1932

Abstract

In 2009, a group of 29 scholars argued that we can identify a set of “planetary boundaries” that humanity must not cross at the cost of its own peril. This planetary boundaries framework has been influential in generating academic debate and in shaping research projects and policy recommendations worldwide. Yet, it has also come under heavy scrutiny and been criticized. What is today's overall significance and impact of the notion of planetary boundaries for earth system science and earth system governance? We review here the development of the concept and address several lines of criticism, from earth system science, development studies, and science and technology studies. We also examine some applications of the framework, discuss broader governance implications, and reflect on actual policy relevance. In concluding, we explore the most recent incarnation of the planetary boundaries framework in its avatar as earth system targets supported by an Earth Commission.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012320-080337
2020-10-17
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/energy/45/1/annurev-environ-012320-080337.html?itemId=/content/journals/10.1146/annurev-environ-012320-080337&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III et al. 2009. A safe operating space for humanity. Nature 461:7263472–75
    [Google Scholar]
  2. 2. 
    Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III et al. 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14:21–33
    [Google Scholar]
  3. 3. 
    Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:62231–10
    [Google Scholar]
  4. 4. 
    Brown K. 2016. Global environmental change II: Planetary boundaries—a safe operating space for human geographers. Prog. Hum. Geogr. 41:1118–30
    [Google Scholar]
  5. 5. 
    Butler CD. 2017. Limits to growth, planetary boundaries, and planetary health. Curr. Opin. Environ. Sustain. 25:59–65
    [Google Scholar]
  6. 6. 
    Boulding KE. 1966. The economics of the coming spaceship earth. Environmental Quality in a Growing Economy: Essays from the Sixth RFF Forum3–14 Baltimore: Johns Hopkins Press
    [Google Scholar]
  7. 7. 
    Meadows DH, Meadows DJ, Randers J, Behrens WW III 1972. The Limits to Growth: A Report for the Club of Rome's Project on the Predicament of Mankind New York: Universe Books
    [Google Scholar]
  8. 8. 
    Lenton TM, Held H, Kriegler E, Hall JW, Lucht W et al. 2008. Tipping elements in the earth's climate system. PNAS 105:61786–93
    [Google Scholar]
  9. 9. 
    Schellnhuber HJ. 2009. Tipping elements in the earth system. PNAS 106:4920561–63
    [Google Scholar]
  10. 10. 
    Lenton TM, Williams HTP. 2013. On the origin of planetary-scale tipping points. Trends Ecol. Evol. 28:7380–82
    [Google Scholar]
  11. 11. 
    Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR et al. 2009. Early-warning signals for critical transitions. Nature 461:726053–59
    [Google Scholar]
  12. 12. 
    German Advisory Council on Global Change 1997. World in Transition: The Research Challenge Berlin: Springer
    [Google Scholar]
  13. 13. 
    German Advisory Council on Global Change 2000. World in Transition: Strategies for Managing Global Environmental Risks Berlin: Springer
    [Google Scholar]
  14. 14. 
    Morseletto P, Biermann F, Pattberg P 2017. Governing by targets: Reductio ad unum and evolution of the two-degree climate target. Int. Environ. Agreem.: Politics Law Econ. 17:5655–76
    [Google Scholar]
  15. 15. 
    Anderies JM, Carpenter SR, Steffen W, Rockström J 2013. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environ. Res. Lett. 8:4044048–15
    [Google Scholar]
  16. 16. 
    Boyd PW. 2011. Beyond ocean acidification. Nat. Geosci. 4:5273–74
    [Google Scholar]
  17. 17. 
    Schlesinger WH. 2009. Thresholds risk prolonged degradation. Nat. Rep. Clim. Change 3:112–13
    [Google Scholar]
  18. 18. 
    Allen M. 2009. Tangible targets are critical. Nat. Rep. Clim. Change 3:114–15
    [Google Scholar]
  19. 19. 
    Molina MJ. 2009. Identifying abrupt change. Nat. Rep. Clim. Change 3:115–16
    [Google Scholar]
  20. 20. 
    Molden D. 2009. Planetary boundaries: The devil is in the detail. Nat. Rep. Clim. Change 3:116–17
    [Google Scholar]
  21. 21. 
    Bass S. 2009. Keep off the grass. Nat. Rep. Clim. Change 3:113–14
    [Google Scholar]
  22. 22. 
    Brewer P. 2009. Consider all consequences. Nat. Rep. Clim. Change 3:117–18
    [Google Scholar]
  23. 23. 
    Samper C. 2009. Rethinking biodiversity. Nat. Rep. Clim. Change 3:118–19
    [Google Scholar]
  24. 24. 
    Nature 2009. Earth's boundaries. Nature 461:447–48
    [Google Scholar]
  25. 25. 
    Robèrt K-H, Broman GI, Basile G 2013. Analyzing the concept of planetary boundaries from a strategic sustainability perspective: How does humanity avoid tipping the planet. Ecol. Soc. 18:25
    [Google Scholar]
  26. 26. 
    Jaramillo F, Destouni G. 2015. Comment on “Planetary boundaries: guiding human development on a changing planet. .” Science 348:1217
    [Google Scholar]
  27. 27. 
    Gerten D, Rockström J, Heinke J, Steffen W, Richardson K, Cornell S 2015. Response to comment on “Planetary boundaries: guiding human development on a changing planet. .” Science 348:62401217
    [Google Scholar]
  28. 28. 
    Carpenter SR, Bennett EM. 2011. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6:1014009–13
    [Google Scholar]
  29. 29. 
    de Vries W, Kros J, Kroeze C, Seitzinger SP 2013. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5:3–4392–402
    [Google Scholar]
  30. 30. 
    Li M, Wiedmann T, Hadjikakou M 2019. Towards meaningful consumption-based planetary boundary indicators: the phosphorus exceedance footprint. Glob. Environ. Change 54:227–38
    [Google Scholar]
  31. 31. 
    Persson LM, Breitholtz M, Cousins IT, de Wit CA, MacLeod M, McLachlan MS 2013. Confronting unknown planetary boundary threats from chemical pollution. Environ. Sci. Technol. 47:2212619–22
    [Google Scholar]
  32. 32. 
    Posthuma L, Bjørn A, Zijp MC, Birkved M, Diamond ML et al. 2014. Beyond safe operating space: finding chemical footprinting feasible. Environ. Sci. Technol. 48:116057–59
    [Google Scholar]
  33. 33. 
    MacLeod M, Breitholtz M, Cousins IT, de Wit CA, Persson LM et al. 2014. Identifying chemicals that are planetary boundary threats. Environ. Sci. Technol. 48:1911057–63
    [Google Scholar]
  34. 34. 
    Diamond ML, de Wit CA, Molander S, Scheringer M, Backhaus T et al. 2015. Exploring the planetary boundary for chemical pollution. Environ. Int. 78:8–15
    [Google Scholar]
  35. 35. 
    Brook BW, Ellis EC, Perring MP, Mackay AW, Blomqvist L 2013. Does the terrestrial biosphere have planetary tipping points. Trends Ecol. Evol. 28:7396–401
    [Google Scholar]
  36. 36. 
    Mace GM, Reyers B, Alkemade R, Biggs R, Chapin FS III et al. 2014. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28:289–97
    [Google Scholar]
  37. 37. 
    Montoya JM, Donohue I, Pimm SL 2018. Planetary boundaries for biodiversity: implausible science, pernicious policies. Trends Ecol. Evol. 33:271–73
    [Google Scholar]
  38. 38. 
    Rockström J, Richardson K, Steffen W, Mace G 2018. Planetary boundaries: separating fact from fiction. A response to Montoya et al. Trends Ecol. Evol. 33:4232–33
    [Google Scholar]
  39. 39. 
    Nash KL, Cvitanovic C, Fulton EA, Halpern BS, Milner-Gulland EJ et al. 2017. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1:111625–34
    [Google Scholar]
  40. 40. 
    Running SW. 2012. A measurable planetary boundary for the biosphere. Science 337:61011458–59
    [Google Scholar]
  41. 41. 
    Erb K-H, Haberl H, DeFries R, Ellis EC, Krausmann F, Verburg PH 2012. Pushing the planetary boundaries. Science 338:1419–20
    [Google Scholar]
  42. 42. 
    Haberl H, Erb K-H, Krausmann F 2014. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39:36391
    [Google Scholar]
  43. 43. 
    Cornell S. 2012. On the system properties of the planetary boundaries. Ecol. Soc. 17:1r2
    [Google Scholar]
  44. 44. 
    Lewis SL. 2012. We must set planetary boundaries wisely. Nature 485:417
    [Google Scholar]
  45. 45. 
    Hughes TP, Carpenter S, Rockström J, Scheffer M, Walker B 2013. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 28:7389–95
    [Google Scholar]
  46. 46. 
    Saunders FP. 2015. Planetary boundaries: at the threshold…again: sustainable development ideas and politics. Environ. Dev. Sustain. 17:4823–35
    [Google Scholar]
  47. 47. 
    Raworth K. 2012. A safe and just space for humanity: Can we live within the doughnut? Policy Pap., Oxfam Int Nairobi, Kenya: https://www.oxfam.org/en/research/safe-and-just-space-humanity
    [Google Scholar]
  48. 48. 
    Leach M, Raworth K, Rockström J 2013. Between social and planetary boundaries: navigating pathways in the safe and just space for humanity. World Social Science Report 2013: Changing Global Environments84–89 Paris: OECD Publ., UNESCO Publ.
    [Google Scholar]
  49. 49. 
    Raworth K. 2017. Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist Hartford, VT: Chelsea Green Publ.
    [Google Scholar]
  50. 50. 
    Steffen W, Stafford Smith M 2013. Planetary boundaries, equity and global sustainability: why wealthy countries could benefit from more equity. Curr. Opin. Environ. Sustain. 5:403–8
    [Google Scholar]
  51. 51. 
    Schmidt F. 2013. Governing planetary boundaries: Limiting or enabling conditions for transitions towards sustainability?. Transgovernance Advancing Sustainability Governance L Meuleman 215–34 Berlin: Springer
    [Google Scholar]
  52. 52. 
    Pickering J, Persson Å 2019. Democratising planetary boundaries: experts, social values and deliberative risk evaluation in earth system governance. J. Environ. Policy Plann. 22:159–71
    [Google Scholar]
  53. 53. 
    Bogardi JJ, Dudgeon D, Lawford R, Flinkerbusch E, Meyn A et al. 2012. Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Curr. Opin. Environ. Sustain. 4:135–43
    [Google Scholar]
  54. 54. 
    Bogardi JJ, Fekete BM, Vörösmarty CJ 2013. Planetary boundaries revisited: a view through the “water lens. .” Curr. Opin. Environ. Sustain. 5:6581–89
    [Google Scholar]
  55. 55. 
    Rockström J, Karlberg L. 2010. The quadruple squeeze: defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene. Ambio 39:3257–65
    [Google Scholar]
  56. 56. 
    Nilsson M, Persson Å 2012. Can earth system interactions be governed? Governance functions for linking climate change mitigation with land use, freshwater and biodiversity protection. Ecol. Econ. 81:10–20
    [Google Scholar]
  57. 57. 
    Nykvist B, Persson Å, Moberg F, Persson L, Cornell S, Rockström J 2013. National environmental performance on planetary boundaries: a study for the Swedish Environmental Protection Agency Rep. 6576 Swed. Environ. Protect. Agency: Stockholm:
    [Google Scholar]
  58. 58. 
    Dearing JA, Wang R, Zhang K, Dyke JG, Haberl H et al. 2014. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change 28:227–38
    [Google Scholar]
  59. 59. 
    Cole MJ, Bailey RM, New MG 2014. Tracking sustainable development with a national barometer for South Africa using a downscaled “safe and just space” framework. PNAS 111:42E4399–408
    [Google Scholar]
  60. 60. 
    Fanning AL, O'Neill DW. 2016. Tracking resource use relative to planetary boundaries in a steady-state framework: a case study of Canada and Spain. Ecol. Indic. 69:836–49
    [Google Scholar]
  61. 61. 
    Häyhä T, Lucas PL, van Vuuren DP, Cornell SE, Hoff H 2016. From planetary boundaries to national fair shares of the global safe operating space: How can the scales be bridged. Glob. Environ. Change 40:60–72
    [Google Scholar]
  62. 62. 
    Hoornweg D, Hosseini M, Kennedy C, Behdadi A 2016. An urban approach to planetary boundaries. Ambio 45:5567–80
    [Google Scholar]
  63. 63. 
    Teah H, Akiyama T, San Carlos R, Rayo O, Khew Y et al. 2016. Assessment of downscaling planetary boundaries to semi-arid ecosystems with a local perception: a case study in the middle reaches of Heihe River. Sustainability 8:121233
    [Google Scholar]
  64. 64. 
    Dao H, Peduzzi P, Friot D 2018. National environmental limits and footprints based on the planetary boundaries framework: the case of Switzerland. Glob. Environ. Change 52:49–57
    [Google Scholar]
  65. 65. 
    Hossain MS, Dearing JA, Eigenbrod F, Johnson FA 2017. Operationalizing safe operating space for regional social-ecological systems. Sci. Total Environ. 584–585:673–82
    [Google Scholar]
  66. 66. 
    McLaughlin JF. 2018. Safe operating space for humanity at a regional scale. Ecol. Soc. 23:243
    [Google Scholar]
  67. 67. 
    Cooper GS, Dearing JA. 2019. Modelling future safe and just operating spaces in regional social-ecological systems. Sci. Total Environ. 651:Part 22105–17
    [Google Scholar]
  68. 68. 
    Sala S, Goralczyk M. 2013. Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution. Integr. Environ. Assess. Manag. 9:4623–32
    [Google Scholar]
  69. 69. 
    Vargas-Gonzalez M, Witte F, Martz P, Gilbert L, Humbert S et al. 2019. Operational life cycle impact assessment weighting factors based on planetary boundaries: applied to cosmetic products. Ecol. Indic. 107:105498
    [Google Scholar]
  70. 70. 
    Sandin G, Peters GM, Svanström M 2015. Using the planetary boundaries framework for setting impact-reduction targets in LCA contexts. Int. J. Life Cycle Assess. 20:121684–700
    [Google Scholar]
  71. 71. 
    Carpenter SR, Brock WA, Hansen GJA, Hansen JF, Hennessy JM et al. 2017. Defining a safe operating space for inland recreational fisheries. Fish Fish 18:61150–60
    [Google Scholar]
  72. 72. 
    Haffar M, Searcy C. 2018. Target-setting for ecological resilience: Are companies setting environmental sustainability targets in line with planetary thresholds. Bus. Strategy Environ. 27:71079–92
    [Google Scholar]
  73. 73. 
    Downing AS, Bhowmik A, Collste D, Cornell SE, Donges J et al. 2019. Matching scope, purpose and uses of planetary boundaries science. Environ. Res. Lett. 14:7073005–12
    [Google Scholar]
  74. 74. 
    Ryberg MW, Owsianiak M, Richardson K, Hauschild MZ 2016. Challenges in implementing a planetary boundaries based life-cycle impact assessment methodology. J. Cleaner Prod. 139:450–59
    [Google Scholar]
  75. 75. 
    Ryberg MW, Owsianiak M, Clavreul J, Mueller C, Sim S et al. 2018. How to bring absolute sustainability into decision-making: an industry case study using a planetary boundary-based methodology. Sci. Total Environ. 634:1406–16
    [Google Scholar]
  76. 76. 
    Sverdrup HU, Ragnarsdottir KV. 2011. Challenging the planetary boundaries II: assessing the sustainable global population and phosphate supply, using a systems dynamics assessment model. Appl. Geochem. 26:Suppl.S307–10
    [Google Scholar]
  77. 77. 
    Algunaibet IM, Pozo C, Galán-Martín Á, Huijbregts MAJ, Mac Dowell N, Guillén-Gosálbez G 2019. Powering sustainable development within planetary boundaries. Energy Environ. Sci. 12:61890–900
    [Google Scholar]
  78. 78. 
    Uusitalo V, Kuokkanen A, Grönman K, Ko N, Mäkinen H, Koistinen K 2019. Environmental sustainability assessment from planetary boundaries perspective: a case study of an organic sheep farm in Finland. Sci. Total Environ. 687:168–76
    [Google Scholar]
  79. 79. 
    United Nations Environment Programme 2019. Global Environment Outlook 6: Healthy Planet, Healthy People Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  80. 80. 
    O'Neill DW, Fanning AL, Lamb WF, Steinberger JK 2018. A good life for all within planetary boundaries. Nat. Sustain. 1:288–95
    [Google Scholar]
  81. 81. 
    Kahiluoto H, Kuisma M, Kuokkanen A, Mikkilä M, Linnanen L 2014. Taking planetary nutrient boundaries seriously: Can we feed the people. Glob. Food Secur. 3:116–21
    [Google Scholar]
  82. 82. 
    Conijn JG, Bindraban PS, Schröder JJ, Jongschaap REE 2018. Can our global food system meet food demand within planetary boundaries. Agric. Ecosystems Environ. 251:244–56
    [Google Scholar]
  83. 83. 
    Kahiluoto H, Kuisma M, Kuokkanen A, Mikkilä M, Linnanen L 2015. Local and social facets of planetary boundaries: right to nutrients. Environ. Res. Lett. 10:10104013
    [Google Scholar]
  84. 84. 
    Hickel J. 2018. Is it possible to achieve a good life for all within planetary boundaries. Third World Q 40:118–35
    [Google Scholar]
  85. 85. 
    Heijungs R, de Koning A, Guinée JB 2014. Maximizing affluence within the planetary boundaries. Int. J. Life Cycle Assess. 45:10178–75
    [Google Scholar]
  86. 86. 
    Galaz V, de Zeeuw A, Shiroyama H, Tripley D 2016. Planetary boundaries: governing emerging risks and opportunities. Solutions 7:346–54
    [Google Scholar]
  87. 87. 
    Biermann F, Abbott K, Andresen S, Bäckstrand K, Bernstein S et al. 2012. Navigating the Anthropocene: improving earth system governance. Science 335:60741306–7
    [Google Scholar]
  88. 88. 
    Biermann F. 2014. Earth System Governance: World Politics in the Anthropocene Cambridge, MA: MIT Press
    [Google Scholar]
  89. 89. 
    Sterner T, Barbier EB, Bateman I, Bijgaart I, Crépin A-S et al. 2019. Policy design for the Anthropocene. Nat. Sustain. 2:114–23
    [Google Scholar]
  90. 90. 
    Planetary Boundaries Initiative 2012. Draft United Nations Declaration on Planetary Boundaries http://planetaryboundariesinitiative.org/about-2/declarations/draftonpb/. Last accessed November 22, 2019
    [Google Scholar]
  91. 91. 
    Fernández EF, Malwé C. 2018. The emergence of the “planetary boundaries” concept in international environmental law: a proposal for a framework convention. Rev. Eur. Comp. Int. Environ. Law 28:148–56
    [Google Scholar]
  92. 92. 
    Costanza R, McGlade J, Lovins H, Kubiszewski I 2015. An overarching goal for the UN Sustainable Development Goals. Solutions 5:413–16
    [Google Scholar]
  93. 93. 
    Ebbesson J. 2014. Planetary boundaries and the matching of international treaty regimes. Scand. Stud. Law 59:259–84
    [Google Scholar]
  94. 94. 
    Chapron G, Epstein Y, Trouwborst A, López-Bao JV 2017. Bolster legal boundaries to stay within planetary boundaries. Nat. Ecol. Evol. 1:30086
    [Google Scholar]
  95. 95. 
    Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y 2015. Managing nitrogen for sustainable development. Nature 528:758051–59
    [Google Scholar]
  96. 96. 
    Ahlström H, Cornell SE. 2018. Governance, polycentricity and the global nitrogen and phosphorus cycles. Environ. Sci. Policy 79:54–65
    [Google Scholar]
  97. 97. 
    Morseletto P. 2019. Confronting the nitrogen challenge: options for governance and target setting. Glob. Environ. Change 54:40–49
    [Google Scholar]
  98. 98. 
    Stevens CJ. 2019. Nitrogen in the environment. Science 363:6427578–80
    [Google Scholar]
  99. 99. 
    Campbell BM, Beare DJ, Bennett EM, Hall-Spencer JM, Ingram JSI et al. 2017. Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecol. Soc. 22:48
    [Google Scholar]
  100. 100. 
    Springmann M, Clark M, Mason-D'Croz D, Wiebe K, Bodirsky BL et al. 2018. Options for keeping the food system within environmental limits. Nature 562:7728519–25
    [Google Scholar]
  101. 101. 
    Biermann F. 2012. Planetary boundaries and earth system governance: exploring the links. Ecol. Econ. 81:4–9
    [Google Scholar]
  102. 102. 
    Galaz V, Biermann F, Folke C, Nilsson M, Olsson P 2012. Global environmental governance and planetary boundaries: an introduction. Ecol. Econ. 81:1–3
    [Google Scholar]
  103. 103. 
    Galaz V, Biermann F, Crona B, Loorbach D, Folke C et al. 2012. “Planetary boundaries”—exploring the challenges for global environmental governance. Curr. Opin. Environ. Sustain. 4:180–87
    [Google Scholar]
  104. 104. 
    Dryzek JS. 2014. Institutions for the Anthropocene: governance in a changing earth system. Br. J. Political Sci. 46:937–56
    [Google Scholar]
  105. 105. 
    Kim RE, Mackey B. 2014. International environmental law as a complex adaptive system. Int. Environ. Agreem.: Politics Law Econ. 14:15–24
    [Google Scholar]
  106. 106. 
    Steffen W, Rockström J, Kubiszewski I, Costanza R 2013. Planetary boundaries: using early warning signals for sustainable global governance. Globalisation, Economic Transition and the Environment: Forging a Path to Sustainable Development P Lawn 259–75 Northampton, MA: Edward Elgar
    [Google Scholar]
  107. 107. 
    Bai X, van der Leeuw S, O'Brien K, Berkhout F, Biermann F et al. 2016. Plausible and desirable futures in the Anthropocene: a new research agenda. Glob. Environ. Change 39:351–62
    [Google Scholar]
  108. 108. 
    Chandler D. 2018. Planetary boundaries and governance mechanisms in the transition to the Anthropocene. Rev. Estud. Pesqui. Av. Terc. Set. 1:21–41
    [Google Scholar]
  109. 109. 
    Galaz V, Crona B, Österblom H, Olsson P, Folke C 2012. Polycentric systems and interacting planetary boundaries—emerging governance of climate change–ocean acidification–marine biodiversity. Ecol. Econ. 81:21–32
    [Google Scholar]
  110. 110. 
    Galaz V, Österblom H, Bodin Ö, Crona B 2015. Global networks and global change-induced tipping points. Int. Environ. Agreem.: Politics Law Econ. 16:2189–221
    [Google Scholar]
  111. 111. 
    Heck V, Gerten D, Lucht W, Popp A 2018. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8:2151–55
    [Google Scholar]
  112. 112. 
    Heck V, Donges JF, Lucht W 2016. Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal. Earth Syst. Dyn. 7:4783–96
    [Google Scholar]
  113. 113. 
    Heck V, Hoff H, Wirsenius S, Meyer C, Kreft H 2018. Land use options for staying within the planetary boundaries—synergies and trade-offs between global and local sustainability goals. Glob. Environ. Change 49:73–84
    [Google Scholar]
  114. 114. 
    Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A et al. 2016. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:6296288–91
    [Google Scholar]
  115. 115. 
    Kim RE, Bosselmann K. 2013. International environmental law in the Anthropocene: towards a purposive system of multilateral environmental agreements. Transnatl. Environ. Law 2:2285–309
    [Google Scholar]
  116. 116. 
    Kim RE, van Asselt H 2016. Global governance: problem shifting in the Anthropocene and the limits of international law. Research Handbook on International Law and Natural Resources E Morgera, K Kulovesi 473–95 Cheltenham, UK: Edward Elgar
    [Google Scholar]
  117. 117. 
    Kim RE. 2012. Is a new multilateral environmental agreement on ocean acidification necessary. Rev. Eur. Community Int. Environ. Law 21:3243–58
    [Google Scholar]
  118. 118. 
    Kim RE, Bosselmann K. 2015. Operationalizing sustainable development: ecological integrity as a grundnorm of international law. Rev. Eur. Comp. Int. Environ. Law 24:2194–208
    [Google Scholar]
  119. 119. 
    Schmidt JJ. 2019. The moral geography of the earth system. Trans. Inst. Br. Geographers 44:721–34
    [Google Scholar]
  120. 120. 
    Reischl G. 2012. Designing institutions for governing planetary boundaries—lessons from global forest governance. Ecol. Econ. 81:33–40
    [Google Scholar]
  121. 121. 
    Biermann F, Kanie N, Kim RE 2017. Global governance by goal-setting: the novel approach of the UN Sustainable Development Goals. Curr. Opin. Environ. Sustain. 26–27:26–31
    [Google Scholar]
  122. 122. 
    van den Bergh JCJM, Kallis G 2014. Growth, a-growth or degrowth to stay within planetary boundaries. J. Econ. Issues 46:4909–20
    [Google Scholar]
  123. 123. 
    Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC et al. 2013. Sustainable development goals for people and planet. Nature 495:7441305–7
    [Google Scholar]
  124. 124. 
    Kosoy N, Brown PG, Bosselmann K, Duraiappah A, Mackey B et al. 2012. Pillars for a flourishing earth: planetary boundaries, economic growth delusion and green economy. Curr. Opin. Environ. Sustain. 4:174–79
    [Google Scholar]
  125. 125. 
    Hepburn C, Beinhocker E, Farmer JD, Teytelboym A 2014. Resilient and inclusive prosperity within planetary boundaries. China World Econ 22:576–92
    [Google Scholar]
  126. 126. 
    Crépin A-S, Folke C. 2014. The economy, the biosphere and planetary boundaries: towards biosphere economics. Int. Rev. Environ. Resour. Econ. 8:157–100
    [Google Scholar]
  127. 127. 
    Folke C, Jansson Å, Rockström J, Olsson P, Carpenter SR et al. 2011. Reconnecting to the biosphere. Ambio 40:7719–38
    [Google Scholar]
  128. 128. 
    Barbier E, Burgess J. 2017. Natural resource economics, planetary boundaries and strong sustainability. Sustainability 9:101858–12
    [Google Scholar]
  129. 129. 
    Whiteman G, Walker B, Perego P 2013. Planetary boundaries: ecological foundations for corporate sustainability. J. Manag. Stud. 50:2307–36
    [Google Scholar]
  130. 130. 
    Antonini C, Larrinaga C. 2017. Planetary boundaries and sustainability indicators. A survey of corporate reporting boundaries. Sustain. Dev. 25:2123–37
    [Google Scholar]
  131. 131. 
    Clift R, Sim S, King H, Chenoweth J, Christie I et al. 2017. The challenges of applying planetary boundaries as a basis for strategic decision-making in companies with global supply chains. Sustainability 9:2279–23
    [Google Scholar]
  132. 132. 
    Sjåfjell B. 2018. Redefining the corporation for a sustainable new economy. J. Law Soc. 45:129–45
    [Google Scholar]
  133. 133. 
    Edwards MG, Alcaraz JM, Cornell SE 2018. Management education and earth system science: transformation as if planetary boundaries mattered. Bus. Soc. https://doi.org/10.1177/0007650318816513
    [Crossref] [Google Scholar]
  134. 134. 
    Butz C, Liechti J, Bodin J, Cornell SE 2018. Towards defining an environmental investment universe within planetary boundaries. Sustain. Sci. 13:41031–44
    [Google Scholar]
  135. 135. 
    Vargas L, Willemen L, Hein L 2018. Linking planetary boundaries and ecosystem accounting, with an illustration for the Colombian Orinoco river basin. Reg. Environ. Change 18:5521–34
    [Google Scholar]
  136. 136. 
    Schaltegger S. 2018. Linking environmental management accounting: a reflection on (missing) links to sustainability and planetary boundaries. Soc. Environ. Account. J. 38:119–29
    [Google Scholar]
  137. 137. 
    O'Brien M, Hartwig F, Schanes K, Kammerlander M, Omann I et al. 2014. Living within the safe operating space: a vision for a resource efficient Europe. Eur. J. Futures Res. 2:48
    [Google Scholar]
  138. 138. 
    Schaltegger S, Beckmann M, Hockerts K 2018. Sustainable entrepreneurship: creating environmental solutions in light of planetary boundaries. Int. J. Entrep. Ventur. 10:11–16
    [Google Scholar]
  139. 139. 
    Linnenluecke MK, Birt J, Lyon J, Sidhu BK 2015. Planetary boundaries: implications for asset impairment. Account. Finance 55:4911–29
    [Google Scholar]
  140. 140. 
    Vidas D. 2011. The Anthropocene and the international law of the sea. Philos. Trans. R. Soc. A 369:193890925
    [Google Scholar]
  141. 141. 
    Scheffer M, Barrett S, Carpenter SR, Folke C, Green AJ et al. 2015. Creating a safe operating space for iconic ecosystems. Science 6228:1317–19
    [Google Scholar]
  142. 142. 
    Green AJ, Alcorlo P, Peeters ET, Morris EP, Espinar JL et al. 2017. Creating a safe operating space for wetlands in a changing climate. Front. Ecol. Environ. 15:299–107
    [Google Scholar]
  143. 143. 
    Steffen W, Rockström J, Richardson K, Lenton TM, Folke C et al. 2018. Trajectories of the earth system in the Anthropocene. PNAS 115:33825259
    [Google Scholar]
  144. 144. 
    Bridgewater P, Kim RE, Bosselmann K 2014. Ecological integrity: A relevant concept for international environmental law in the Anthropocene. Yearb. Int. Environ. Law 25:161–78
    [Google Scholar]
  145. 145. 
    Kotzé LJ, Kim RE. 2019. Earth system law: the juridical dimensions of earth system governance. Earth Syst. Gov. 1:100003
    [Google Scholar]
  146. 146. 
    Burch S, Gupta A, Inoue CYA, Kalfagianni A, Persson Å et al. 2019. New directions in earth system governance research. Earth Syst. Gov. 1:100006
    [Google Scholar]
  147. 147. 
    Falkner R, Buzan B. 2017. The emergence of environmental stewardship as a primary institution of global international society. Eur. J. Int. Relat. 25:131–55
    [Google Scholar]
  148. 148. 
    Young OR, Underdal A, Kanie N, Kim RE 2017. Goal setting in the Anthropocene: the ultimate challenge of planetary stewardship. Governing Through Goals: Sustainable Development Goals as Governance Innovation N Kanie, F Biermann 53–74 Cambridge, MA: MIT Press
    [Google Scholar]
  149. 149. 
    Steffen W, Persson Å, Deutsch L, Zalasiewicz J, Williams M et al. 2011. The Anthropocene: from global change to planetary stewardship. Ambio 40:7739–61
    [Google Scholar]
  150. 150. 
    Chapin FS III, Carpenter SR, Kofinas GP, Folke C, Abel N et al. 2010. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 25:4241–49
    [Google Scholar]
  151. 151. 
    van Vuuren DP, Lucas PL, Häyhä T, Cornell SE, Stafford-Smith M 2016. Horses for courses: analytical tools to explore planetary boundaries. Earth Syst. Dyn. 7:1267–79
    [Google Scholar]
  152. 152. 
    McAlpine CA, Seabrook LM, Ryan JG, Feeney BJ, Ripple WJ et al. 2015. Transformational change: creating a safe operating space for humanity. Ecol. Soc. 20:156
    [Google Scholar]
  153. 153. 
    Mathias J-D, Anderies JM, Janssen MA 2017. On our rapidly shrinking capacity to comply with the planetary boundaries on climate change. Sci. Rep. 7:142061
    [Google Scholar]
  154. 154. 
    Brandi C. 2015. Safeguarding the earth system as a priority for sustainable development and global ethics: the need for an earth system SDG. J. Glob. Ethics 11:132–36
    [Google Scholar]
  155. 155. 
    Morseletto P. 2017. Analysing the influence of visualisations in global environmental governance. Environ. Sci. Policy 78:40–48
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012320-080337
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error