1932

Abstract

Global climate warming disproportionately affects high-latitude and mountainous terrestrial ecosystems. Warming is accompanied by permafrost thaw, shorter winters, earlier snowmelt, more intense soil freeze-thaw cycles, drier summers, and longer fire seasons. These environmental changes in turn impact surface water and groundwater flow regimes, water quality, greenhouse gas emissions, soil stability, vegetation cover, and soil (micro)biological communities. Warming also facilitates agricultural expansion, urban growth, and natural resource development, adding growing anthropogenic pressures to cold regions’ landscapes, soil health, and biodiversity. Further advances in the predictive understanding of how cold regions’ critical zone processes, functions, and ecosystem services will continue to respond to climate warming and land use changes require multiscale monitoring technologies coupled with integrated observational and modeling tools. We highlight some of the major challenges, knowledge gaps, and opportunities in cold region critical zone research, with an emphasis on subsurface processes and responses in both natural and agricultural ecosystems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012220-125703
2021-10-18
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/energy/46/1/annurev-environ-012220-125703.html?itemId=/content/journals/10.1146/annurev-environ-012220-125703&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hansen J, Ruedy R, Sato M, Lo K. 2010. Global surface temperature change. Rev. Geophys. 48:RG4004
    [Google Scholar]
  2. 2. 
    Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M 2006. Global temperature change. PNAS 103:14288–93
    [Google Scholar]
  3. 3. 
    Seneviratne SI, Donat MG, Mueller B, Alexander LV. 2014. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4:161–63
    [Google Scholar]
  4. 4. 
    Walvoord MA, Kurylyk BL. 2016. Hydrologic impacts of thawing permafrost—a review. Vadose Zone J 15: https://doi.org/10.2136/vzj2016.01.0010
    [Crossref] [Google Scholar]
  5. 5. 
    Stewart IT. 2009. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Proc. Int. J. 23:78–94
    [Google Scholar]
  6. 6. 
    Bring A, Fedorova I, Dibike Y, Hinzman L, Mård J et al. 2016. Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 121:621–49
    [Google Scholar]
  7. 7. 
    Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF et al. 2015. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12:7129–67
    [Google Scholar]
  8. 8. 
    Hayashi M. 2013. The cold vadose zone: hydrological and ecological significance of frozen-soil processes. Vadose Zone J 12: https://doi.org/10.2136/vzj2013.03.0064
    [Crossref] [Google Scholar]
  9. 9. 
    Kurylyk BL, MacQuarrie KT, McKenzie JM. 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth-Sci. Rev. 138:313–34
    [Google Scholar]
  10. 10. 
    Schuur E, McGuire AD, Schädel C, Grosse G, Harden J et al. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–79
    [Google Scholar]
  11. 11. 
    Wilson CG, Abban B, Keefer LL, Wacha K, Dermisis D et al. 2018. The Intensively Managed Landscape Critical Zone Observatory: a scientific testbed for understanding critical zone processes in agroecosystems. Vadose Zone J 17: https://doi.org/10.2136/vzj2018.04.0088
    [Crossref] [Google Scholar]
  12. 12. 
    Guo L, Lin H. 2016. Critical zone research and observatories: current status and future perspectives. Vadose Zone J 15: https://doi.org/10.2136/vzj2016.06.0050
    [Crossref] [Google Scholar]
  13. 13. 
    King M, Altdorff D, Li P, Galagedara L, Holden J, Unc A. 2018. Northward shift of the agricultural climate zone under 21st-century global climate change. Sci. Rep. 8:7904
    [Google Scholar]
  14. 14. 
    Wang C, Wang Z, Kong Y, Zhang F, Yang K, Zhang T 2019. Most of the Northern Hemisphere permafrost remains under climate change. Sci. Rep. 9:3295
    [Google Scholar]
  15. 15. 
    Henry HA. 2008. Climate change and soil freezing dynamics: historical trends and projected changes. Clim. Change 87:421–34
    [Google Scholar]
  16. 16. 
    Tetzlaff D, Soulsby C, Buttle J, Capell R, Carey SK et al. 2013. Catchments on the cusp? Structural and functional change in northern ecohydrology. Hydrol. Proc. 27:766–74
    [Google Scholar]
  17. 17. 
    Guo D, Wang H. 2017. Simulated historical (1901–2010) changes in the permafrost extent and active layer thickness in the Northern Hemisphere. J. Geophys. Res. Atmos. 122:12285–95
    [Google Scholar]
  18. 18. 
    Peng X, Frauenfeld OW, Cao B, Wang K, Wang H et al. 2016. Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China. J. Geophys. Res. Earth Surf. 121:1984–2000
    [Google Scholar]
  19. 19. 
    Evans SG, Ge S. 2017. Contrasting hydrogeologic responses to warming in permafrost and seasonally frozen ground hillslopes. Geophys. Res. Lett. 44:1803–13
    [Google Scholar]
  20. 20. 
    Connon RF, Quinton WL, Craig JR, Hayashi M. 2014. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Proc 28:4163–78
    [Google Scholar]
  21. 21. 
    Zhang Y, Cheng G, Li X, Han X, Wang L et al. 2013. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed. Hydrol. Proc. 27:3762–76
    [Google Scholar]
  22. 22. 
    Wu M, Jansson P-E, Tan X, Wu J, Huang J 2016. Constraining parameter uncertainty in simulations of water and heat dynamics in seasonally frozen soil using limited observed data. Water 8:64
    [Google Scholar]
  23. 23. 
    Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB et al. 2002. Increasing river discharge to the Arctic Ocean. Science 298:2171–73
    [Google Scholar]
  24. 24. 
    Lundberg A, Ala-Aho P, Eklo O, Klöve B, Kværner J, Stumpp C. 2016. Snow and frost: implications for spatiotemporal infiltration patterns—a review. Hydrol. Proc. 30:1230–50
    [Google Scholar]
  25. 25. 
    Zheng L, Overeem I, Wang K, Clow GD 2019. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124:2324–44
    [Google Scholar]
  26. 26. 
    Ireson AM, Van Der Kamp G, Ferguson G, Nachshon U, Wheater HS. 2013. Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges. Hydrogeol. J. 21:53–66
    [Google Scholar]
  27. 27. 
    Brooks PD, Chorover J, Ying F, Godsey SE, Maxwell RM et al. 2015. Hydrological partitioning in the critical zone: recent advances and opportunities for developing transferrable understanding of water cycle dynamics. Water Resourc. Res. 51:6973–87
    [Google Scholar]
  28. 28. 
    Coles A, McConkey B, McDonnell J. 2017. Climate change impacts on hillslope runoff on the northern Great Plains, 1962–2013. J. Hydrol. 550:538–48
    [Google Scholar]
  29. 29. 
    Dumanski S, Pomeroy JW, Westbrook CJ. 2015. Hydrological regime changes in a Canadian Prairie basin. Hydrol. Proc. 29:3893–904
    [Google Scholar]
  30. 30. 
    Ryberg KR, Akyüz FA, Wiche GJ, Lin W. 2016. Changes in seasonality and timing of peak streamflow in snow and semi-arid climates of the north-central United States, 1910–2012. Hydrol. Proc. 30:1208–18
    [Google Scholar]
  31. 31. 
    McGuigan CF, Hamula CL, Huang S, Gabos S, Le XC. 2010. A review on arsenic concentrations in Canadian drinking water. Environ. Rev. 18:291–307
    [Google Scholar]
  32. 32. 
    Carey SK, Tetzlaff D, Seibert J, Soulsby C, Buttle J et al. 2010. Inter-comparison of hydro-climatic regimes across northern catchments: synchronicity, resistance and resilience. Hydrol. Proc. 24:3591–602
    [Google Scholar]
  33. 33. 
    Cochand M, Molson J, Lemieux JM. 2019. Groundwater hydrogeochemistry in permafrost regions. Permafrost Periglac. Proc. 30:90–103
    [Google Scholar]
  34. 34. 
    Bense V, Kooi H, Ferguson G, Read T 2012. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J. Geophys. Res. Earth Surf. 117:F03036
    [Google Scholar]
  35. 35. 
    Lamontagne-Hallé P, McKenzie JM, Kurylyk BL, Zipper SC. 2018. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 13:084017
    [Google Scholar]
  36. 36. 
    Kane DL, Yoshikawa K, McNamara JP. 2013. Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA). Hydrogeol. J. 21:41–52
    [Google Scholar]
  37. 37. 
    Rowland JC, Travis BJ, Wilson CJ. 2011. The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys. Res. Lett. 38:L17504
    [Google Scholar]
  38. 38. 
    Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM et al. 2011. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405:532–60
    [Google Scholar]
  39. 39. 
    Grinevskii SO, Pozdnyakov SP. 2010. Principles of regional estimation of infiltration groundwater recharge based on geohydrological models. Water Resourc 37:638–52
    [Google Scholar]
  40. 40. 
    Dzhamalov RG, Frolova NL, Telegina EA. 2015. Winter runoff variations in European Russia. Water Resourc 42:758–65
    [Google Scholar]
  41. 41. 
    Brouchkov A. 2002. Nature and distribution of frozen saline sediments on the Russian Arctic coast. Permafrost Periglac. Proc. 13:83–90
    [Google Scholar]
  42. 42. 
    Chang D, Liu J. 2013. Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil. Sci. Cold Arid Regions 5:457–60
    [Google Scholar]
  43. 43. 
    Frey KE, Siegel DI, Smith LC. 2007. Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resourc. Res. 43:W03406
    [Google Scholar]
  44. 44. 
    Brouchkov A. 2000. Salt and water transfer in frozen soils induced by gradients of temperature and salt content. Permafrost Periglac. Proc. 11:153–60
    [Google Scholar]
  45. 45. 
    Lopez CL, Brouchkov A, Nakayama H, Takakai F, Fedorov A, Fukuda M. 2007. Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia. Hydrol. Proc. Int. J. 21:103–9
    [Google Scholar]
  46. 46. 
    Öquist MG, Sparrman T, Klemedtsson L, Drotz SH, Grip H et al. 2009. Water availability controls microbial temperature responses in frozen soil CO2 production. Glob. Chang. Biol. 15:2715–22
    [Google Scholar]
  47. 47. 
    Laudon H, Tetzlaff D, Soulsby C, Carey S, Seibert J et al. 2013. Change in winter climate will affect dissolved organic carbon and water fluxes in mid-to-high latitude catchments. Hydrol. Proc. 27:700–9
    [Google Scholar]
  48. 48. 
    Haei M, Öquist MG, Buffam I, Ågren A, Blomkvist P et al. 2010. Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water. Geophys. Res. Lett. 37:L08501
    [Google Scholar]
  49. 49. 
    Haei M, Öquist MG, Kreyling J, Ilstedt U, Laudon H. 2013. Winter climate controls soil carbon dynamics during summer in boreal forests. Environ. Res. Lett. 8:024017
    [Google Scholar]
  50. 50. 
    Tetzlaff D, Buttle J, Carey SK, McGuire K, Laudon H, Soulsby C. 2015. Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review. Hydrol. Proc. 29:3475–90
    [Google Scholar]
  51. 51. 
    Colombo N, Salerno F, Gruber S, Freppaz M, Williams M et al. 2018. Review: impacts of permafrost degradation on inorganic chemistry of surface fresh water. Global Planet. Change 162:69–83
    [Google Scholar]
  52. 52. 
    Walvoord MA, Striegl RG. 2007. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34:L12402
    [Google Scholar]
  53. 53. 
    Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M et al. 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13:2509–37
    [Google Scholar]
  54. 54. 
    Qiu C, Zhu D, Ciais P, Guenet B, Peng S. 2020. The role of northern peatlands in the global carbon cycle for the 21st century. Glob. Ecol. Biogeogr. 29:956–73
    [Google Scholar]
  55. 55. 
    Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D et al. 2020. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13:138–43
    [Google Scholar]
  56. 56. 
    Wagner-Riddle C, Congreves KA, Abalos D, Berg AA, Brown SE et al. 2017. Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nat. Geosci. 10:279–83
    [Google Scholar]
  57. 57. 
    Drake TW, Wickland KP, Spencer RG, McKnight DM, Striegl RG 2015. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. PNAS 112:13946–51
    [Google Scholar]
  58. 58. 
    Drotz SH, Sparrman T, Nilsson MB, Schleucher J, Öquist MG 2010. Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils. PNAS 107:21046–51
    [Google Scholar]
  59. 59. 
    Segura JH, Nilsson MB, Haei M, Sparrman T, Mikkola J-P et al. 2017. Microbial mineralization of cellulose in frozen soils. Nat. Commun. 8:1154
    [Google Scholar]
  60. 60. 
    He H, Jansson P-E, Svensson M, Björklund J, Tarvainen L et al. 2016. Forests on drained agricultural peatland are potentially large sources of greenhouse gases—insights from a full rotation period simulation. Biogeosciences 13:2305–18
    [Google Scholar]
  61. 61. 
    Matzner E, Borken W. 2008. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur. J. Soil Sci. 59:274–84
    [Google Scholar]
  62. 62. 
    Commane R, Lindaas J, Benmergui J, Luus KA, Chang RYW et al. 2017. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. PNAS 114:5361–66
    [Google Scholar]
  63. 63. 
    Öquist MG, Nilsson M, Sörensson F, Kasimir-Klemedtsson Å, Persson T et al. 2004. Nitrous oxide production in a forest soil at low temperatures-processes and environmental controls. FEMS Microbiol. Ecol. 49:371–78
    [Google Scholar]
  64. 64. 
    Natali SM, Watts JD, Rogers BM, Potter S, Ludwig SM et al. 2019. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9:852–57
    [Google Scholar]
  65. 65. 
    Ribeiro-Kumara C, Köster E, Aaltonen H, Köster K. 2020. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environ. Res. 184:109328
    [Google Scholar]
  66. 66. 
    Joabsson A, Christensen TR, Wallén B. 1999. Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol. Evol. 14:385–88
    [Google Scholar]
  67. 67. 
    Grannas AM, Bogdal C, Hageman KJ, Halsall C, Harner T et al. 2013. The role of the global cryosphere in the fate of organic contaminants. Atmos. Chem. Phys. 13:3271–305
    [Google Scholar]
  68. 68. 
    Durnford D, Dastoor A, Figueras-Nieto D, Ryjkov A. 2010. Long range transport of mercury to the Arctic and across Canada. Atmos. Chem. Phys. 10:6063–86
    [Google Scholar]
  69. 69. 
    Wang S, Mulligan CN. 2006. Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci. Total Environ. 366:701–21
    [Google Scholar]
  70. 70. 
    Cumberland SA, Douglas G, Grice K, Moreau JW. 2016. Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes. Earth-Sci. Rev. 159:160–85
    [Google Scholar]
  71. 71. 
    Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M et al. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44:15–23
    [Google Scholar]
  72. 72. 
    Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF et al. 2018. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45:1463–71
    [Google Scholar]
  73. 73. 
    Chételat J, Amyot M, Arp P, Blais JM, Depew D et al. 2015. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate. Sci. Total Environ. 509:41–66
    [Google Scholar]
  74. 74. 
    Yu Y, Katsoyiannis A, Bohlin-Nizzetto P, Brorström-Lundén E, Ma J et al. 2019. Polycyclic aromatic hydrocarbons not declining in Arctic air despite global emission reduction. Environ. Sci. Technol. 53:2375–82
    [Google Scholar]
  75. 75. 
    Brosten TR, Bradford JH, McNamara JP, Zarnetske JP, Gooseff MN, Bowden WB. 2006. Profiles of temporal thaw depths beneath two arctic stream types using ground-penetrating radar. Permafrost Periglac. Proc. 17:341–55
    [Google Scholar]
  76. 76. 
    Zarnetske JP, Gooseff MN, Bowden WB, Greenwald MJ, Brosten TR et al. 2008. Influence of morphology and permafrost dynamics on hyporheic exchange in arctic headwater streams under warming climate conditions. Geophys. Res. Lett. 35:L02501
    [Google Scholar]
  77. 77. 
    Mulholland PJ, Marzolf ER, Webster JR, Hart DR, Hendricks SP. 1997. Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnol. Oceanogr. 42:443–51
    [Google Scholar]
  78. 78. 
    Wondzell SM. 2011. The role of the hyporheic zone across stream networks. Hydrol. Proc. 25:3525–32
    [Google Scholar]
  79. 79. 
    Edwardson KJ, Bowden WB, Dahm C, Morrice J. 2003. The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Arctic tundra streams, north slope, Alaska. Adv. Water Resourc 26:907–23
    [Google Scholar]
  80. 80. 
    Bardgett RD, Freeman C, Ostle NJ. 2008. Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–14
    [Google Scholar]
  81. 81. 
    Friberg N, Bergfur J, Rasmussen J, Sandin L. 2013. Changing northern catchments: Is altered hydrology, temperature or both going to shape future stream communities and ecosystem processes?. Hydrol. Proc 27:734–40
    [Google Scholar]
  82. 82. 
    Monteux S, Keuper F, Fontaine S, Gavazov K, Hallin S et al. 2020. Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations. Nat. Geosci. 13:794–98
    [Google Scholar]
  83. 83. 
    Chen J, Luo Y, Xia J, Jiang L, Zhou X et al. 2015. Stronger warming effects on microbial abundances in colder regions. Sci. Rep. 5:18032
    [Google Scholar]
  84. 84. 
    Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL et al. 2011. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–71
    [Google Scholar]
  85. 85. 
    Jusselme M-D, Saccone P, Zinger L, Faure M, Le Roux X et al. 2016. Variations in snow depth modify N-related soil microbial abundances and functioning during winter in subalpine grassland. Soil Biol. Biochem. 92:27–37
    [Google Scholar]
  86. 86. 
    Deslippe JR, Hartmann M, Simard SW, Mohn WW. 2012. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol. Ecol. 82:303–15
    [Google Scholar]
  87. 87. 
    Weedon JT, Kowalchuk GA, Aerts R, Freriks S, Röling WF, van Bodegom PM. 2017. Compositional stability of the bacterial community in a climate-sensitive sub-Arctic peatland. Front. Microbiol. 8:317
    [Google Scholar]
  88. 88. 
    Tsyganov AN, Aerts R, Nijs I, Cornelissen JH, Beyens L. 2012. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations. Protist 163:400–14
    [Google Scholar]
  89. 89. 
    Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N et al. 2018. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3:e00076–18
    [Google Scholar]
  90. 90. 
    Johnston ER, Hatt JK, He Z, Wu L, Guo X et al. 2019. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. PNAS 116:15096–105
    [Google Scholar]
  91. 91. 
    Crowther TW, Boddy L, Jones TH. 2012. Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME J 6:1992–2001
    [Google Scholar]
  92. 92. 
    Schmidt IK, Jonasson S, Shaver G, Michelsen A, Nordin A. 2002. Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant Soil 242:93–106
    [Google Scholar]
  93. 93. 
    Kwon MJ, Jung JY, Tripathi BM, Göckede M, Lee YK, Kim M. 2019. Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic. J. Microbiol. 57:325–36
    [Google Scholar]
  94. 94. 
    Weedon JT, Kowalchuk GA, Aerts R, van Hal J, van Logtestijn R et al. 2012. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Glob. Change Biol. 18:138–50
    [Google Scholar]
  95. 95. 
    Coolen MJL, Orsi WD. 2015. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front. Microbiol. 6:197
    [Google Scholar]
  96. 96. 
    Lavelle P. 1997. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv. Ecol. Res. 27:93–132
    [Google Scholar]
  97. 97. 
    Heemsbergen D, Berg M, Loreau M, Van Hal J, Faber J, Verhoef H. 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–20
    [Google Scholar]
  98. 98. 
    Alatalo JM, Jägerbrand AK, Čuchta P. 2015. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. Sci. Rep. 5:18161
    [Google Scholar]
  99. 99. 
    Thakur MP, Reich PB, Hobbie SE, Stefanski A, Rich R et al. 2018. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8:75–78
    [Google Scholar]
  100. 100. 
    Krab EJ, Oorsprong H, Berg MP, Cornelissen JH. 2010. Turning northern peatlands upside down: disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct. Ecol. 24:1362–69
    [Google Scholar]
  101. 101. 
    Koltz AM, Classen AT, Wright JP 2018. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra. PNAS 115:E7541–49
    [Google Scholar]
  102. 102. 
    Coulson SJ, Convey P, Aakra K, Aarvik L, Ávila-Jiménez ML et al. 2014. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol. Biochem. 68:440–70
    [Google Scholar]
  103. 103. 
    Wackett AA, Yoo K, Olofsson J, Klaminder J. 2018. Human-mediated introduction of geoengineering earthworms in the Fennoscandian arctic. Biol. Invasions 20:1377–86
    [Google Scholar]
  104. 104. 
    Blume-Werry G, Krab EJ, Olofsson J, Sundqvist MK, Väisänen M, Klaminder J. 2020. Invasive earthworms unlock arctic plant nitrogen limitation. Nat. Commun. 11:1766
    [Google Scholar]
  105. 105. 
    Bokhorst S, Phoenix GK, Bjerke JW, Callaghan TV, Huyer-Brugman F, Berg MP. 2012. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Glob. Change Biol. 18:1152–62
    [Google Scholar]
  106. 106. 
    Fuhrer J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agricult. Ecosyst. Environ. 97:1–20
    [Google Scholar]
  107. 107. 
    Olesen JE, Bindi M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16:239–62
    [Google Scholar]
  108. 108. 
    Piao S, Ciais P, Huang Y, Shen Z, Peng S et al. 2010. The impacts of climate change on water resources and agriculture in China. Nature 467:43–51
    [Google Scholar]
  109. 109. 
    Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB et al. 2005. Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim. Change 72:251–98
    [Google Scholar]
  110. 110. 
    Hou X, Han X, Li H, Xing B. 2010. Composition and organic carbon distribution of organomineral complex in black soil under different land uses and management systems. Commun. Soil Sci. Plant Anal. 41:1129–43
    [Google Scholar]
  111. 111. 
    Liu X, Zhang X, Wang Y, Sui Y, Zhang S et al. 2010. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ 56:87–97
    [Google Scholar]
  112. 112. 
    Struik PC, Kuyper TW. 2017. Sustainable intensification in agriculture: the richer shade of green. A review. Agron. Sustain. Dev. 37:39
    [Google Scholar]
  113. 113. 
    Huang L, Liang Z, Suarez DL, Wang Z, Wang M et al. 2016. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. J. Agric. Sci. 154:632–46
    [Google Scholar]
  114. 114. 
    Hemes KS, Chamberlain SD, Eichelmann E, Anthony T, Valach A et al. 2019. Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agric. Forest Meteorol. 268:202–14
    [Google Scholar]
  115. 115. 
    van der Kamp G, Hayashi M, Gallén D. 2003. Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies. Hydrol. Proc. 17:559–75
    [Google Scholar]
  116. 116. 
    Hirota T, Usuki K, Hayashi M, Nemoto M, Iwata Y et al. 2011. Soil frost control: agricultural adaptation to climate variability in a cold region of Japan. Mitig. Adapt. Strateg. Glob. Change 16:791
    [Google Scholar]
  117. 117. 
    Henry HAL. 2013. Soil freezing dynamics in a changing climate: implications for agriculture. Plant and Microbe Adaptations to Cold in a Changing World R Imai, M Yoshida, N Matsumoto New York: Springer https://doi.org/10.1007/978-1-4614-8253-6_2
    [Crossref] [Google Scholar]
  118. 118. 
    Li L-J, You M-Y, Shi H-A, Ding X-L, Qiao Y-F, Han X-Z. 2013. Soil CO2 emissions from a cultivated Mollisol: effects of organic amendments, soil temperature, and moisture. Eur. J. Soil Biol. 55:83–90
    [Google Scholar]
  119. 119. 
    Jia S, Zhang X, Chen X, McLaughlin NB, Zhang S et al. 2016. Long-term conservation tillage influences the soil microbial community and its contribution to soil CO2 emissions in a Mollisol in Northeast China. J. Soils Sediments 16:1–12
    [Google Scholar]
  120. 120. 
    van Bochove E, Jones HG, Bertrand N, Prévost D. 2000. Winter fluxes of greenhouse gases from snow-covered agricultural soil: intra-annual and interannual variations. Glob. Biogeochem. Cycles 14:113–25
    [Google Scholar]
  121. 121. 
    Groffman PM, Hardy JP, Fashu-Kanu S, Driscoll CT, Cleavitt NL et al. 2011. Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape. Biogeochemistry 102:223–38
    [Google Scholar]
  122. 122. 
    McClelland JW, Stieglitz M, Pan F, Holmes RM, Peterson BJ. 2007. Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J. Geophys. Res. Biogeosci 112:G04S60
    [Google Scholar]
  123. 123. 
    Chapin FS III, Peterson G, Berkes F, Callaghan T, Angelstam P et al. 2004. Resilience and vulnerability of northern regions to social and environmental change. AMBIO: J. Hum. Environ. 33:344–49
    [Google Scholar]
  124. 124. 
    Cannone N, Sgorbati S, Guglielmin M. 2007. Unexpected impacts of climate change on alpine vegetation. Front. Ecol. Environ. 5:360–64
    [Google Scholar]
  125. 125. 
    Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T et al. 2013. Long-term climate change: projections, commitments and irreversibility. Climate Change 2013—The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.1029–136 Cambridge/New York: Cambridge Univ. Press
    [Google Scholar]
  126. 126. 
    Wu Q, Zhang Z, Gao S, Ma W 2016. Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai-Tibet Plateau, China. Cryosphere 10:1695–706
    [Google Scholar]
  127. 127. 
    Lin Z, Niu F, Liu H, Lu J. 2011. Disturbance-related thawing of a ditch and its influence on roadbeds on permafrost. Cold Regions Sci. Technol. 66:105–14
    [Google Scholar]
  128. 128. 
    Borken W, Davidson EA, Savage K, Sundquist ET, Steudler P. 2006. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biol. Biochem. 38:1388–95
    [Google Scholar]
  129. 129. 
    Salmon VG, Schädel C, Bracho R, Pegoraro E, Celis G et al. 2018. Adding depth to our understanding of nitrogen dynamics in permafrost soils. J. Geophys. Res. Biogeosci. 123:2497–512
    [Google Scholar]
  130. 130. 
    White T, Brantley S, Banwart S, Chorover J, Dietrich W et al. 2015. The role of critical zone observatories in critical zone science. Developments in Earth Surface Processes, Vol. 19 JR Giardino, C Houser 15–78 Amsterdam: Elsevier
    [Google Scholar]
  131. 131. 
    Riseborough D, Shiklomanov N, Etzelmüller B, Gruber S, Marchenko S. 2008. Recent advances in permafrost modelling. Permafrost Periglac. Proc. 19:137–56
    [Google Scholar]
  132. 132. 
    Davison W, Zhang H. 2012. Progress in understanding the use of diffusive gradients in thin films (DGT)—back to basics. Environ. Chem. 9:1–13
    [Google Scholar]
  133. 133. 
    Gao Y, Leermakers M, Gabelle C, Divis P, Billon G et al. 2006. High-resolution profiles of trace metals in the pore waters of riverine sediment assessed by DET and DGT. Sci. Total Environ. 362:266–77
    [Google Scholar]
  134. 134. 
    Cesbron F, Metzger E, Launeau P, Deflandre B, Delgard M-L et al. 2014. Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods. Environ. Sci. Technol. 48:2816–26
    [Google Scholar]
  135. 135. 
    Amato ED, Simpson SL, Jarolimek CV, Jolley DF. 2014. Diffusive gradients in thin films technique provide robust prediction of metal bioavailability and toxicity in estuarine sediments. Environ. Sci. Technol. 48:4485–94
    [Google Scholar]
  136. 136. 
    Peng Q, Wang M, Cui Z, Huang J, Chen C et al. 2017. Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT). Environ. Pollut. 225:637–43
    [Google Scholar]
  137. 137. 
    Koppel DJ, Adams MS, King CK, Jolley DF. 2019. Diffusive gradients in thin films can predict the toxicity of metal mixtures to two microalgae: validation for environmental monitoring in Antarctic marine conditions. Environ. Toxicol Chem. 38:1323–33
    [Google Scholar]
  138. 138. 
    Søndergaard J, Bach L, Gustavson K. 2014. Measuring bioavailable metals using diffusive gradients in thin films (DGT) and transplanted seaweed (Fucus vesiculosus), blue mussels (Mytilus edulis) and sea snails (Littorina saxatilis) suspended from monitoring buoys near a former lead-zinc mine in West Greenland. Mar. Pollut. Bull. 78:102–9
    [Google Scholar]
  139. 139. 
    Mellage A, Smeaton CM, Furman A, Atekwana EA, Rezanezhad F, Van Cappellen P. 2018. Linking spectral induced polarization (SIP) and subsurface microbial processes: results from sand column incubation experiments. Environ. Sci. Technol. 52:2081–90
    [Google Scholar]
  140. 140. 
    Nitze I, Grosse G, Jones BM, Romanovsky VE, Boike J. 2018. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9:5423
    [Google Scholar]
  141. 141. 
    Not C, Hillaire-Marcel C, Ghaleb B, Polyak L, Darby D. 2008. 210Pb-226Ra-230Th systematics in very low sedimentation rate sediments from the Mendeleev Ridge (Arctic Ocean). Can. J. Earth Sci. 45:1207–19
    [Google Scholar]
  142. 142. 
    Navarro-Martinez F, Garcia AS, Sánchez-Martos F, Espasa AB, Sánchez LM, Perulero AR. 2017. Radionuclides as natural tracers of the interaction between groundwater and surface water in the River Andarax, Spain. J. Environ. Radioactivity 180:9–18
    [Google Scholar]
  143. 143. 
    Kuzyk ZZA, Gobeil C, Macdonald RW. 2013. 210Pb and 137Cs in margin sediments of the Arctic Ocean: controls on boundary scavenging. Glob. Biogeochem. Cycles 27:422–39
    [Google Scholar]
  144. 144. 
    Haggerty R, Martí E, Argerich A, Von Schiller D, Grimm NB 2009. Resazurin as a “smart” tracer for quantifying metabolically active transient storage in stream ecosystems. J. Geophys. Res. Biogeosci. 114:G03014
    [Google Scholar]
  145. 145. 
    MacKenzie A. 2000. Environmental radioactivity: experience from the 20th century-trends and issues for the 21st century. Sci. Total Environ. 249:313–29
    [Google Scholar]
  146. 146. 
    Zolkos S, Tank SE, Kokelj SV. 2018. Mineral weathering and the permafrost carbon-climate feedback. Geophys. Res. Lett. 45:9623–32
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012220-125703
Loading
/content/journals/10.1146/annurev-environ-012220-125703
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error