1932

Abstract

In recent years, analytical tools and approaches to model the costs and benefits of energy storage have proliferated in parallel with the rapid growth in the energy storage market. Some analytical tools focus on the technologies themselves, with methods for projecting future energy storage technology costs and different cost metrics used to compare storage system designs. Other tools focus on the integration of storage into larger energy systems, including how to economically operate energy storage, estimate the air pollution and greenhouse gas emissions effects of storage, or understand how policy and market rules influence storage deployment and operation. Given the confluence of evolving technologies, policies, and systems, we highlight some key challenges for future energy storage models, including the use of imperfect information to make dispatch decisions for energy-limited storage technologies and estimating how different market structures will impact the deployment of additional energy storage.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012320-082101
2020-10-17
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/energy/45/1/annurev-environ-012320-082101.html?itemId=/content/journals/10.1146/annurev-environ-012320-082101&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Michalski J, Bünger U, Crotogino F, Donadei S, Schneider G-S et al. 2017. Hydrogen generation by electrolysis and storage in salt caverns: potentials, economics and systems aspects with regard to the German energy transition. Int. J. Hydrogen Energy 42:1913427–43
    [Google Scholar]
  2. 2. 
    Greenblatt JB, Miller DJ, Ager JW, Houle FA, Sharp ID 2018. The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2:3381–420
    [Google Scholar]
  3. 3. 
    Deane JP, Ó Gallachóir BP, McKeogh EJ 2010. Techno-economic review of existing and new pumped hydro energy storage plant. Renew. Sustain. Energy Rev. 14:41293–302
    [Google Scholar]
  4. 4. 
    Budt M, Wolf D, Span R, Yan J 2016. A review on compressed air energy storage: basic principles, past milestones and recent developments. Appl. Energy 170:250–68
    [Google Scholar]
  5. 5. 
    Marcus D. 2011. Fuel-free geologic compressed air energy storage from renewable power Pap. 582‐11-13126‐3225 Gen Compress., TX: https://www.tceq.texas.gov/assets/public/implementation/air/terp/ntig/prog_rpts/GC_Task1.pdf
    [Google Scholar]
  6. 6. 
    Geissbühler L, Becattini V, Zanganeh G, Zavattoni S, Barbato M et al. 2018. Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 1: Plant description and tests with sensible thermal-energy storage. J. Energy Storage 17:129–39
    [Google Scholar]
  7. 7. 
    Liu M, Tay NHS, Bell S, Belusko M, Jacob R et al. 2016. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew. Sustain. Energy Rev. 53:1411–32
    [Google Scholar]
  8. 8. 
    Gür TM. 2018. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11:102696–767
    [Google Scholar]
  9. 9. 
    Luo X, Wang J, Dooner M, Clarke J 2015. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137:511–36
    [Google Scholar]
  10. 10. 
    St. John J 2015. SustainX to merge with General Compression, abandon above-ground CAES ambitions. Greentech Media March 31. https://www.greentechmedia.com/articles/read/sustainx-to-merge-with-general-compression-abandon-above-ground-caes-ambiti#gs.stszv3
    [Google Scholar]
  11. 11. 
    Spector J. 2017. LightSail energy enters “hibernation” as quest for game-changing energy storage runs out of cash. Greentech Media Dec. 19. https://www.greentechmedia.com/articles/read/lightsail-energy-cheap-compressed-air-storage-hibernation#gs.stqw1o
    [Google Scholar]
  12. 12. 
    Steffen B. 2012. Prospects for pumped-hydro storage in Germany. Energy Policy 45:420–29
    [Google Scholar]
  13. 13. 
    Barbour E, Wilson IAG, Radcliffe J, Ding Y, Li Y 2016. A review of pumped hydro energy storage development in significant international electricity markets. Renew. Sustain. Energy Rev. 61:421–32
    [Google Scholar]
  14. 14. 
    International Renewable Energy Agency (IRENA) 2017. Electricity Storage and Renewables: Costs and Markets to 2030 Abu Dhabi, UAE: IRENA https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf
    [Google Scholar]
  15. 15. 
    McGrail BP, Davidson CL, Bacon DH, Chamness MA, Reidel SP et al. 2013. Techno-economic performance evaluation of compressed air energy storage in the Pacific Northwest Pap. PNNL-22235, Pac Northwest Natl. Lab. Richland, WA: https://caes.pnnl.gov/pdf/PNNL-22235.pdf
    [Google Scholar]
  16. 16. 
    Drury E, Denholm P, Sioshansi R 2011. The value of compressed air energy storage in energy and reserve markets. Energy 36:84959–73
    [Google Scholar]
  17. 17. 
    US Energy Information Administration (EIA) 2019. Average Operating Heat Rate for Selected Energy Sources Washington, DC: EIA https://www.eia.gov/electricity/annual/html/epa_08_01.html
    [Google Scholar]
  18. 18. 
    Greenblatt JB, Succar S, Denkenberger DC, Williams RH, Socolow RH 2007. Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation. Energy Policy 35:31474–92
    [Google Scholar]
  19. 19. 
    González-Roubaud E, Pérez-Osorio D, Prieto C 2017. Review of commercial thermal energy storage in concentrated solar power plants: steam versus molten salts. Renew. Sustain. Energy Rev. 80:133–48
    [Google Scholar]
  20. 20. 
    Parrado C, Marzo A, Fuentealba E, Fernández AG 2016. 2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants. Renew. Sustain. Energy Rev. 57:505–14
    [Google Scholar]
  21. 21. 
    Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y 2009. Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19:3291–312
    [Google Scholar]
  22. 22. 
    Farret FA, Godoy Simões M 2006. Integration of Alternative Sources of Energy Hoboken, NJ: Wiley
    [Google Scholar]
  23. 23. 
    Hadjipaschalis I, Poullikkas A, Efthimiou V 2009. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 13:61513–22
    [Google Scholar]
  24. 24. 
    Darling RM, Gallagher KG, Kowalski JA, Ha S, Brushett FR 2014. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7:113459–77
    [Google Scholar]
  25. 25. 
    Goldie-Scot L. 2019. A behind the scenes take on lithium-ion battery prices. Bloomberg New Energy Finance March 5. https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/
    [Google Scholar]
  26. 26. 
    Ciez RE, Whitacre JF. 2017. Comparison between cylindrical and prismatic li-ion cell costs using a process based cost model. J. Power Sourc. 340:273–81
    [Google Scholar]
  27. 27. 
    Cole W, Will Frazier A 2019. Cost Projections for Utility-Scale Battery Storage Tech. Rep. NREL/TP-6A20–73222 NREL Golden, CO: https://www.nrel.gov/docs/fy19osti/73222.pdf
    [Google Scholar]
  28. 28. 
    Vaalma C, Buchholz D, Weil M, Passerini S 2018. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3:18013
    [Google Scholar]
  29. 29. 
    Peters JF, Peña Cruz A, Weil M 2019. Exploring the economic potential of sodium-ion batteries. Batteries 5:110
    [Google Scholar]
  30. 30. 
    Whitacre JF, Wiley T, Shanbhag S, Wenzhuo Y, Mohamed A et al. 2012. An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. J. Power Sourc. 213:255–64
    [Google Scholar]
  31. 31. 
    Hwang J-Y, Myung S-T, Sun Y-K 2017. Sodium-ion batteries: present and future. Chem. Soc. Rev. 46:123529–614
    [Google Scholar]
  32. 32. 
    Zeng YK, Zhao TS, An L, Zhou XL, Wei L 2015. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sourc. 300:438–43
    [Google Scholar]
  33. 33. 
    Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M 2011. Progress in flow battery research and development. J. Electrochem. Soc. 158:8R55–79
    [Google Scholar]
  34. 34. 
    Tucker MC, Phillips A, Weber AZ 2015. All-iron redox flow battery tailored for off-grid portable applications. ChemSusChem 8:233996–4004
    [Google Scholar]
  35. 35. 
    Advanced Research Projects Agency-Energy (ARPA-E) 2016. New Iron Flow Battery Design for Flow Batteries Washington, DC: ARPA-E https://arpa-e.energy.gov/sites/default/files/EnergyStorageSystems_SBIR_ExternalProjectImpactSheet_FINAL.pdf
    [Google Scholar]
  36. 36. 
    Selverston S, Nagelli E, Wainright JS, Savinell RF 2019. All-iron hybrid flow batteries with in-tank rebalancing. J. Electrochem. Soc. 166:10A1725–31
    [Google Scholar]
  37. 37. 
    Biswas S, Senju A, Mohr R, Hodson T, Karthikeyan N et al. 2017. Minimal architecture zinc-bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10:1114–20
    [Google Scholar]
  38. 38
    Leung P, Li X, de León CP, Berlouis L, John Low CT, Walsh FC 2012. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv 2:2710125–56
    [Google Scholar]
  39. 39
    Hu X, Zou C, Zhang C, Li Y 2017. Technological developments in batteries: a survey of principal roles, types, and management needs. IEEE Power Energ. Mag. 15:520–31
    [Google Scholar]
  40. 40
    Hittinger E, Wiley T, Kluza J, Whitacre J 2015. Evaluating the value of batteries in microgrid electricity systems using an improved Energy Systems Model. Energy Convers. Manag. 89:458–72
    [Google Scholar]
  41. 41
    Miller JR, Burke AF. 2008. Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17:53–57
    [Google Scholar]
  42. 42
    Burke A. 2007. R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53:31083–91
    [Google Scholar]
  43. 43. 
    John E, Hale M, Selvam P 2013. Concrete as a thermal energy storage medium for thermocline solar energy storage systems. Solar Energy 96:194–204
    [Google Scholar]
  44. 44. 
    Li G. 2016. Sensible heat thermal storage energy and exergy performance evaluations. Renew. Sustain. Energy Rev. 53:897–923
    [Google Scholar]
  45. 45. 
    Salomoni VA, Majorana CE, Giannuzzi GM, Miliozzi A, Di Maggio R et al. 2014. Thermal storage of sensible heat using concrete modules in solar power plants. Solar Energy 103:303–15
    [Google Scholar]
  46. 46. 
    Ward PA, Corgnale C, Teprovich JA, Motyka T, Hardy B et al. 2016. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems. Appl. Phys. A 122:4462
    [Google Scholar]
  47. 47. 
    Abboud RG, Battle B. 2018. RGA Investments, LLC acquires Beacon Power, LLC. RGA Labs May 1. http://www.rgalabs.com/BeaconPressRelease2018May01.pdf
    [Google Scholar]
  48. 48. 
    Hall PJ, Mirzaeian M, Isobel Fletcher S, Sillars FB, Rennie AJR et al. 2010. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3:91238–51
    [Google Scholar]
  49. 49. 
    Miller JR, Simon P. 2008. Materials science. Electrochemical capacitors for energy management. Science 321:5889651–52
    [Google Scholar]
  50. 50. 
    Nykvist B, Nilsson M. 2015. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5:329–32
    [Google Scholar]
  51. 51. 
    Schipper F, Erickson EM, Erk C, Shin J-Y, Chesneau FF, Aurbach D 2016. Review—recent advances and remaining challenges for lithium ion battery cathodes. J. Electrochem. Soc. 164:1A6220–28
    [Google Scholar]
  52. 52. 
    Nitta N, Yushin G. 2014. High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Particle 31:317–36
    [Google Scholar]
  53. 53. 
    Albertus P, Babinec S, Litzelman S, Newman A 2017. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3:116–21
    [Google Scholar]
  54. 54. 
    Howell D, Cunningham B, Duong T, Faguy P 2016. Overview of the DOE VTO Advanced Battery R&D Program Washington, DC: US Dep. Energy http://energy.gov/sites/prod/files/2016/06/f32/es000_howell_2016_o_web.pdf
    [Google Scholar]
  55. 55. 
    Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L 2016. Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49:2231–40
    [Google Scholar]
  56. 56. 
    Whitacre JF, Shanbhag S, Mohamed A, Polonsky A, Carlisle K et al. 2015. A polyionic, large-format energy storage device using an aqueous electrolyte and thick-format composite NaTi2 (PO4)3/activated carbon negative electrodes. Energy Technol 3:120–31
    [Google Scholar]
  57. 57. 
    O'Shaughnessy E, Cutler D, Ardani K, Margolis R 2018. Solar plus: a review of the end-user economics of solar PV integration with storage and load control in residential buildings. Appl. Energy 228:2165–75
    [Google Scholar]
  58. 58. 
    Fisher M, Apt J, Whitacre JF 2019. Can flow batteries scale in the behind-the-meter commercial and industrial market? A techno-economic comparison of storage technologies in California. J. Power Sourc. 420:1–8
    [Google Scholar]
  59. 59. 
    Soloveichik GL. 2015. Flow batteries: current status and trends. Chem. Rev. 115:2011533–58
    [Google Scholar]
  60. 60. 
    Park M, Ryu J, Wang W, Cho J 2016. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2:116080
    [Google Scholar]
  61. 61. 
    Chen X, Hopkins BJ, Helal A, Fan FY, Smith KC et al. 2016. A low-dissipation, pumpless, gravity-induced flow battery. Energy Environ. Sci. 9:51760–70
    [Google Scholar]
  62. 62. 
    Biswas S, Senju A, Mohr R, Hodson T, Karthikeyan N et al. 2017. Minimal architecture zinc-bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10:1114–20
    [Google Scholar]
  63. 63. 
    Schmidt O, Hawkes A, Gambhir A, Staffell I 2017. The future cost of electrical energy storage based on experience rates. Nat. Energy 6:817110
    [Google Scholar]
  64. 64. 
    Klumpp F. 2016. Comparison of pumped hydro, hydrogen storage and compressed air energy storage for integrating high shares of renewable energies—potential, cost-comparison and ranking. J. Energy Storage 8:119–28
    [Google Scholar]
  65. 65. 
    Manickam K, Mistry P, Walker G, Grant D, Buckley CE et al. 2019. Future perspectives of thermal energy storage with metal hydrides. Int. J. Hydrogen Energy 44:157738–45
    [Google Scholar]
  66. 66. 
    Mayer T, Kreyenberg D, Wind J, Braun F 2012. Feasibility study of 2020 target costs for PEM fuel cells and lithium-ion batteries: a two-factor experience curve approach. Int. J. Hydrogen Energy 37:1914463–74
    [Google Scholar]
  67. 67. 
    Kittner N, Lill F, Kammen DM 2017. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2:17125
    [Google Scholar]
  68. 68. 
    Few S, Schmidt O, Offer GJ, Brandon N, Nelson J, Gambhir A 2018. Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: an analysis informed by expert elicitations. Energy Policy 114:578–90
    [Google Scholar]
  69. 69. 
    Sakti A, Azevedo IML, Fuchs ERH, Michalek JJ, Gallagher KG, Whitacre JF 2017. Consistency and robustness of forecasting for emerging technologies: the case of Li-ion batteries for electric vehicles. Energy Policy 106:415–26
    [Google Scholar]
  70. 70. 
    Wood DL, Li J, Daniel C 2015. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sourc. 275:234–42
    [Google Scholar]
  71. 71. 
    Sakti A, Michalek JJ, Fuchs ERH, Whitacre JF 2015. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J. Power Sourc. 273:966–80
    [Google Scholar]
  72. 72. 
    Ciez RE, Whitacre JF. 2017. Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model. J. Power Sourc. 340:273–81
    [Google Scholar]
  73. 73. 
    Mellentine J. 2011. Performance characterization and cost assessment of an iron hybrid flow battery PhD Thesis, Univ Iceland, Univ: Akureyri
    [Google Scholar]
  74. 74. 
    Androsov A, Amarnath A, Scott M, Hu A 2014. Bromine-polysulfide redox-flow battery design: cost analysis PhD Thesis, Univ. Tenn.
    [Google Scholar]
  75. 75. 
    Lai CS, McCulloch MD. 2017. Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 190:191–203
    [Google Scholar]
  76. 76. 
    Jülch V. 2016. Comparison of electricity storage options using levelized cost of storage (LCOS) method. Appl. Energy 183:1594–606
    [Google Scholar]
  77. 77. 
    Ziegler MS, Mueller JM, Pereira GD, Song J, Ferrara M et al. 2019. Storage requirements and costs of shaping renewable energy toward grid decarbonization. Joule 3:2134–53
    [Google Scholar]
  78. 78. 
    Westlake B, Handa R, Sprau S, Kamath H, Weber J, Laaguidi I 2017. Recycling and disposal of battery-based grid energy storage systems Prod. ID 3002006911 EPRI Palo Alto, CA: https://www.epri.com/#/pages/product/000000003002006911/?lang=en-US
    [Google Scholar]
  79. 79. 
    Pellow MA, Ambrose H, Mulvaney D, Betita R, Shaw S 2020. Research gaps in environmental life cycle assessments of lithium ion batteries for grid-scale stationary energy storage systems: end-of-life options and other issues. Sustain. Mater. Technol. 23:e00120
    [Google Scholar]
  80. 80. 
    Navigant Research 2019. Energy storage software: market trends, business models, and global market forecasts: 2019–2028 Rep., Navig. Res Chicago, IL: https://www.navigantresearch.com/reports/energy-storage-software
    [Google Scholar]
  81. 81. 
    Liu Y, Wu L, Li J 2019. Towards accurate modeling of dynamic startup/shutdown and ramping processes of thermal units in unit commitment problems. Energy 187:115891
    [Google Scholar]
  82. 82. 
    Poullikkas A. 2009. Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region—a case study for the island of Cyprus. Renew. Sustain. Energy Rev. 13:92474–84
    [Google Scholar]
  83. 83. 
    Atanacio M, Fioravanti R, Katzenstein W, Vu K 2012. Emission II study of advanced storage used for frequency regulation Sandia Neg. Proj. 96362 Dep. Energy, Sandia Natl. Lab., KEMA Inc. Albuquerque, NM: https://www.sandia.gov/ess-ssl/docs/other/KEMA_Emission_II_Report_Advanced_Storage_Providing_Regulation_12-31-2012.pdf
    [Google Scholar]
  84. 84. 
    Sioshansi R, Denholm P, Jenkin T, Weiss J 2009. Estimating the value of electricity storage in PJM: arbitrage and some welfare effects. Energy Econ 31:2269–77
    [Google Scholar]
  85. 85. 
    Salles MBC, Huang J, Aziz MJ, Hogan WW 2017. Potential arbitrage revenue of energy storage systems in PJM. Energies 10:81100
    [Google Scholar]
  86. 86. 
    Moreno R, Moreira R, Strbac G 2015. A MILP model for optimising multi-service portfolios of distributed energy storage. Appl. Energy 137:554–66
    [Google Scholar]
  87. 87. 
    Connolly D, Lund H, Finn P, Mathiesen BV, Leahy M 2011. Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage. Energy Policy 39:74189–96
    [Google Scholar]
  88. 88. 
    Staffell I, Rustomji M. 2016. Maximising the value of electricity storage. J. Energy Storage 8:212–25
    [Google Scholar]
  89. 89. 
    Cho J, Kleit AN. 2015. Energy storage systems in energy and ancillary markets: a backwards induction approach. Appl. Energy 147:176–83
    [Google Scholar]
  90. 90. 
    Hittinger ES, Azevedo IML. 2015. Bulk energy storage increases United States electricity system emissions. Environ. Sci. Technol. 49:53203–10
    [Google Scholar]
  91. 91. 
    Zafirakis D, Chalvatzis KJ, Baiocchi G, Daskalakis G 2016. The value of arbitrage for energy storage: evidence from European electricity markets. Appl. Energy 184:971–86
    [Google Scholar]
  92. 92. 
    McConnell D, Forcey T, Sandiford M 2015. Estimating the value of electricity storage in an energy-only wholesale market. Appl. Energy 159:422–32
    [Google Scholar]
  93. 93. 
    Goteti NS, Hittinger E, Williams E 2019. How much wind and solar are needed to realize emissions benefits from storage. Energy Syst 10:2437–59
    [Google Scholar]
  94. 94. 
    Krishnan V, Das T. 2015. Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures. Energy 81:175–88
    [Google Scholar]
  95. 95. 
    Dvorkin Y, Fernández-Blanco R, Kirschen DS, Pandžić H, Watson J, Silva-Monroy CA 2017. Ensuring profitability of energy storage. IEEE Trans. Power Syst. 32:1611–23
    [Google Scholar]
  96. 96. 
    Lueken R, Apt J. 2014. The effects of bulk electricity storage on the PJM market. Energy Syst 5:4677–704
    [Google Scholar]
  97. 97. 
    Chen C, Duan S, Cai T, Liu B, Hu G 2011. Optimal allocation and economic analysis of energy storage system in microgrids. IEEE Trans. Power Electron. 26:102762–73
    [Google Scholar]
  98. 98. 
    Nasrolahpour E, Kazempour SJ, Zareipour H, Rosehart WD 2016. Strategic sizing of energy storage facilities in electricity markets. IEEE Trans. Sustain. Energy 7:41462–72
    [Google Scholar]
  99. 99. 
    Sioshansi R. 2014. When energy storage reduces social welfare. Energy Econ 41:106–16
    [Google Scholar]
  100. 100. 
    Walawalkar R, Apt J, Mancini R 2007. Economics of electric energy storage for energy arbitrage and regulation in New York. Energy Policy 35:42558–68
    [Google Scholar]
  101. 101. 
    Das T, Krishnan V, McCalley JD 2015. Assessing the benefits and economics of bulk energy storage technologies in the power grid. Appl. Energy 139:104–18
    [Google Scholar]
  102. 102. 
    Braff WA, Mueller JM, Trancik JE 2016. Value of storage technologies for wind and solar energy. Nat. Clim. Change 6:10964–69
    [Google Scholar]
  103. 103. 
    Sioshansi R. 2011. Increasing the value of wind with energy storage. Energy J 32:21–29
    [Google Scholar]
  104. 104. 
    Korpaas M, Holen AT, Hildrum R 2003. Operation and sizing of energy storage for wind power plants in a market system. Int. J. Electr. Power Energy Syst. 25:8599–606
    [Google Scholar]
  105. 105. 
    Locatelli G, Palerma E, Mancini M 2015. Assessing the economics of large energy storage plants with an optimisation methodology. Energy 83:15–28
    [Google Scholar]
  106. 106. 
    Cleary B, Duffy A, OConnor A, Conlon M, Fthenakis V 2015. Assessing the economic benefits of compressed air energy storage for mitigating wind curtailment. IEEE Trans. Sustain. Energy 6:31021–28
    [Google Scholar]
  107. 107. 
    Berrada A, Loudiyi K, Zorkani I 2016. Valuation of energy storage in energy and regulation markets. Energy 115:1109–18
    [Google Scholar]
  108. 108. 
    Hu W, Wang P, Gooi HB 2016. Assessing the economics of customer-sited multi-use energy storage. 2016 IEEE Region 10 Conference (TENCON), Singapore651–54 Piscataway, NJ: IEEE
    [Google Scholar]
  109. 109. 
    Hledik R, Leuken R, McIntyre C, Bishop H 2017. Stacked Benefits: Comprehensively Valuing Battery Storage in California Boston, MA: Brattle http://files.brattle.com/files/7208_stacked_benefits_-_final_report.pdf
    [Google Scholar]
  110. 110. 
    Go RS, Munoz FD, Watson J-P 2016. Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards. Appl. Energy 183:902–13
    [Google Scholar]
  111. 111. 
    Strbac G, Aunedi M, Konstantelos I, Moreira R, Teng F et al. 2017. Opportunities for energy storage: assessing whole-system economic benefits of energy storage in future electricity systems. IEEE Power Energy Mag. 15:532–41
    [Google Scholar]
  112. 112. 
    de Sisternes FJ, Jenkins JD, Botterud A 2016. The value of energy storage in decarbonizing the electricity sector. Appl. Energy 175:368–79
    [Google Scholar]
  113. 113. 
    Weniger J, Bergner J, Tjaden T, Quaschning V 2014. Economics of residential PV battery systems in the self-consumption age Paper presented at the 29th European Photovoltaic Solar Energy Conference and Exhibition, Sept22–26
    [Google Scholar]
  114. 114. 
    Truong CN, Naumann M, Karl RC, Müller M, Jossen A, Hesse HC 2016. Economics of residential photovoltaic battery systems in Germany: the case of Tesla's Powerwall. Batteries 2:214
    [Google Scholar]
  115. 115. 
    Lam RK, Tran DH, Yeh H 2015. Economics of residential energy arbitrage in California using a PV system with directly connected energy storage. 2015 IEEE Green Energy and Systems Conference (IGESC)67–70 Piscataway, NJ: IEEE
    [Google Scholar]
  116. 116. 
    Zheng M, Meinrenken CJ, Lackner KS 2015. Smart households: dispatch strategies and economic analysis of distributed energy storage for residential peak shaving. Appl. Energy 147:246–57
    [Google Scholar]
  117. 117. 
    Wu D, Kintner-Meyer M, Yang T, Balducci P 2016. Economic analysis and optimal sizing for behind-the-meter battery storage. 2016 IEEE Power and Energy Society General Meeting (PESGM)1–5 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118. 
    Luthander R, Widén J, Munkhammar J, Lingfors D 2016. Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment. Energy 112:221–31
    [Google Scholar]
  119. 119. 
    Hao H, Sanandaji BM, Poolla K, Vincent TL 2015. Potentials and economics of residential thermal loads providing regulation reserve. Energy Policy 79:115–26
    [Google Scholar]
  120. 120. 
    Weis TM, Ilinca A. 2008. The utility of energy storage to improve the economics of wind-diesel power plants in Canada. Renew. Energy 33:71544–57
    [Google Scholar]
  121. 121. 
    Wankmüller F, Thimmapuram PR, Gallagher KG, Botterud A 2017. Impact of battery degradation on energy arbitrage revenue of grid-level energy storage. J. Energy Storage 10:56–66
    [Google Scholar]
  122. 122. 
    Sarker MR, Murbach MD, Schwartz DT, Ortega-Vazquez MA 2017. Optimal operation of a battery energy storage system: trade-off between grid economics and storage health. Electric Power Syst. Res. 152:342–49
    [Google Scholar]
  123. 123. 
    Denholm P, Holloway T. 2005. Improved accounting of emissions from utility energy storage system operation. Environ. Sci. Technol. 39:239016–22
    [Google Scholar]
  124. 124. 
    Arbabzadeh M, Johnson JX, Keoleian GA, Rasmussen PG, Thompson LT 2016. Twelve principles for green energy storage in grid applications. Environ. Sci. Technol. 50:21046–55
    [Google Scholar]
  125. 125. 
    Carson RT, Novan K. 2013. The private and social economics of bulk electricity storage. J. Environ. Econ. Manag. 66:3404–23
    [Google Scholar]
  126. 126. 
    Hittinger ES, Azevedo IML. 2015. Bulk energy storage increases United States electricity system emissions. Environ. Sci. Technol. 49:53203–10
    [Google Scholar]
  127. 127. 
    Arciniegas LM, Hittinger E. 2018. Tradeoffs between revenue and emissions in energy storage operation. Energy 143:1–11
    [Google Scholar]
  128. 128. 
    Hittinger E, Azevedo IML. 2017. Estimating the quantity of wind and solar required to displace storage-induced emissions. Environ. Sci. Technol. 51:2112988–97
    [Google Scholar]
  129. 129. 
    Fares RL, Webber ME. 2017. The impacts of storing solar energy in the home to reduce reliance on the utility. Nat. Energy 2:217001
    [Google Scholar]
  130. 130. 
    Babacan O, Abdulla A, Hanna R, Kleissl J, Victor DG 2018. Unintended effects of residential energy storage on emissions from the electric power system. Environ. Sci. Technol. 52:13600–608
    [Google Scholar]
  131. 131. 
    Fisher MJ, Apt J. 2017. Emissions and economics of behind-the-meter electricity storage. Environ. Sci. Technol. 51:31094–101
    [Google Scholar]
  132. 132. 
    Lin Y, Johnson JX, Mathieu JL 2016. Emissions impacts of using energy storage for power system reserves. Appl. Energy 168:444–56
    [Google Scholar]
  133. 133. 
    Craig MT, Jaramillo P, Hodge B-M 2018. Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power system. Environ. Res. Lett. 13:1014004
    [Google Scholar]
  134. 134. 
    Sioshansi R, Denholm P, Jenkin T 2012. Market and policy barriers to deployment of energy storage. Econ. Energy Environ. Policy 1:247–64
    [Google Scholar]
  135. 135. 
    Kaufman S, Komor P, Langdon B, Vallett P 2011. Electricity storage in regulated markets: getting the rules right. Electr. J. 24:663–71
    [Google Scholar]
  136. 136. 
    Cleary B, Duffy A, O'Connor A, Conlon M 2015. Assessing the future economic performance of wind generation in conjunction with compressed air energy storage in the new proposed Irish electricity market. Econ. Bus. Lett. 4:387–97
    [Google Scholar]
  137. 137. 
    Byrne RH, Concepcion RJ, Silva-Monroy CA 2016. Estimating potential revenue from electrical energy storage in PJM. 2016 IEEE Power and Energy Society General Meeting (PESGM)1–5 Piscataway, NJ: IEEE
    [Google Scholar]
  138. 138. 
    Paine N, Homans FR, Pollak M, Bielicki JM, Wilson EJ 2014. Why market rules matter: optimizing pumped hydroelectric storage when compensation rules differ. Energy Econ 46:10–19
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012320-082101
Loading
/content/journals/10.1146/annurev-environ-012320-082101
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error