1932

Abstract

Cities are particularly vulnerable to extreme weather episodes, which are expected to increase with climate change. Cities also influence their own local climate, for example, through the relative warming known as the urban heat island (UHI) effect. This review discusses urban climate features (even in complex terrain) and processes. We then present state-of-the-art methodologies on the generalization of a common urban neighborhood classification for UHI studies, as well as recent developments in observation systems and crowdsourcing approaches. We discuss new modeling paradigms pertinent to climate impact studies, with a focus on building energetics and urban vegetation. In combination with regional climate modeling, new methods benefit the variety of climate scenarios and models to provide pertinent information at urban scale. Finally, this article presents how recent research in urban climatology contributes to the global agenda on cities and climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012320-083623
2020-10-17
2024-05-22
Loading full text...

Full text loading...

/deliver/fulltext/energy/45/1/annurev-environ-012320-083623.html?itemId=/content/journals/10.1146/annurev-environ-012320-083623&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Huang Q, Lu Y. 2018. Urban heat island research from 1991 to 2015: a bibliometric analysis. Theor. Appl. Climatol. 131:1055–67
    [Google Scholar]
  2. 2. 
    Phelan PE, Kaloush K, Miner M, Golden J, Phelan B et al. 2015. Urban heat island: mechanisms, implications, and possible remedies. Annu. Rev. Environ. Resour. 40:285–307
    [Google Scholar]
  3. 3. 
    Oke TR, Mills G, Christen A, Voogt J 2017. Urban Climate Cambridge, UK: Cambridge Univ. Press
  4. 4. 
    Howard L. 1818. The Climate of London London: W. Phillips
  5. 5. 
    de Maupassant G. 1885. Bel-Ami Paris: Ollendorf
  6. 6. 
    Liu J, Niyogi D. 2019. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. 9:7301
    [Google Scholar]
  7. 7. 
    Shepherd JM. 2013. Impacts of urbanization on precipitation and storms: physical insights and vulnerabilities. Climate Vulnerability R Pielke Sr 109–25 Oxford, UK: Academic
    [Google Scholar]
  8. 8. 
    Bélair S, Leroyer S, Seino N, Spacek L, Souvanlasy V, Paquin-Ricard D 2018. Role and impact of the urban environment in a numerical forecast of an intense summertime precipitation event over Tokyo. J. Meteorol. Soc. Jpn. Ser. II 96A:77–94
    [Google Scholar]
  9. 9. 
    Theeuwes NE, Barlow JF, Teuling A, Grimmond CSB, Kotthaus S et al. 2019. Persistent cloud cover over mega-cities linked to surface heat release. NPJ Clim. Atmos. Sci. 2:15
    [Google Scholar]
  10. 10. 
    Varentsov M, Wouters H, Platanov V, Konstantinov P 2018. Megacity-induced mesoclimatic effects in the lower atmosphere: a modelling study for multiple summers over Moscow, Russia. Atmosphere 9:50
    [Google Scholar]
  11. 11. 
    Manoli G, Fatichi S, Schläpfer M, Yu K, Crowther T et al. 2019. Magnitude of urban heat islands largely explained by climate and population. Nature 573:55–60
    [Google Scholar]
  12. 12. 
    Arnfield AJ. 2003. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23:11–26
    [Google Scholar]
  13. 13. 
    Santamouris M. 2015. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 512–513:582–98
    [Google Scholar]
  14. 14. 
    De Munck C, Pigeon G, Masson V, Meunier F, Bousquet P et al. 2013. How much air conditioning can increase air temperatures for a city like Paris France. Int. J. Climatol. 33:210–27
    [Google Scholar]
  15. 15. 
    Salamanca F, Georgescu M, Mahalov A, Moustaou M, Wang M 2014. Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos. 119:5949–65
    [Google Scholar]
  16. 16. 
    Wang Y, Li Y, Di Sabatino S, Martilli A, Chan PW 2018. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environ. Res. Lett. 13:3034015
    [Google Scholar]
  17. 17. 
    Pigeon G, Mosciki MA, Voogt JA, Masson V 2008. Simulation of fall and winter energy balance over a dense urban area using the TEB scheme. Meteorol. Atmos. Phys. 102:3–4159–71
    [Google Scholar]
  18. 18. 
    K1ysik K. 1996. Spatial and seasonal distribution of anthropogenic heat emissions in Lodz, Poland. Atmos. Environ. 30:3397–404
    [Google Scholar]
  19. 19. 
    Lemonsu A, Bélair S, Mailhot J, Leroyer S 2010. Evaluation of the Town Energy Balance model in cold and snowy conditions during the Montreal Urban Snow Experiment 2005. J. Appl. Meteorol. Climatol. 49:3346–62
    [Google Scholar]
  20. 20. 
    Pandey P, Kumar D, Prakash A, Masih J, Singh M et al. 2012. A study of urban heat island and its association with particulate matter during winter months over Delhi. Sci. Total Environ. 414:494–507
    [Google Scholar]
  21. 21. 
    Rosenzweig C, Solecki W, Romero-Lankao P, Mehrotra S, Dhakal S, Ali Ibrahim S 2018. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network Cambridge, UK: Cambridge Univ. Press
  22. 22. 
    Yamato H, Mikami T, Takahashi H 2017. Impact of sea breeze penetration over urban areas on midsummer temperature distributions in the Tokyo Metropolitan area. Int. J. Climatol. 37:5154–69
    [Google Scholar]
  23. 23. 
    Matsumoto J, Fujibe F, Takahashi H 2017. Urban climate in the Tokyo metropolitan area in Japan. J. Environ. Sci. 59:54–62
    [Google Scholar]
  24. 24. 
    Kotharkar R, Ramesh A, Bagade A 2018. Urban Heat Island studies in South Asia: a critical review. Urban Clim 24:1011–26
    [Google Scholar]
  25. 25. 
    Maral SG, Mukhopadhyay T. 2015. Signal of urban heat island (UHI) effect: a case study of Mumbai metropolitan region. Mausam 66:729–40
    [Google Scholar]
  26. 26. 
    Ramamurthy P. 2017. Heatwaves and urban heat islands: a comparative analysis of multiple cities. J. Geophys. Res.: Atmos. 122:168–78
    [Google Scholar]
  27. 27. 
    Vemado F, Pereira Filho AJ 2016. Severe weather caused by heat island and sea breeze effects in the Metropolitan area of São Paulo, Brazil. Adv. Meteorol. 2016:8364134
    [Google Scholar]
  28. 28. 
    Ketterer C, Matzarakis A. 2014. Human-biometeorological assessment of the urban heat island in a city with complex topography—the case of Stuttgart, Germany. Urban Clim 10:3573–84
    [Google Scholar]
  29. 29. 
    Ng E, Ren C. 2015. The Urban Climatic Map: A Methodology for Sustainable Urban Planning Abingdon, UK: Routledge
  30. 30. 
    Hamada T, Tanaka H, Ichinose T 2008. Preliminary study of the vertical structure of mountain wind in Nagano City, central Japan. Geogr. Rep. Tokyo Metropol. Univ. 43:91–98
    [Google Scholar]
  31. 31. 
    Largeron Y, Staquet C. 2016. The atmospheric boundary layer during wintertime persistent inversions in the Grenoble valleys. Front. Earth Sci. 4:70
    [Google Scholar]
  32. 32. 
    Bokwa A, Hajto MJ, Walawender JP, Szymanowski M 2015. Influence of diversified relief on the urban heat island in the city of Kraków, Poland. Theor. Appl. Climatol. 122:365–82
    [Google Scholar]
  33. 33. 
    Lemonsu A, Bélair S, Mailhot J, Benjamin M, Chagnon F et al. 2008. Overview and first results of the Montreal Urban Snow Experiment (MUSE) 2005. J. Appl. Meteorol. Climatol. 47:159–75
    [Google Scholar]
  34. 34. 
    Karsisto P, Fortelius C, Demuzere M, Grimmond CSB, Oleson KW et al. 2016. Seasonal surface urban energy balance and wintertime stability simulated using three land‐surface models in the high‐latitude city Helsinki. Q. J. R. Meteorol. Soc. 142:694401–17
    [Google Scholar]
  35. 35. 
    Malevich SB, Klink K. 2011. Relationships between snow and the wintertime Minneapolis Urban Heat Island. J. Appl. Meteorol. Climatol. 50:1884–94
    [Google Scholar]
  36. 36. 
    Schatz J, Kucharik CJ. 2014. Seasonality of the urban heat island effect in Madison, Wisconsin. J. Appl. Meteorol. Climatol. 53:2371–86
    [Google Scholar]
  37. 37. 
    Schatz J, Kucharik CJ. 2015. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Env. Res. Lett. 10:9094024
    [Google Scholar]
  38. 38. 
    Sfîcă L, Ichim P, Apostol L, Ursu A 2018. The extent and intensity of the urban heat island in Iaşi city, Romania. Theor. Appl. Climatol. 134:777–91
    [Google Scholar]
  39. 39. 
    Bergeron O, Strachan IB. 2012. Wintertime radiation and energy budget along an urbanization gradient in Montreal. Canada. Int. J. Climatol. 32:137–52
    [Google Scholar]
  40. 40. 
    Millar SWS. 2017. Plowing paradise: snow clearing and urban solar radiation absorption. Phys. Geogr. 38:2197–209
    [Google Scholar]
  41. 41. 
    Leroyer S, Mailhot J, Bélair S, Lemonsu A, Strachan IB 2010. Modeling the surface energy budget during the thawing period of the 2006 Montreal Urban Snow Experiment. J. Appl. Meteorol. Climatol. 49:168–84
    [Google Scholar]
  42. 42. 
    Perryman N, Dixon PG. 2013. A radar analysis of urban snowfall modification in Minneapolis–St. Paul. J. Appl. Meteorol. Climatol. 52:1632–44
    [Google Scholar]
  43. 43. 
    Klene AE, Nelson FE. 2019. Urban geocryology: mapping urban–rural contrasts in active-layer thickness, Barrow Peninsula, northern Alaska. Ann. Am. Assoc. Geogr. 109:51394–414
    [Google Scholar]
  44. 44. 
    Konstantinov P, Varentsov M, Esau I 2018. A high density urban temperature network deployed in several cities of Eurasian Arctic. Environ. Res. Lett. 13:075007
    [Google Scholar]
  45. 45. 
    Konstantinov PI, Grishchenko MY, Varentsov MI 2015. Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast). Izv. Atmos. Ocean Phy. 51:992–98
    [Google Scholar]
  46. 46. 
    Hinkel KM, Nelson FE. 2007. Anthropogenic heat island at Barrow, Alaska during winter: 2001–2005. J. Geophys. Res. Atmos. 112:D6D06118
    [Google Scholar]
  47. 47. 
    Varentsov M, Konstantinov P, Baklanov A, Esau I, Miles V, Avy R 2018. Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city. Atmos. Chem. Phys. 18:2317573–87
    [Google Scholar]
  48. 48. 
    Suomi J. 2019. Extreme temperature differences in the city of Lahti, southern Finland: intensity, seasonality and environmental drivers. Weather Clim. Extrem. 19:20–28
    [Google Scholar]
  49. 49. 
    Blocken B. 2015. Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building Environ 91:219–45
    [Google Scholar]
  50. 50. 
    Hidalgo J, Jougla R. 2018. On the use of local weather types classification to improve climate understanding: an application on the urban climate of Toulouse. PLOS ONE 13:e0208138
    [Google Scholar]
  51. 51. 
    Balling R, Cerveny R, Idso C 2002. Does the urban CO2 plume of Phoenix, Arizona, contribute to its urban heat island?. Geophys. Res. Lett. 28:244599–601
    [Google Scholar]
  52. 52. 
    Masson V, Heldens W, Bocher E, Bonhomme M, Bucher B et al. 2020. City-descriptive input data for urban climate models: model requirements, data sources and challenges. Urban Clim 31:100536
    [Google Scholar]
  53. 53. 
    Stewart ID, Oke TR. 2012. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93:1879–900
    [Google Scholar]
  54. 54. 
    Houet T, Pigeon G. 2011. Mapping urban climate zones and quantifying climate behaviors—an application on Toulouse urban area (France). Environ. Pollut. 159:2180–92
    [Google Scholar]
  55. 55. 
    Leconte F, Bouyer J, Claverie R, Pétrissans M 2017. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator. Theor. Appl. Climatol. 130:365–76
    [Google Scholar]
  56. 56. 
    Ching J, Mills G, Bechtel B, See L, Feddema J et al. 2018. World Urban Database and Access Portal Tools (WUDAPT): an urban weather, climate and environmental modeling infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 99:1907–24
    [Google Scholar]
  57. 57. 
    Ching J, Aliaga D, Mills G, Masson V, See L et al. 2019. Pathway using WUDAPT's Digital Synthetic City tool towards generating urban canopy parameters for multi-scale urban atmospheric modeling. Urban Clim 28:100459
    [Google Scholar]
  58. 58. 
    Bechtel B, Alexander PJ, Böhner J, Ching J, Conrad O et al. 2015. Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int. J. Geo-Inf. 4:199–219
    [Google Scholar]
  59. 59. 
    Bechtel B, Alexander PJ, Beck C, Böhner J, Brousse O et al. 2019. Generating WUDAPT Level 0 data—current status of production and evaluation. Urban Clim 27:24–45
    [Google Scholar]
  60. 60. 
    Demuzere M, Bechtel B, Middel A, Mills G 2019. Mapping Europe into local climate zones. PLOS ONE 14:4e0214474
    [Google Scholar]
  61. 61. 
    Geletič J, Lehnert M. 2016. GIS-based delineation of local climate zones: the case of medium-sized Central European cities. Morav. Geogr. Rep. 24:2–12
    [Google Scholar]
  62. 62. 
    Zheng Y, Ren C, Xu Y, Wang R, Ho J et al. 2018. GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Clim 24:419–48
    [Google Scholar]
  63. 63. 
    Hidalgo J, Dumas G, Masson V, Petit G, Betchtel B et al. 2019. Comparison between local climate zones maps derived from administrative datasets and satellite observations. Urban Clim 27:64–89
    [Google Scholar]
  64. 64. 
    Liang J, Gong J, Sun J, Zhou J, Li W et al. 2017. Automatic sky view factor estimation from street view photographs—a big data approach. Remote Sens 9:411
    [Google Scholar]
  65. 65. 
    Gong F-Y, Zeng Z-C, Zhang F, Li X, Ng E, Norford LK 2018. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Building Environ 134:155–67
    [Google Scholar]
  66. 66. 
    Middel A, Lukasczykb J, Maciejewskic R, Demuzered M, Rothe M 2018. Sky View Factor footprints for urban climate modeling. Urban Clim 25:120–13
    [Google Scholar]
  67. 67. 
    Middel A, Lukasczyk J, Zakrzewski S, Arnold M, Maciejewski R 2019. Urban form and composition of street canyons: a human-centric big data and deep learning approach. Landscape Urban Plan 183:122–32
    [Google Scholar]
  68. 68. 
    Mooney P, Minghini M. 2017. A review of OpenStreetMap data. Mapping and the Citizen Sensor GM Foody, L See, S Fritz, CC Fonte, P Mooney et al.37–59 London: Ubiquity Press
    [Google Scholar]
  69. 69. 
    Olbricht RM. 2015. Data retrieval for small spatial regions in OpenStreetMap. OpenStreetMap in GIScience: Experiences, Research, and Applications (Lecture Notes in Geoinformation and Cartography) J Jokar Arsanjani, A Zipf, P Mooney, M Helbich 101–22 Cham, Switz.: Springer Int. Publ.
    [Google Scholar]
  70. 70. 
    Boeing G. 2017. OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban. Syst. 65:126–39
    [Google Scholar]
  71. 71. 
    Kunze C, Hecht R. 2015. Semantic enrichment of building data with volunteered geographic information to improve mappings of dwelling units and population. Comput. Environ. Urban Syst. 53:4–18
    [Google Scholar]
  72. 72. 
    Samsonov TE, Konstantinov PI, Varentsov MI 2015. Object-oriented approach to urban canyon analysis and its applications in meteorological modelling. Urban Clim 13:122–39
    [Google Scholar]
  73. 73. 
    Bocher E, Petit G, Bernard J, Palominos S 2018. A geoprocessing framework to compute urban indicators: the MApUCE tools chain. Urban Clim 24:153–74
    [Google Scholar]
  74. 74. 
    See L, Mills G, Ching J 2015. Climate modelling: community initiative tackles urban heat. Nature 526:757143
    [Google Scholar]
  75. 75. 
    Mhedhbi Z, Masson V, Haoues-Jouve S, Hidalgo J 2019. Collection of refined architectural parameters by crowdsourcing using Facebook social network: case of Greater Tunis. Urban Clim 29:100499
    [Google Scholar]
  76. 76. 
    Barlow J. 2014. Progress in observing and modelling the urban boundary layer. Urban Clim 10:216–40
    [Google Scholar]
  77. 77. 
    Kanda M. 2006. Progress in the scale modeling of urban climate: review. Theor. Appl. Climatol. 84:23–33
    [Google Scholar]
  78. 78. 
    Muller CL, Chapman L, Grimmond CSB, Young DT, Cai X 2013. Sensors and the city: a review of urban meteorological networks. Int. J. Climatol. 33:1585–600
    [Google Scholar]
  79. 79. 
    World Meteorol. Organ. (WMO) 2018.Guide to Meteorological Instruments and Methods of ObservationGeneva: WMO http://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html
  80. 80. 
    Bassett R, Cai X, Chapman L, Heaviside C, Thornes JE et al. 2016. Observations of urban heat island advection from a high‐density monitoring network. Q.J.R. Meteorol. Soc. 142:2434–41
    [Google Scholar]
  81. 81. 
    Chapman L, Muller CL, Young DT, Warren EL, Grimmond CSB et al. 2015. The Birmingham Urban Climate Laboratory: an open meteorological test bed and challenges of the smart city. Bull. Am. Meteorol. Soc. 96:91545–60
    [Google Scholar]
  82. 82. 
    Muller CL, Chapman L, Grimmond CSB, Young DT, Cai X 2013. Sensors and the city: a review of urban meteorological networks. Int. J. Climatol. 33:1585–600
    [Google Scholar]
  83. 83. 
    Meier F, Fenner D, Grassmann T, Otto M, Scherer D 2017. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Clim 19:170–91
    [Google Scholar]
  84. 84. 
    Chapman L, Bell C, Bell S 2017. Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. Int. J. Climatol. 37:3597–605
    [Google Scholar]
  85. 85. 
    Napoly A, Grassmann T, Meier F, Fenner D 2018. Development and application of a statistically-based quality control for crowdsourced air temperature data. Front. Earth Sci. 6:118
    [Google Scholar]
  86. 86. 
    Fenner D, Meier F, Bechtel B, Otto M, Scherer D 2017. Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorol. Z. 26:5525–47
    [Google Scholar]
  87. 87. 
    de Vos L, Leijnse H, Overeem A, Uijlenhoet R 2017. The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam. Hydrol. Earth Syst. Sci. 21:765–77
    [Google Scholar]
  88. 88. 
    Overeem A, Robinson JCR, Leijnse H, Steeneveld GJ, Horn BKP, Uijlenhoet R 2013. Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett. 40:4081–85
    [Google Scholar]
  89. 89. 
    Droste A, Paye J, Overleem A, Leijnse H, Steeneveld G, Van Delven A, Uijlenhoet R 2017. Crowdsourcing urban air temperatures through smartphone battery temperatures in São Paulo, Brazil. J. Atmos. Ocean. Technol. 34:1853–66
    [Google Scholar]
  90. 90. 
    Nguyen L, Henebry G. 2016. Urban heat islands as viewed by microwave radiometers and thermal time indices. Remote Sens 8:831
    [Google Scholar]
  91. 91. 
    Sismanidis P, Keramitsoglou I, Kiranoudis CT 2015. A satellite-based system for continuous monitoring of Surface Urban Heat Islands. Urban Clim 14:2141–53
    [Google Scholar]
  92. 92. 
    Sismanidis P, Keramitsoglou I, Bechtel B, Kiranoudis CT 2017. Improving the downscaling of diurnal land surface temperatures using the annual cycle parameters as disaggregation kernels. Remote Sens 9:23
    [Google Scholar]
  93. 93. 
    Hong F, Zhan W, Göttsche F-M, Liu Z, Zhou J et al. 2018. Comprehensive assessment of four-parameter diurnal land surface temperature cycle models under clear-sky. ISPRS J. Photogramm. Remote Sens. 142:190–204
    [Google Scholar]
  94. 94. 
    Bechtel B, Sismanidis P. 2018. Time series analysis of moderate resolution land surface temperatures. Remote Sensing Time Series Image Processing Q Weng 89–120 Boca Raton, FL: CRC Press
    [Google Scholar]
  95. 95. 
    Lai J, Zhan W, Huang F, Voogt J, Bechtel B et al. 2018. Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sensing Environ 217:203–20
    [Google Scholar]
  96. 96. 
    Ching J. 2013. A perspective on urban canopy layer modeling for weather, climate and air quality applications. Urban Clim 3:13–39
    [Google Scholar]
  97. 97. 
    Garuma GF. 2018. Review of urban surface parameterizations for numerical climate models. Urban Clim 24:830–51
    [Google Scholar]
  98. 98. 
    Masson V. 2000. A physically based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteorol. 94:357–97
    [Google Scholar]
  99. 99. 
    Martilli A, Clappier A, Rotach MW 2002. An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteorol. 104:2261–304
    [Google Scholar]
  100. 100. 
    Masson V. 2006. Urban surface modelling and the mesoscale impact of cities. Theor. Appl. Climatol. 84:35–45
    [Google Scholar]
  101. 101. 
    Grimmond CSB, Blackett M, Best M, Barlow J, Baik J-J et al. 2010. The international urban energy balance models comparison project: first results from Phase 1. J. Appl. Meteorol. Climatol. 49:1268–92
    [Google Scholar]
  102. 102. 
    Grimmond CSB, Blackett M, Best M, Barlow J, Baik J-J et al. 2011. The international urban energy balance models comparison project: initial results from Phase 2. Int. J. Climatol. 31:2244–72
    [Google Scholar]
  103. 103. 
    Seity Y, Brousseau P, Malardel S, Hello G, Bénard P et al. 2011. The AROME-France convective-scale operational model. Mon. Weather Rev. 139:976–91
    [Google Scholar]
  104. 104. 
    Chen F, Kusaka H, Bornstein R, Ching J, Grimmond CSB et al. 2011. The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 31:273–88
    [Google Scholar]
  105. 105. 
    Hamdi R, Degrauwe D, Termonia P 2012. Coupling the Town Energy Balance (TEB) scheme to an operational limited-area NWP model: evaluation for a highly urbanized area in Belgium. Weather Forecast 27:2323–44
    [Google Scholar]
  106. 106. 
    Clark P, Roberts N, Lean H, Ballard SP, Charlton‐Perez C 2016. Convection‐permitting models: a step‐change in rainfall forecasting. Met. Apps. 23:165–81
    [Google Scholar]
  107. 107. 
    Leroyer S, Bélair S, Husain SZ, Mailhot J 2014. Subkilometer numerical weather prediction in an urban coastal area: a case study over the Vancouver metropolitan area. J. Appl. Meteorol. Climatol. 53:1433–53
    [Google Scholar]
  108. 108. 
    Joe P, Belair S, Bernier N, Bouchet V, Brook JR et al. 2018. The Environment Canada Pan and Parapan American Science Showcase Project. Bull. Am. Meteorol. Soc. 99:921–53
    [Google Scholar]
  109. 109. 
    Maronga B, Gross G, Raasch S, Banzhaf S, Forkel R et al. 2019. Development of a new urban climate model based on the model PALM—project overview, planned work, and first achievements. Meteorol. Z. 28:2105–19
    [Google Scholar]
  110. 110. 
    Lundquist KA, Chow FK, Lundquist JK 2012. An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF model. Mon. Weather Rev. 140:3936–55
    [Google Scholar]
  111. 111. 
    Auguste F, Réa G, Paoli R, Lac C, Masson V, Cariolle D 2019. Implementation of an immersed boundary method in the Meso-NH v5.2 model: applications to an idealized urban environment. Geosci. Model Dev. 12:2607–33
    [Google Scholar]
  112. 112. 
    Barlow J, Best M, Bohnenstengel SI, Clark P, Grimmond S et al. 2017. Developing a research strategy to better understand, observe, and simulate urban atmospheric processes at kilometer to subkilometer scales. Bull. Am. Meteorol. Soc. 98:ES261–64
    [Google Scholar]
  113. 113. 
    Best MJ, Grimmond CSB. 2015. Key conclusions of the First International Urban Land Surface Model Comparison Project. Bull. Am. Meteorol. Soc. 96:805–19
    [Google Scholar]
  114. 114. 
    Lee S-H, Park S-U. 2008. A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteorol. 126:73–102
    [Google Scholar]
  115. 115. 
    Lee S. 2011. Further development of the vegetated urban canopy model including a grass-covered surface parametrization and photosynthesis effects. Bound.-Layer Meteorol. 140:315–42
    [Google Scholar]
  116. 116. 
    Lemonsu A, Masson V, Shashua-Bar L, Erell E, Pearlmutter D 2010. Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas. Geosci. Model Dev. 5:1377–93
    [Google Scholar]
  117. 117. 
    Krayenhoff E, Christen A, Martilli A, Oke TR 2014. A multi-layer radiation model for urban neighbourhoods with trees. Bound.-Layer Meteorol. 151:139–78
    [Google Scholar]
  118. 118. 
    Krayenhoff E, Santiago J-L, Martilli A, Christen A, Oke T 2015. Parametrization of drag and turbulence for urban neighbourhoods with trees. Bound.-Layer Meteorol. 156:157–89
    [Google Scholar]
  119. 119. 
    Krayenhoff ES, Jiang T, Christen A, Martilli A, Oke TR et al. 2020. A multi-layer urban canopy meteorological model with trees (BEP-Tree): street tree impacts on pedestrian-level climate. Urban Clim 32:100590
    [Google Scholar]
  120. 120. 
    Ryu Y, Bou-Zeid E, Wang Z, Smith J 2016. Realistic representation of trees in an urban canopy model. Bound.-Layer Meteorol. 20:159193–220
    [Google Scholar]
  121. 121. 
    Redon E, Lemonsu A, Masson V, Morille B, Musy M 2017. Implementation of street trees within the solar radiative exchange parameterization of TEB in SURFEX v8.0. Geosci. Model Dev. 10:385–411
    [Google Scholar]
  122. 122. 
    Redon E, Lemonsu A, Masson 2020. An urban trees parameterization for modelling microclimatic variables and thermal comfort conditions at street level with the Town Energy Balance model (TEB-SURFEX v8.0). Geosci. Model Dev. 13:385–99
    [Google Scholar]
  123. 123. 
    de Munck C, Bernard E, Lemonsu A, Hidalgo J, Touati N, Bouyer J 2018. Impact of modelling vegetation at high resolution on urban climate variability Paper presented at the 10th International Conference on Urban Climate (ICUC10) New York, NY: Aug 6–10
  124. 124. 
    Goret M, Masson V, Schoetter R, Moine M-P 2019. Inclusion of a CO2 flux modeling in an urban canopy layer model and evaluation over an old European city center. Atmos. Environ. X 3:100042
    [Google Scholar]
  125. 125. 
    Salamanca F, Georgescu M, Mahalov A, Moustaou M, Wang M 2014. Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos. 119:5949–65
    [Google Scholar]
  126. 126. 
    Bueno B, Pigeon G, Norfolk L, Zibouche K, Marchadier C 2012. Development and evaluation of a building energy model integrated in the TEB scheme. Geosci. Model Dev. 5:2433–48
    [Google Scholar]
  127. 127. 
    Wang Y, Li Y, Di Sabatino S, Martilli A, Chan PW 2018. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environ. Res. Lett. 13:3L034015
    [Google Scholar]
  128. 128. 
    Schoetter R, Masson V, Bourgeois A, Pellegrino M, Lévy J-P 2017. Parametrisation of the variety of human behaviour related to building energy consumption in TEB (SURFEX v. 8.2). Geosci. Model Dev. 10:2801–31
    [Google Scholar]
  129. 129. 
    Arsiso B, Tsidu G, Stoffberg G 2018. Signature of present and projected climate change at an urban scale: the case of Addis Ababa. Phys. Chem. Earth A/B/C 105:104–14
    [Google Scholar]
  130. 130. 
    Salvati L, Zambon I, Pignatti G, Colantoni A, Cividino S et al. 2019. A time-series analysis of climate variability in urban and agricultural sites (Rome, Italy). Agriculture 9:103
    [Google Scholar]
  131. 131. 
    Lee K, Kim Y, Sung HC, Ryu J, Jeon SW 2020. Trend analysis of urban heat island intensity according to urban area change in Asian mega cities. Sustainability 12:112
    [Google Scholar]
  132. 132. 
    Fujibe F. 2011. Urban warming in Japanese cities and its relation to climate change monitoring. Int. J. Climatol. 31:162–73
    [Google Scholar]
  133. 133. 
    Varquez ACG, Kanda M. 2018. Global urban climatology: a meta-analysis of air temperature trends (1960–2009). NPJ Clim. Atmos. Sci. 1:32
    [Google Scholar]
  134. 134. 
    Le Roy B, Lemonsu A, Kounkou‐Arnaud R, Brion D, Masson V 2020. Long time series spatialized data for urban climatological studies: a case study of Paris, France. Int. J. Climatol. 40:3567–84
    [Google Scholar]
  135. 135. 
    Depietri Y, McPhearson T. 2018. Changing urban risk: 140 years of climatic hazards in New York City. Clim. Change 148:95–108
    [Google Scholar]
  136. 136. 
    Intergov. Panel Clim. Change (IPCC) 2014. Climate Change 2014: Impacts, Adaptation and Vulnerability: Regional Aspects Cambridge, UK: Cambridge Univ. Press
  137. 137. 
    Intergov. Panel Clim. Change (IPCC) 2020. Special Report on Climate Change and Land Cambridge, UK: Cambridge Univ. Press https://www.ipcc.ch/srccl/
  138. 138. 
    Fenner D, Holtmann A, Krug A, Scherer D 2019. Heat waves in Berlin and Potsdam, Germany—long‐term trends and comparison of heat wave definitions from 1893 to 2017. Int. J. Climatol. 39:2422–37
    [Google Scholar]
  139. 139. 
    Katavoutas G, Founda D. 2019. Response of urban heat stress to heat waves in Athens (1960–2017). Atmosphere 10:9483
    [Google Scholar]
  140. 140. 
    Willems P, Arnbjerg-Nielsen K, Olsson J, Nguyen VTV 2012. Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings. Atmos. Res. 103:106–18
    [Google Scholar]
  141. 141. 
    Wilby RL, Dawson CW, Barrow EM 2002. SDSM—a decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 17:147–59
    [Google Scholar]
  142. 142. 
    Feyissa G, Zeleke G, Bewket W, Gebremariam E 2018. Downscaling of future temperature and precipitation extremes in Addis Ababa under climate change. Climate 6:58
    [Google Scholar]
  143. 143. 
    Rukundo E, Dogan A. 2016. Assessment of climate and land use change projections and their impacts on flooding. Polish J. Environ. Stud. 25:62541–51
    [Google Scholar]
  144. 144. 
    Hatchett B, Koračin D, Mejía J, Boyle D 2016. Assimilating urban heat island effects into climate projections. J. Arid Environ. 128:59–64
    [Google Scholar]
  145. 145. 
    Maurer E, Brekke L, Pruitt T, Duffy P 2007. Fine-resolution climate projections enhance regional climate change impact studies. Eos, Trans. Am. Geophys. Union 88:47504
    [Google Scholar]
  146. 146. 
    Hoffmann P, Schoetter R, Schlünzen K 2018. Statistical-dynamical downscaling of the urban heat island in Hamburg, Germany. Meteorol. Z. 27:289–109
    [Google Scholar]
  147. 147. 
    Duchêne F, Van Schaeybroeck B, Caluwaerts S, Troch R, Hamdi R, Termonia P 2019. From regional scale to city scale through calibration of dynamical downscaling simulations Paper presented at the International Conference on Regional Climate CORDEX 2019 Beijing: Oct 14–18
  148. 148. 
    Le Roy B, Lemonsu A, Schoetter R, Masson V 2019. Challenges of statistical-dynamical downscaling of EURO-CORDEX regional climate models for impact studies at the city scale Paper presented at the International Conference on Regional Climate CORDEX 2019 Beijing: Oct 14–18
  149. 149. 
    Schoetter R, Hidalgo J, Jougla R, Masson V, Goret M et al. 2020. A statistical-dynamical downscaling for the urban heat island and building energy consumption—analysis of its uncertainties. J. Appl. Meteorol. Climatol. 59:859–83
    [Google Scholar]
  150. 150. 
    Burton A, Glenis V, Bovolo C, Blenkinsop S, Fowler H et al. 2010. Stochastic rainfall modelling for the assessment of urban flood hazard in a changing climate. Proceedings of the British Hydrological Society's Third International Symposium Newcastle upon Tyne, UK: Newcastle Univ.
    [Google Scholar]
  151. 151. 
    Willems P, Vrac M 2011. Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. J. Hydrol. 402:3–4193–205
    [Google Scholar]
  152. 152. 
    Olsson J, Gidhagen L, Gamerith V, Gruber G, Hoppe H, Kutschera P 2012. Downscaling of short-term precipitation from regional climate models for sustainable urban planning. Sustainability 4:5866–87
    [Google Scholar]
  153. 153. 
    Lindberg F, Thorsson S, Rayner D, Lau K 2016. The impact of urban planning strategies on heat stress in a climate-change perspective. Sustain. Cities Soc. 25:1–12
    [Google Scholar]
  154. 154. 
    Rayner D, Lindberg F. 2015. A statistical downscaling algorithm for thermal comfort applications. Theor. Appl. Climatol. 122:3729–42
    [Google Scholar]
  155. 155. 
    Kusaka H, Hara M, Takane Y 2012. Urban climate projection by the WRF Model at 3-km horizontal grid increment: dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. J. Meteorol. Soc. Jpn. Ser. II 90B:47–63
    [Google Scholar]
  156. 156. 
    Kikumoto H, Ooka R, Arima Y 2016. A study of urban thermal environment in Tokyo in summer of the 2030s under influence of global warming. Energy Build 114:54–61
    [Google Scholar]
  157. 157. 
    Arima Y, Ooka R, Kikumoto H, Yamanaka T 2016. Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM data. Energy Build 114:123–29
    [Google Scholar]
  158. 158. 
    Kim H, Kim Y, Song S, Lee H 2016. Impact of future urban growth on regional climate changes in the Seoul Metropolitan Area, Korea. Sci. Total Environ. 571:355–63
    [Google Scholar]
  159. 159. 
    Doan VQ, Kusaka H. 2018. Projections of urban climate in the 2050s in a fast‐growing city in Southeast Asia: the greater Ho Chi Minh City metropolitan area, Vietnam. Int. J. Climatol. 38:4155–71
    [Google Scholar]
  160. 160. 
    Lauwaet D, Ridder K, Saeed S, Brisson E, Chatterjee F et al. 2015. Assessing the current and future urban heat island of Brussels. Urban Clim 15:1–15
    [Google Scholar]
  161. 161. 
    Langendijk G, Rechid D, Jacob D 2019. Urban areas and urban–rural contrasts under climate change: What does the EURO-CORDEX ensemble tell us?—Investigating near surface humidity in Berlin and its surroundings. Atmosphere 10:12730
    [Google Scholar]
  162. 162. 
    Daniel M, Lemonsu A, Déqué M, Somot S, Alias A, Masson V 2019. Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions. Clim. Dyn. 52:52745–64
    [Google Scholar]
  163. 163. 
    Hamdi R, Van de Vyver H, De Troch R, Termonia P 2014. Assessment of three dynamical urban climate downscaling methods: Brussels' future urban heat island under an A1B emission scenario. Int. J. Climatol. 34:978–99
    [Google Scholar]
  164. 164. 
    Hamdi R, Giot O, De Troch R, Deckmyn A, Termonia P 2015. Future climate of Brussels and Paris for the 2050s under the A1B scenario. Urban Clim 12:160–82
    [Google Scholar]
  165. 165. 
    Hamdi R, Duchêne F, Berckmans J, Delcloo A, Vanpoucke C, Termonia P 2016. Evolution of urban heat wave intensity for the Brussels Capital Region in the ARPEGE-Climat A1B scenario. Urban Clim 17:176–95
    [Google Scholar]
  166. 166. 
    Coppola E, Sobolowski S, Pichelli E, Raffaele F, Ahrens B et al. 2020. A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim. Dyn. 55:334
    [Google Scholar]
  167. 167. 
    Lemonsu A, Le Roy B, Caillaud C 2019. High-resolution regional climate modelling with CNRM-AROME to study the urban climate of Paris (France) area and its evolution with climate change Paper presented at the International Conference on Regional Climate CORDEX 2019 Beijing: Oct 14–18
  168. 168. 
    Guerreiro SB, Dawson RJ, Kilsby C, Lewis E, Ford A 2018. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13:034009
    [Google Scholar]
  169. 169. 
    Bastin J, Clark E, Elliott T, Hart S, van den Hoogen J et al. 2019. Understanding climate change from a global analysis of city analogues. PLOS ONE 14:7e0217592
    [Google Scholar]
  170. 170. 
    Fitzpatrick MC, Dunn RR. 2019. Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nat. Commun. 10:614
    [Google Scholar]
  171. 171. 
    Rohat G, Goyette S, Flacke J 2018. Characterization of European cities’ climate shift—an exploratory study based on climate analogues. Int. J. Clim. Change Strateg. Manag. 10:3428–52
    [Google Scholar]
  172. 172. 
    Lemonsu A, Kounkou-Arnaud R, Desplat J, Salagnac J-L, Masson V 2013. Evolution of the Parisian urban climate under a global changing climate. Clim. Change 116:679–92
    [Google Scholar]
  173. 173. 
    Lauwaet D, Hooyberghs H, Maiheu B, Lefebvre W, Driesen G et al. 2015b. Urban heat island projections for cities worldwide: dynamical downscaling CMIP5 global climate models. Climate 3:391–415
    [Google Scholar]
  174. 174. 
    Chapman S, Thatcher M, Salazar A, Watson JEM, McAlpine CA 2019. The impact of climate change and urban growth on urban climate and heat stress in a subtropical city. Int. J. Climatol. 39:3013–30
    [Google Scholar]
  175. 175. 
    Oleson KW, Bonan GB, Feddema J, Jackson T 2011. An examination of urban heat island characteristics in a global climate model. Int. J. Climatol. 31:1848–65
    [Google Scholar]
  176. 176. 
    Chen L, Frauenfeld OW. 2016. Impacts of urbanization on future climate in China. Clim. Dyn. 47:345–57
    [Google Scholar]
  177. 177. 
    Krayenhoff ES, Moustaoui M, Broadbent AM, Gupta V, Georgescu M 2018. Diurnal interaction between urban expansion, climate change and adaptation in US cities. Nat. Clim. Change 8:1097–103
    [Google Scholar]
  178. 178. 
    Li D, Malyshev S, Shevliakova E 2016. Exploring historical and future urban climate in the Earth System Modeling framework: 2. Impact of urban land use over the Continental United States. J. Adv. Model. Earth Syst. 8:936–53
    [Google Scholar]
  179. 179. 
    Viguié V, Lemonsu A, Hallegatte S, Beaulant A-L, Marchadier C et al. 2020. Early adaptation to heat waves and future reduction of air-conditioning energy use in Paris. Environ. Res. Lett. 15:075006
    [Google Scholar]
  180. 180. 
    Lemonsu A, Viguié V, Daniel M, Masson V 2015. Vulnerability to heat waves: impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Clim 14:586–605
    [Google Scholar]
  181. 181. 
    Daniel M, Lemonsu A, Viguié V 2018. Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate. Urban Clim 23:287–308
    [Google Scholar]
  182. 182. 
    Gu X, Zhang Q, Singh VP, Song C, Sun P, Li J 2019. Potential contributions of climate change and urbanization to precipitation trends across China at national, regional and local scales. Int. J. Climatol. 39:2998–3012
    [Google Scholar]
  183. 183. 
    Rosenzweig C, Solecki W, Romero-Lankao P, Mehrotra S, Dhakal S et al. 2015. ARC3.2 Summary for City Leaders. Urban Climate Change Research Network. New York: Columbia Univ. Press
  184. 184. 
    Prieur-Richard AH, Walsh B, Craig M, Melamed ML, Colbert M et al. 2019. Global research and action agenda on cities and climate change science Publ. 13/2019, World Clim. Res. Progr Geneva: https://www.wcrp-climate.org/WCRP-publications/2019/GRAA-Cities-and-Climate-Change-Science-Full.pdf
  185. 185. 
    Laaidi K, Zeghnoun A, Dousset B, Bretin P, Vandentorren S et al. 2012. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ. Health Perspect. 120:2254–59
    [Google Scholar]
  186. 186. 
    Klein Rosenthal J, Kinney PL, Metzger KB 2014. Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health Place 30:45–60
    [Google Scholar]
  187. 187. 
    Akbari H, Kolokotsa D. 2016. Three decades of urban heat islands and mitigation technologies research. Energy Build 133:834–42
    [Google Scholar]
  188. 188. 
    Martilli A, Krayenhoff S, Nazarian N 2020. Is the Urban Heat Island intensity relevant for heat mitigation studies. Urban Clim 31:100541
    [Google Scholar]
  189. 189. 
    Pisello AL. 2017. State of the art on the development of cool coatings for buildings and cities. Solar Energy 144:660–80
    [Google Scholar]
  190. 190. 
    Aleksandrowicz O, Vuckovic M, Kiesel K, Mahdavi A 2017. Current trends in urban heat island mitigation research: observations based on a comprehensive research repository. Urban Clim 21:1–26
    [Google Scholar]
  191. 191. 
    Shooshtarian S, Rajagopalan P, Sagoo A 2018. A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustain. Cities Soc. 41:647–65
    [Google Scholar]
  192. 192. 
    Hintz MJ, Luederitz C, Lang DJ, Wehrden HV 2018. Facing the heat: a systematic literature review exploring the transferability of solutions to cope with urban heat waves. Urban Clim 24:714–27
    [Google Scholar]
  193. 193. 
    Ng E, Ren C. 2018. China's adaptation to climate & urban climatic changes: a critical review. Urban Clim 23:352–72
    [Google Scholar]
  194. 194. 
    Hidalgo J, Lemonsu A, Masson V 2018. Between progress and obstacles on urban climate interdisciplinary studies and knowledge transfer to society. Ann. N. Y. Acad. Sci 1436:15–18
    [Google Scholar]
  195. 195. 
    Onur AC, Tezer A. 2015. Ecosystem services based spatial planning decision making for adaptation to climate changes. Habitat Int 47:267–78
    [Google Scholar]
  196. 196. 
    Živojinović I, Wolfslehner B. 2015. Perceptions of urban forestry stakeholders about climate change adaptation—a Q-method application in Serbia. Urban For. Urban Green. 14:41079–87
    [Google Scholar]
  197. 197. 
    Mason SG, Fragkias M. 2018. Metropolitan planning organizations and climate change action. Urban Clim 25:37–50
    [Google Scholar]
  198. 198. 
    Kraucunas I, Clarke L, Dirks J, Hathaway J, Hejazi M et al. 2015. Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Clim. Change 129:3–4573–88
    [Google Scholar]
  199. 199. 
    Hatvani-Kovacs G, Bush J, Sharifi E, Boland J, Boland J 2018. Policy recommendations to increase urban heat stress resilience. Urban Clim 25:51–63
    [Google Scholar]
  200. 200. 
    Mahlkow N, Lakes T, Donner J, Koppel J, Schreurs M 2016. Developing storylines for urban climate governance by using Constellation Analysis—insights from a case study in Berlin, Germany. Urban Clim 17:266–83
    [Google Scholar]
  201. 201. 
    Baklanov A, Cárdenas B, Lee T-C, Leroyer S, Masson V et al. 2020. Integrated urban services: experience from four cities on different continents. Urban Clim 32:100610
    [Google Scholar]
  202. 202. 
    World Meteorol. Organ. (WMO) 2019. Guidance on Integrated Urban Hydrometeorological, Climate and Environmental Services, Vol. 1: Concept and Methodology Geneva: WMO https://library.wmo.int/doc_num.php?explnum_id=9903
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012320-083623
Loading
/content/journals/10.1146/annurev-environ-012320-083623
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error