kuan 16–30 London: Routledge
    [Google Scholar]
  149. 149.
    Sterling EJ, Betley E, Sigouin A, Gomez A, Toomey A et al. 2017. Assessing the evidence for stakeholder engagement in biodiversity conservation. Biol. Conserv. 209:159–71
    [Google Scholar]
  150. 150.
    Buntaine MT, Zhang B, Hunnicutt P. 2021. Citizen monitoring of waterways decreases pollution in China by supporting government action and oversight. PNAS 118:29e2015175118
    [Google Scholar]
  151. 151.
    Villaseñor E, Porter-Bolland L, Escobar F, Guariguata MR, Moreno-Casasola P. 2016. Characteristics of participatory monitoring projects and their relationship to decision-making in biological resource management: a review. Biodivers. Conserv. 25:112001–19
    [Google Scholar]
  152. 152.
    Flores-Díaz AC, Quevedo Chacón A, Páez Bistrain R, Ramírez MI, Larrazábal A 2018. Community-based monitoring in response to local concerns: creating usable knowledge for water management in rural land. Water 10:5542
    [Google Scholar]
  153. 153.
    Natcher DC, Brunet ND. 2020. Extractive resource industries and indigenous community-based monitoring: cooperation or cooptation?. Extr. Ind. Soc. 7:41279–82
    [Google Scholar]
  154. 154.
    UNEP (UN Environ. Programme) 2018. Promoting greater protection for environmental defenders. Policy Rep. UNEP Nairobi, Kenya:
    [Google Scholar]
  155. 155.
    [Google Scholar]
  156. 156.
    Grant H, Le Billon P 2021. Unrooted responses: addressing violence against environmental and land defenders. Environ. Plann. C Politics Space 39:1132–51
    [Google Scholar]
  157. 157.
    Global Witness 2021. Last line of defence. Global Witness https://www.globalwitness.org/en/campaigns/environmental-activists/last-line-defence/
    [Google Scholar]
  158. 158.
    Le Billon P, Lujala P 2020. Environmental and land defenders: global patterns and determinants of repression. Glob. Environ. Change 65:102163Provides a global overview of the extent of repression and killings of environmental land defenders.
    [Google Scholar]
  159. 159.
    Zeng Y, Twang F, Carrasco LR. 2022. Threats to land and environmental defenders in nature's last strongholds. Ambio 51:1269–79
    [Google Scholar]
  160. 160.
    Berkes F. 2021. Advanced Introduction to Community-Based Conservation Cheltenham, UK: Edward Elgar Publ.
    [Google Scholar]
  161. 161.
    Seddon N, Turner B, Berry P, Chausson A, Girardin CA. 2019. Grounding nature-based climate solutions in sound biodiversity science. Nat. Climate Change 9:284–87
    [Google Scholar]
  162. 162.
    IUCN (Int. Union Conserv. Nat.) 2019. Recognising and reporting other effective area-based conservation measures Gland, Switz.: IUCN https://portals.iucn.org/library/sites/library/files/documents/PATRS-003-En.pdf
    [Google Scholar]
  163. 163.
    Dudley N, Jonas H, Nelson F, Parrish J, Pyhälä A et al. 2018. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15:e00424
    [Google Scholar]
  164. 164.
    Garnett ST, Burgess ND, Fa JE, Fernández-Llamazares Á, Molnár Z et al. 2018. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1:7369–74
    [Google Scholar]
  165. 165.
    [Google Scholar]
  166. 166.
    Roe D, Nelson F, Sandbrook C, eds. 2009. Community Management of Natural Resources in Africa: Impacts, Experiences and Future Directions Natural Resources Issue No. 18 London: Int. Inst. Environ. Dev.
    [Google Scholar]
  167. 167.
    Dawson N, Coolsaet B, Sterling E, Loveridge R, Gross-Camp N et al. 2021. The role of Indigenous peoples and local communities in effective and equitable conservation. Ecol. Soc. 26:319
    [Google Scholar]
  168. 168.
    Galvin KA, Beeton TA, Luizza MW. 2018. African community-based conservation: a systematic review of social and ecological outcomes. Ecol. Soc. 23:339
    [Google Scholar]
  169. 169.
    Rufino MC, Weeser B, Stenfert Kroese J, Njue N, Gräf J et al. 2018. Citizen scientists monitor water quantity and quality in Kenya Infobrief 230, CIFOR Jawa Barat, Indonesia: https://www.cifor.org/publications/pdf_files/infobrief/7013-infobrief.pdf
    [Google Scholar]
  170. 170.
    Prey Lang Community Network 2022. New integrated forest observatory system, March 2021. Prey Lang Community Network. https://preylang.net/2021/03/21/new-integrated-forrest-observatory-system-march-2021/
    [Google Scholar]
  171. 171.
    Duchelle AE, Seymour F, Brockhaus M, Angelsen A, Larson A et al. 2019. Forest-based climate mitigation: lessons from REDD+ implementation Issue Brief, World Resour. Inst. Washington, DC: https://www.cifor.org/publications/pdf_files/brief/7428-WRIBrief.pdf
    [Google Scholar]
  172. 172.
    Wunder S, Duchelle AE, Sassi Cd, Sills EO, Simonet G, Sunderlin WD. 2020. REDD+ in theory and practice: how lessons from local projects can inform jurisdictional approaches. Front. Forests Glob. Change 3:11
    [Google Scholar]
  173. 173.
    Farhan Ferrari M, de Jong C, Belohrad VS 2015. Community-based monitoring and information systems (CBMIS) in the context of the Convention on Biological Diversity (CBD). Biodiversity 16:2–357–67
    [Google Scholar]
  174. 174.
    Fidel M, Johnson N, Danielsen F, Eicken H, Iversen L et al. 2017. INTAROS Community-based Monitoring Experience Exchange Workshop Report Rep. INTAROS Fairbanks, AK: http://dx.doi.org/10.25607/OBP-1841
    [Crossref] [Google Scholar]
  175. 175.
    Newman G, Wiggins A, Crall A, Graham E, Newman S, Crowston K. 2012. The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10:298–304
    [Google Scholar]
  176. 176.
    Brenton P, von Gavel S, Vogel E, Lecoq M-E. 2018. Technology infrastructure for citizen science. See Ref. 7 63–80
  177. 177.
    Mazumdar S, Ceccaroni L, Piera J, Hölker F, Berre AJ et al. 2018. Citizen science technologies and new opportunities for participation. See Ref. 7 303–20
  178. 178.
    Johnson N, Fidel M, Danielsen F, Iversen L, Poulsen MK, Hauser D, Pulsifer P. 2018. INTAROS Community-Based Monitoring Experience Exchange Workshop Report: Canada Workshop organized as a contribution to INTAROS Quebec City: Dec. 11–12, 2017. http://dx.doi.org/10.25607/OBP-1840
    [Crossref] [Google Scholar]
  179. 179.
    Beazley KF, Oppler G, Heffner LR, Levine J, Poe A, Tabor G. 2021. Emerging policy opportunities for United States–Canada transboundary connectivity conservation. Parks Steward. Forum 37:3)
    [Google Scholar]
  180. 180.
    Pulsifer P, Gearheard S, Huntington HP, Parsons MA, McNeave C, McCann HS. 2012. The role of data management in engaging communities in Arctic research: overview of the Exchange for Local Observations and Knowledge of the Arctic (ELOKA). Polar Geogr 35:3–4271–90
    [Google Scholar]
  181. 181.
    Adapt Alaska 2016. Promoting Resilience and Adaptation in Coastal Arctic Alaska. Workshop Synthesis Fairbanks, AK: Adapt Alaska https://adaptalaska.org/wp-content/uploads/2017/10/ak-adaptation-workshop.pdf
    [Google Scholar]
  182. 182.
    Harley JR, Lanphier K, Kennedy EG, Leighfield TA, Bidlack A et al. 2020. The Southeast Alaska Tribal Ocean Research (SEATOR) Partnership: addressing data gaps in harmful algal bloom monitoring and shellfish safety in Southeast Alaska. Toxins 12:6407
    [Google Scholar]
  183. 183.
    Williams J, Chapman C, Leibovici DG, Loïs G, Matheus A et al. 2018. Maximising the impact and reuse of citizen science data. See Ref. 7 321–36
  184. 184.
    Arts K, van der Wal R, Adams WM. 2015. Digital technology and the conservation of nature. Ambio 44:4661–73
    [Google Scholar]
  185. 185.
    GIDA 2020. CARE Principles for Indigenous data governance. GIDA https://www.gida-global.org/care
    [Google Scholar]
  186. 186.
    UN Gen. Assem 2007. United Nations Declaration on the Rights of Indigenous Peoples: resolution /adopted by the General Assembly Oct. 2. UN Doc. A/RES/61/295. https://www.refworld.org/docid/471355a82.html
    [Google Scholar]
  187. 187.
    FAO (Food Agric. Organ.) 2016. Free Prior and Informed Consent – An Indigenous Peoples’ Right and a Good Practice for Local Communities Rome: FAO https://www.fao.org/documents/card/en/c/5202ca4e-e27e-4afa-84e2-b08f8181e8c9/
    [Google Scholar]
  188. 188.
    Lovett R, Lee V, Kukutai T, Cormack D, Rainie SC, Walker J. 2019. Good data practices for Indigenous Data Sovereignty and Governance. Good Data A Daly, K Devitt, M Mann 26–36 Amsterdam: Inst. Netw. Cult.
    [Google Scholar]
  189. 189.
    Carroll SR, Garba I, Figueroa-Rodríguez OL, Holbrook J, Lovett R et al. 2020. The CARE Principles for Indigenous Data Governance. Data Sci. J. 19:143
    [Google Scholar]
  190. 190.
    Rainie SC, Schultz JL, Briggs E, Riggs P, Palmanteer-Holder NL. 2017. Data as a strategic resource: self-determination, governance, and the data challenge for Indigenous Nations in the United States. Int. Indigenous Policy J. 8:2)
    [Google Scholar]
  191. 191.
    Reyes-García V, Tofighi-Niaki A, Austin BJ, Benyei P, Danielsen F et al. 2022. Data sovereignty in community-based environmental monitoring: toward equitable environmental data governance. BioScience 72:871417
    [Google Scholar]
  192. 192.
    Reed G, Brunet ND, Longboat S, Natcher DC. 2021. Indigenous guardians as an emerging approach to Indigenous environmental governance. Conserv. Biol. 35:1179–89
    [Google Scholar]
  193. 193.
    Holmes MC, Jampijinpa W. 2013. Law for country: the structure of Warlpiri ecological knowledge and its application to natural resource management and ecosystem stewardship. Ecol. Soc. 18:319
    [Google Scholar]
  194. 194.
    Stowell D, Wood MD, Pamuła H, Stylianou Y, Glotin H. 2019. Automatic acoustic detection of birds through deep learning: the first bird audio detection challenge. Methods Ecol. Evol. 10:3368–80
    [Google Scholar]
  195. 195.
    Mao F, Khamis K, Clark J, Krause S, Buytaert W et al. 2020. Moving beyond the technology: a socio-technical roadmap for low-cost water sensor network applications. Environ. Sci. Technol. 54:159145–58
    [Google Scholar]
  196. 196.
    Jensen PM, Danielsen F, Skarphedinsson S. 2022. Monitoring temporal trends in Internet searches for “ticks” across Europe by Google Trends: tick–human interaction or general interest?. Insects 13:2176
    [Google Scholar]
  197. 197.
    Bestelmeyer BT, Spiegal S, Winkler R, James D, Levi M, Williamson J. 2021. Assessing sustainability goals using big data: collaborative adaptive management in the Malpai borderlands. Rangeland Ecol. Manag. 77:17–29
    [Google Scholar]
  198. 198.
    Rafner J, Gajdacz M, Kragh G, Hjorth A, Gander A et al. 2021. Revisiting Citizen Science through the lens of hybrid intelligence. arXiv:2104.14961v1
  199. 199.
    Tuia D, Kellenberger B, Beery S, Costelloe BR, Zuffi S et al. 2022. Perspectives in machine learning for wildlife conservation. Nat. Commun. 13:1792
    [Google Scholar]
  200. 200.
    UN-Habitat 2020. Global State of Metropolis 2020 - Population Data Booklet Nairobi, Kenya: UN-Habitat https://unhabitat.org/global-state-of-metropolis-2020-%E2%80%93-population-data-booklet
    [Google Scholar]
  201. 201.
    Global Witness 2014. Deadly Environment: The Dramatic Rise in Killings of Environmental and Land Defenders London: Global Witness https://cdn2.globalwitness.org/archive/files/library/deadly%20environment.pdf
    [Google Scholar]
  202. 202.
    Sachs J, Kroll C, Lafortune G, Fuller G, Woelm F. 2021. Sustainable Development Report 2021 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  203. 203.
    Archer LJ, Müller HS, Jones LP, Ma H, Gleave RA et al. 2022. Towards fairer conservation: perspectives and ideas from early-career researchers. People Nat 4:612–26
    [Google Scholar]
  204. 204.
    Kouril D, Furgal C, Whillans T. 2016. Trends and key elements in community-based monitoring: a systematic review of the literature with an emphasis on Arctic and Subarctic regions. Environ. Rev. 24:2151–63
    [Google Scholar]
  205. 205.
    Fisheries and Oceans Canada 2020. International Agreement to Prevent Unregulated High Seas Fisheries in the Central Arctic Ocean. Fisheries and Oceans Canada https://www.dfo-mpo.gc.ca/international/arctic-arctique-eng.htm
    [Google Scholar]
  206. 206.
    UN Econ. Comm. Eur 2021. Draft updated recommendations on the more effective use of electronic information tools Submitted to the Meeting of the Parties to the Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters, 7th Sess Oct. 18–20 Geneva, UN Econ: Soc. Counc https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_E.pdf
    [Google Scholar]
  207. 207.
    Larson LR, Conway AL, Hernandez SM, Carroll JP. 2016. Human-wildlife conflict, conservation attitudes, and a potential role for citizen science in Sierra Leone, Africa. Conserv. Soc 14:3205–17
    [Google Scholar]
  208. 208.
    Pimenta NC, Barnett AA, Botero-Arias R, Marmontel M. 2018. When predators become prey: community-based monitoring of caiman and dolphin hunting for the catfish fishery and the broader implications on Amazonian human-natural systems. Biol. Conserv. 222:154–63
    [Google Scholar]
  209. 209.
    Corrigan C, Robinson CJ, Burgess ND, Kingston N, Hockings M 2018. Global review of social indicators used in protected area management evaluation. Conserv. Lett. 11:2e12397
    [Google Scholar]
  210. 210.
    Ballerini L, Bergh SI. 2021. Using citizen science data to monitor the Sustainable Development Goals: a bottom-up analysis. Sustain. Sci. 16:1945–62
    [Google Scholar]
  211. 211.
    Evans K, Guariguata MR, Brancalion PH. 2018. Participatory monitoring to connect local and global priorities for forest restoration. Conserv. Biol. 32:3525–34
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012220-022325
Loading
/content/journals/10.1146/annurev-environ-012220-022325
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error