Tropical intraseasonal variability (TISV) of the atmosphere describes the coherent variability in basic state variables, including pressure, wind, temperature, and humidity, as well as in the physical phenomena associated with the covariability of these parameters, such as rainfall and cloudiness, over synoptic (∼1,000 km, ∼1–10 days) to planetary (∼10,000 km, ∼10–100 days) scales. In the past, the characteristics of individual TISV modes were studied separately, and much has been learned from this approach. More recent studies have increasingly focused on the multiscale nature of these modes, leading to exciting new developments in our understanding of tropical meteorology. This article reviews the most recent observations of TISV and its associated impacts on regional weather, short-term climate patterns, and atmospheric chemical transports, as well as the ability of numerical models to capture these interacting modes of variability. We also suggest where the field might focus its efforts in the future.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kiladis GN, Wheeler MC, Haertel PT, Straub KH, Roundy PE. 1.  2009. Convectively coupled equatorial waves. Rev. Geophys. 47:2RG2003 [Google Scholar]
  2. Moncrieff MW, Waliser DE, Caughey J. 2.  2012. Progress and direction in tropical convection research: YOTC International Science Symposium. Bull. Am. Meteorol. Soc. 93:8ES65–69 [Google Scholar]
  3. Kiladis GN, Weickmann KM. 3.  1997. Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Mon. Weather Rev. 125:91997–2013 [Google Scholar]
  4. Matthews AJ, Kiladis GN. 4.  1999. The tropical-extratropical interaction between high-frequency transients and the Madden-Julian Oscillation. Mon. Weather Rev. 127:5661–77 [Google Scholar]
  5. Yang G-Y, Slingo J, Hoskins B. 5.  2009. Convectively coupled equatorial waves in high-resolution Hadley Centre climate models. J. Clim. 22:81897–919 [Google Scholar]
  6. Hung M-P, Lin J-L, Wang W, Kim D, Shinoda T, Weaver SJ. 6.  2013. MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Clim. 26:176185–214 [Google Scholar]
  7. Riehl H. 7.  1945. Waves in the Easterlies and the Polar Front in the Tropics Chicago: Univ. Chicago Press [Google Scholar]
  8. Matsuno T. 8.  1966. Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 44:125–42 [Google Scholar]
  9. Takayabu YN. 9.  1994. Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteorol. Soc. Jpn. 72:3433–49 [Google Scholar]
  10. Takayabu YN. 10.  1994. Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. J. Meteorol. Soc. Jpn. 72:451–65 [Google Scholar]
  11. Wheeler M, Kiladis GN. 11.  1999. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56:3374–99 [Google Scholar]
  12. Holton JR, Lindzen RS. 12.  1972. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29:61076–80 [Google Scholar]
  13. Wallace JM, Chang LA. 13.  1972. On the application of satellite data on cloud brightness to the study of tropical wave disturbances. J. Atmos. Sci. 29:71400–3 [Google Scholar]
  14. Gruber A. 14.  1974. The wavenumber-frequency spectra of satellite-measured brightness in the tropics. J. Atmos. Sci. 31:61675–80 [Google Scholar]
  15. Zangvil A. 15.  1975. Temporal and spatial behavior of large-scale disturbances in tropical cloudiness deduced from satellite brightness data. Mon. Weather Rev. 103:10904–20 [Google Scholar]
  16. Madden RA, Julian PR. 16.  1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28:702–8 [Google Scholar]
  17. Madden RA, Julian PR. 17.  1972. Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29:61109–23 [Google Scholar]
  18. Hendon HH, Salby ML. 18.  1994. The life cycle of the Madden-Julian oscillation. J. Atmos. Sci. 51:152225–37 [Google Scholar]
  19. Lau WKM, Waliser DE. 19.  2012. Intraseasonal Variability in the Atmosphere-Ocean Climate System Heidelberg, Ger.: Springer, 2nd ed.. [Google Scholar]
  20. Maloney E, Hartmann D. 20.  2000. Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. J. Clim. 13:91451–60 [Google Scholar]
  21. Mo KC. 21.  2000. Intraseasonal modulation of summer precipitation over North America. Mon. Weather Rev. 128:1490–505 [Google Scholar]
  22. Maloney ED, Hartmann DL. 22.  2001. The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci. 58:172545–58 [Google Scholar]
  23. Kikuchi K, Wang B. 23.  2010. Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteorol. Soc. Jpn. 88:3475–96 [Google Scholar]
  24. Klotzbach PJ. 24.  2014. The Madden-Julian oscillation's impacts on worldwide tropical cyclone activity. J. Clim. 27:2317–30 [Google Scholar]
  25. Matthews A. 25.  2004. Intraseasonal variability over tropical Africa during northern summer. J. Clim. 17:122427–40 [Google Scholar]
  26. Lorenz DJ, Hartmann DL. 26.  2006. The effect of the MJO on the North American monsoon. J. Clim. 19:333–43 [Google Scholar]
  27. Maloney ED, Shaman J. 27.  2008. Intraseasonal variability of the west African monsoon and Atlantic ITCZ. J. Clim. 21:122898–918 [Google Scholar]
  28. Pai DS, Bhate J, Sreejith OP, Hatwar HR. 28.  2009. Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India. Clim. Dyn. 36:1–241–55 [Google Scholar]
  29. McPhaden MJ. 29.  1999. Genesis and evolution of the 1997–98 El Niño. Science 283:5404950–54 [Google Scholar]
  30. Vecchi GA, Harrison DE. 30.  2000. Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Clim. 13:1814–30 [Google Scholar]
  31. Vecchi GA, Harrison DE. 31.  2003. On the termination of the 2002–03 El Niño event. Geophys. Res. Lett. 30:181964 [Google Scholar]
  32. Burpee RW. 32.  1972. The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci. 29:77–90 [Google Scholar]
  33. Norquist DC, Recker EE, Reed RJ. 33.  1977. The energetics of African wave disturbances as observed during phase III of GATE. Mon. Weather Rev. 105:3334–42 [Google Scholar]
  34. Kiladis GN, Thorncroft C, Hall N. 34.  2006. Three-dimensional structure and dynamics of African easterly waves. J. Atmos. Sci. 63:2212–30 [Google Scholar]
  35. Thorncroft CD, Hall N, Kiladis GN. 35.  2008. Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci. 65:113596–607 [Google Scholar]
  36. Reed RJ, Recker EE. 36.  1971. Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci. 28:71117–33 [Google Scholar]
  37. Nitta T, Takayabu Y, Nakagomi Y, Suzuki Y, Hasegawa N, Kadokura A. 37.  1985. Global analysis of the lower tropospheric disturbances in the tropics during the northern summer of the FGGE year. Part I: Global features of the disturbances. J. Meteorol. Soc. Jpn. 63:1–19 [Google Scholar]
  38. Takayabu YN, Nitta T. 38.  1993. 3–5 day-period disturbances coupled with convection over the tropical Pacific ocean. J. Meteorol. Soc. Jpn. 71:2221–46 [Google Scholar]
  39. Dunkerton TJ, Baldwin MP. 39.  1995. Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: horizontal structure and propagation. J. Atmos. Sci. 52:101585–601 [Google Scholar]
  40. Roundy P, Frank W. 40.  2004. A climatology of waves in the equatorial region. J. Atmos. Sci. 61:172105–32 [Google Scholar]
  41. Shapiro LJ. 41.  1986. The three-dimensional structure of synoptic-scale disturbances over the tropical Atlantic. Mon. Weather Rev. 114:1876–91 [Google Scholar]
  42. Serra YL, Kiladis GN, Cronin MF. 42.  2008. Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci. 65:41266–84 [Google Scholar]
  43. Ferreira RN, Schubert WH. 43.  1997. Barotropic aspects of ITCZ breakdown. J. Atmos. Sci. 54:2261–85 [Google Scholar]
  44. Molinari J, Knight D, Dickinson M, Vollaro D, Skubis S. 44.  1997. Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Weather Rev. 125:102699–708 [Google Scholar]
  45. Wang C-C, Magnusdottir G. 45.  2006. The ITCZ in the central and eastern Pacific on synoptic time scales. Mon. Weather Rev. 134:51405–21 [Google Scholar]
  46. Serra YL, Kiladis GN, Hodges KI. 46.  2010. Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Clim. 23:184823–40 [Google Scholar]
  47. Méndez M, Magaña V. 47.  2010. Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Clim. 23:51175–88 [Google Scholar]
  48. Toma VE, Webster PJ. 48.  2010. Oscillations of the intertropical convergence zone and the genesis of easterly waves. Part I: Diagnostics and theory. Clim. Dyn. 34:4587–604 [Google Scholar]
  49. Toma VE, Webster PJ. 49.  2010. Oscillations of the intertropical convergence zone and the genesis of easterly waves. Part II: Numerical verification. Clim. Dyn. 34:4605–13 [Google Scholar]
  50. Lau K-H, Lau N-C. 50.  1992. The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Weather Rev. 120:2523–39 [Google Scholar]
  51. Sobel AH, Bretherton CS. 51.  1999. Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci. 56:173106–27 [Google Scholar]
  52. Raymond DDJ, López-Carrillo C, Cavazos LL. 52.  1998. Case-studies of developing east Pacific easterly waves. Q. J. R. Meteorol. Soc. 124:5502005–34 [Google Scholar]
  53. Zehnder JA, Powell DM, Ropp DL. 53.  1999. The interaction of easterly waves, orography, and the intertropical convergence zone in the genesis of eastern Pacific tropical cyclones. Mon. Weather Rev. 127:71566–85 [Google Scholar]
  54. Molinari J, Vollaro D, Skubis S, Dickinson M. 54.  2000. Origins and mechanisms of eastern Pacific tropical cyclogenesis: a case study. Mon. Weather Rev. 128:1125–39 [Google Scholar]
  55. Frank WM, Roundy PE. 55.  2006. The role of tropical waves in tropical cyclogenesis. Mon. Weather Rev. 134:2397–417 [Google Scholar]
  56. Holland GJ. 56.  1995. Scale interaction in the western Pacific monsoon. Meteorol. Atmos. Phys. 56:57–79 [Google Scholar]
  57. Ritchie EA, Holland GJ. 57.  1999. Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Weather Rev. 127:92027–43 [Google Scholar]
  58. Maloney E, Dickinson M. 58.  2003. The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci. 60:172153–68 [Google Scholar]
  59. Straub KH, Kiladis GN. 59.  2003. Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Weather Rev. 131:5945–60 [Google Scholar]
  60. Dunkerton TJ, Montgomery MT, Wang Z. 60.  2009. Tropical cyclogenesis in a tropical wave critical layer: easterly waves. Atmos. Chem. Phys. 9:155587–646 [Google Scholar]
  61. Wheeler MC, McBride JL. 61.  2012. Australasian monsoon. See Ref. 19 147–97
  62. Carvalho LMV, Silva AE, Jones C, Liebmann B, Silva Dias PL, Rocha HR. 62.  2010. Moisture transport and intraseasonal variability in the South America monsoon system. Clim. Dyn. 36:9–101865–80 [Google Scholar]
  63. Khouider B, Majda AJ. 63.  2008. Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci. 65:3376–97 [Google Scholar]
  64. Zhang C. 64.  2013. Madden-Julian oscillation: bridging weather and climate. Bull. Am. Meteorol. Soc. 94:121849–70 [Google Scholar]
  65. Roundy PE. 65.  2012. Tropical-extratropical interactions. See Ref. 19 497–512
  66. Simpson J, Adler RF, North GR. 66.  1988. A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Am. Meteorol. Soc. 69:3278–95 [Google Scholar]
  67. Chahine MT, Pagano TS, Aumann HH, Atlas R. 67.  2006. AIRS: improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meteorol. Soc. 87:7911–26 [Google Scholar]
  68. L'Ecuyer TS, Jiang JH. 68.  2010. Touring the atmosphere aboard the A-Train. Phys. Today 63:36–41 [Google Scholar]
  69. Moncrieff MW, Waliser DE, Miller MJ, Shapiro MA, Asrar GR, Caughey J. 69.  2012. Multiscale convective organization and the YOTC virtual global field campaign. Bull. Am. Meteorol. Soc. 93:81171–87 [Google Scholar]
  70. Parkinson CL. 70.  2013. Summarizing the first ten years of NASA's Aqua Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6:31179–88 [Google Scholar]
  71. Black PG, D'Asaro EA, Sanford TB, Drennan WM, Zhang JA. 71.  et al. 2007. Air-sea exchange in hurricanes: synthesis of observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. Bull. Am. Meteorol. Soc. 88:3357–74 [Google Scholar]
  72. Yoneyama K, Zhang C, Long CN. 72.  2013. Tracking pulses of the Madden-Julian oscillation. Bull. Am. Meteorol. Soc. 94:1871–91 [Google Scholar]
  73. Dee DP, Uppala SM, Simmons AJ. 73.  2011. The ERA interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137:553–97 [Google Scholar]
  74. Nakazawa T. 74.  1988. Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteorol. Soc. Jpn. 66:6823–39 [Google Scholar]
  75. Maloney E, Esbensen S. 75.  2003. The amplification of east Pacific Madden-Julian oscillation convection and wind anomalies during June-November. J. Clim. 16:213482–97 [Google Scholar]
  76. Gottschalck J, Roundy PE, Schreck CJ III, Vintzileos A, Zhang C. 76.  2013. Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Weather Rev. 141:124173–96 [Google Scholar]
  77. Houze RA. 77.  2004. Mesoscale convective systems. Rev. Geophys. 42:4RG4003 [Google Scholar]
  78. Hsu H-H, Hoskins BJ, Jin F-F. 78.  1990. The 1985/86 intraseasonal oscillation and the role of the extra-tropics. J. Atmos. Sci. 47:7823–39 [Google Scholar]
  79. Hsu H-H, Weng C-H, Wu C-H. 79.  2004. Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Clim. 17:4727–43 [Google Scholar]
  80. Jiang X, Lau N-C. 80.  2008. Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J. Clim. 21:112664–79 [Google Scholar]
  81. Leroy A, Wheeler MC. 81.  2008. Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Weather Rev. 136:103637–54 [Google Scholar]
  82. Vitart F. 82.  2009. Impact of the Madden Julian Oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys. Res. Lett. 36:L15802 [Google Scholar]
  83. Klotzbach PJ. 83.  2010. On the Madden-Julian Oscillation–Atlantic hurricane relationship. J. Clim. 23:2282–93 [Google Scholar]
  84. Alaka GJ Jr, Maloney ED. 84.  2012. The influence of the MJO on upstream precursors to African easterly waves. J. Clim. 25:93219–36 [Google Scholar]
  85. Jiang X, Zhao M, Waliser DE. 85.  2012. Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Clim. 25:6524–38 [Google Scholar]
  86. Slade SA, Maloney ED. 86.  2013. An intraseasonal prediction model of Atlantic and east Pacific tropical cyclone genesis. Mon. Weather Rev. 141:61925–42 [Google Scholar]
  87. Roundy PE. 87.  2012. Tracking and prediction of large-scale organized tropical convection by spectrally focused two-step space-time EOF analysis. Q. J. R. Meteorol. Soc. 138:919–31 [Google Scholar]
  88. Roundy PE. 88.  2012. The spectrum of convectively coupled Kelvin waves and the Madden-Julian oscillation in regions of low-level easterly and westerly background flow. J. Atmos. Sci. 69:72107–11 [Google Scholar]
  89. Straub KH. 89.  2013. MJO initiation in the real-time multivariate MJO index. J. Clim. 26:41130–51 [Google Scholar]
  90. Ling J, Zhang C, Bechtold P. 90.  2013. Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci. 70:92696–712 [Google Scholar]
  91. Matthews AJ. 91.  2008. Primary and successive events in the Madden-Julian Oscillation. Q. J. R. Meteorol. Soc. 134:631439–53 [Google Scholar]
  92. Kemball-Cook SR, Weare BC. 92.  2001. The onset of convection in the Madden-Julian oscillation. J. Clim. 14:780–93 [Google Scholar]
  93. Mo KC, Jones C, Paegle JN. 93.  2012. Pan America See Ref. 19 111–45 [Google Scholar]
  94. Guan B, Waliser DE, Molotch NP, Fetzer EJ, Neiman PJ. 94.  2012. Does the Madden-Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada?. Mon. Weather Rev. 140:2325–42 [Google Scholar]
  95. Yu W, Han W, Maloney ED, Gochis D. 95.  2011. Observations of eastward propagation of atmospheric intraseasonal oscillations from the Pacific to the Atlantic. J. Geophys. Res. 116:D02101 [Google Scholar]
  96. Lau WKM. 96.  2012. El Niño Southern Oscillation connection. See Ref. 19 297–334
  97. Yasunari T. 97.  1979. Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteorol. Soc. Jpn. 57:3227–42 [Google Scholar]
  98. Webster PJ, Magana VO, Palmer TN, Shukla J. 98.  1998. Monsoons: processes, predictability, and the prospects for prediction. J. Geophys. Res. 103:C714451–510 [Google Scholar]
  99. Jiang X, Li T, Wang B. 99.  2004. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Clim. 17:51022–39 [Google Scholar]
  100. Prasanna V, Annamalai H. 100.  2012. Moist dynamics of extended monsoon breaks over South Asia. J. Clim. 25:113810–31 [Google Scholar]
  101. Goswami BN. 101.  2012. South Asian monsoon. See Ref. 19 21–72
  102. Fu X, Wang B, Li T, McCreary J. 102.  2003. Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci. 60:151733–53 [Google Scholar]
  103. DeMott CA, Stan C, Randall DA. 103.  2013. Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-interim and SP-CCSM. J. Clim. 26:1973–92 [Google Scholar]
  104. Chen T-C, Chen J-M. 104.  1993. The 10–20-day mode of the 1979 Indian monsoon: its relation with the time variation of monsoon rainfall. Mon. Weather Rev. 121:92465–82 [Google Scholar]
  105. Chang C-P, Chen GT-J. 105.  1995. Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea. Mon. Weather Rev. 123:113254–67 [Google Scholar]
  106. Wang B, Xu X. 106.  1997. Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Clim. 10:51071–85 [Google Scholar]
  107. Fukutomi Y, Yasunari T. 107.  1999. 10–25 day intraseasonal variations of convection and circulation over East Asia and western North Pacific during early summer. J. Meteorol. Soc. Jpn. 77:3753–69 [Google Scholar]
  108. Chen T-C, Yen M-C, Weng S-P. 108.  2000. Interaction between the summer monsoons in East Asia and the South China Sea: intraseasonal monsoon modes. J. Atmos. Sci. 57:91373–92 [Google Scholar]
  109. Hartmann DL, Michelsen ML, Klein SA. 109.  1992. Seasonal variations of tropical intraseasonal oscillations: a 20–25-day oscillation in the western Pacific. J. Atmos. Sci. 49:141277–89 [Google Scholar]
  110. Kemball-Cook S, Wang B. 110.  2001. Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation. J. Clim. 14:132923–42 [Google Scholar]
  111. Lawrence DM, Webster PJ. 111.  2001. Interannual variations of the intraseasonal oscillation in the South Asian summer monsoon region. J. Clim. 14:132910–22 [Google Scholar]
  112. Joseph S, Sahai AK, Goswami BN. 112.  2008. Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim. Dyn. 32:7–81139–53 [Google Scholar]
  113. Flatau MK, Flatau PJ, Schmidt J, Kiladis GN. 113.  2003. Delayed onset of the 2002 Indian monsoon. Geophys. Res. Lett. 30:141768 [Google Scholar]
  114. Straub KH, Kiladis GN, Ciesielski PE. 114.  2006. The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998. Dyn. Atmos. Ocean. 42:1–4216–38 [Google Scholar]
  115. Webster PJ, Chang H-R. 115.  1988. Equatorial energy accumulation and emanation regions: impacts of a zonally varying basic state. J. Atmos. Sci. 45:5803–29 [Google Scholar]
  116. Chen G, Huang R. 116.  2009. Interannual variations in mixed Rossby-gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Clim. 22:3535–49 [Google Scholar]
  117. Raymond D, Bretherton C, Molinari J. 117.  2006. Dynamics of the intertropical convergence zone of the east Pacific. J. Atmos. Sci. 63:2582–97 [Google Scholar]
  118. Jiang X, Waliser DE. 118.  2009. Two dominant subseasonal variability modes of the eastern Pacific ITCZ. Geophys. Res. Lett. 36:4L04704 [Google Scholar]
  119. Jiang X, Waliser DE. 119.  2008. Northward propagation of the subseasonal variability over the eastern Pacific warm pool. Geophys. Res. Lett. 35:9L09814 [Google Scholar]
  120. Rydbeck AV, Maloney ED, Xie S-P, Hafner J, Shaman J. 120.  2013. Remote forcing versus local feedback of east Pacific intraseasonal variability during boreal summer. J. Clim. 26:113575–96 [Google Scholar]
  121. Maloney E, Kiehl J. 121.  2002. MJO-related SST variations over the tropical eastern Pacific during Northern Hemisphere summer. J. Clim. 15:6675–89 [Google Scholar]
  122. Crosbie E, Serra YL. 122.  2014. Intra-seasonal modulation of synoptic scale disturbances and tropical cyclone genesis in the eastern North Pacific. J. Clim. 27:5724–45. doi: 10.1175/JCLI-D-13-00399.1 [Google Scholar]
  123. Maloney ED, Chelton DB, Esbensen SK. 123.  2008. Subseasonal SST variability in the tropical eastern North Pacific during boreal summer. J. Clim. 21:174149–67 [Google Scholar]
  124. Wen M, Yang S, Higgins W, Zhang R. 124.  2011. Characteristics of the dominant modes of atmospheric quasi-biweekly oscillation over tropical-subtropical Americas. J. Clim. 24:153956–70 [Google Scholar]
  125. Molinari J, Vollaro D. 125.  2000. Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Weather Rev. 128:93296–307 [Google Scholar]
  126. Aiyyer A, Molinari J. 126.  2008. MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: case study and idealized numerical modeling. J. Atmos. Sci. 65:82691–704 [Google Scholar]
  127. Maloney ED, Hartmann DL. 127.  2000. Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science 287:54602002–4 [Google Scholar]
  128. Camargo SJ, Robertson AW, Barnston AG, Ghil M. 128.  2008. Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst. 9:6Q06V05 [Google Scholar]
  129. Zehnder JA. 129.  1991. The interaction of planetary-scale tropical easterly waves with topography: a mechanism for the initiation of tropical cyclones. J. Atmos. Sci. 48:101217–30 [Google Scholar]
  130. Schultz DM, Bracken WE, Bosart LF, Hakim GJ, Bedrick MA. 130.  et al. 1997. The 1993 superstorm cold surge: frontal structure, gap flow, and tropical impact. Mon. Weather Rev. 125:15–39 [Google Scholar]
  131. Schultz DM, Keyser D, Bosart LF. 131.  1998. The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Weather Rev. 126:71767–91 [Google Scholar]
  132. Hastenrath S. 132.  1991. Climate Dynamics of the Tropics: Updated Edition from Climate and Circulation of the Tropics Dortrecht, Neth.: Kluwer Acad. [Google Scholar]
  133. Amador JA, Chacón RE, Laporte S. 133.  2003. Climate and climate variability in the Arenal River basin of Costa Rica. Climate and Water HF Diaz, BJ Morehouse 317–49 Dortrecht, Neth.: Kluwer Acad. [Google Scholar]
  134. Gray WM. 134.  1979. Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology Over the Tropical Oceans DB Shaw 155–218 Bracknell, Bershire, UK: R. Meteorol. Soc. [Google Scholar]
  135. Amador JA. 135.  2008. The Intra-Americas Sea low-level jet: overview and future research. Ann. N.Y. Acad. Sci. 1146:1153–88 [Google Scholar]
  136. Enfield D, Alfaro E. 136.  1999. The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific oceans. J. Clim. 12:72093–103 [Google Scholar]
  137. Magaña V, Amador J. 137.  1999. The midsummer drought over Mexico and Central America. J. Clim. 12:1577–88 [Google Scholar]
  138. Martin ER, Schumacher C. 138.  2011. Modulation of Caribbean precipitation by the Madden-Julian oscillation. J. Clim. 24:3813–24 [Google Scholar]
  139. Barlow M, Salstein D. 139.  2006. Summertime influence of the Madden-Julian Oscillation on daily rainfall over Mexico and Central America. Geophys. Res. Lett. 33:21L21708 [Google Scholar]
  140. Amador JA. 140.  1998. A climatic feature of the tropical Americas: the trade wind easterly jet. Top. Meteorol. Oceanogr. 5:291–102 [Google Scholar]
  141. Salinas JA. 141.  2006. Dinamica de las ondas del este y su interaccion con el flujo medio en El Caribe PhD Thesis. Univ. Nac. Autónoma de Mex. [Google Scholar]
  142. Amador JA, Alfaro EJ, Rivera ER, Calderón B. 142.  2010. Climatic features and their relationship with tropical cyclones over the Intra-Americas Seas. Hurricanes and Climate 2 JB Eisner, RE Hodges, JC Malmstadt, KN Scheitlin 149–73 Dordrecht, Neth.: Springer [Google Scholar]
  143. Janicot S, Mounier F, Hall N, Leroux SE, Sultan B, Kiladis GN. 143.  2009. Dynamics of the west African monsoon. Part IV: Analysis of 25–90-day variability of convection and the role of the Indian monsoon. J. Clim. 22:61541–65 [Google Scholar]
  144. Janicot S, Mounier F, Gervois S, Sultan B, Kiladis GN. 144.  2010. The dynamics of the west African monsoon. Part V: The detection and role of the dominant modes of convectively coupled equatorial Rossby waves. J. Clim. 23:144005–24 [Google Scholar]
  145. Janicot S, Thorncroft CD, Ali A, Asencio N, Berry GJ. 145.  et al. 2008. Large-scale overview of the summer monsoon over west Africa during the AMMA field experiment in 2006. Ann. Geophys. 26:2569–95 [Google Scholar]
  146. Mounier F, Janicot S, Kiladis GN. 146.  2008. The west African monsoon dynamics. Part III: The quasi-biweekly zonal dipole. J. Clim. 21:91911–28 [Google Scholar]
  147. Sultan B, Janicot S, Diedhiou A. 147.  2003. The west African monsoon dynamics. Part I: Documentation of intraseasonal variability. J. Clim. 16:213389–406 [Google Scholar]
  148. Mounier F, Janicot S. 148.  2004. Evidence of two independent modes of convection at intraseasonal timescale in the west African summer monsoon. Geophys. Res. Lett. 31:16L16116 [Google Scholar]
  149. Taylor CM. 149.  2008. Intraseasonal land-atmosphere coupling in the west African monsoon. J. Clim. 21:246636–48 [Google Scholar]
  150. Cornforth RJ, Hoskins BJ, Thorncroft CD. 150.  2009. The impact of moist processes on the African easterly jet–African easterly wave system. Q. J. R. Meteorol. Soc. 135:641894–913 [Google Scholar]
  151. Leroux SE, Hall N, Kiladis GN. 151.  2010. A climatological study of transient-mean-flow interactions over west Africa. Q. J. R. Meteorol. Soc. 136:S1397–410 [Google Scholar]
  152. Hsieh J, Cook K. 152.  2005. Generation of African easterly wave disturbances: relationship to the African easterly jet. Mon. Weather Rev. 133:51311–27 [Google Scholar]
  153. Hall N, Kiladis GN, Thorncroft CD. 153.  2006. Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci. 63:92231–45 [Google Scholar]
  154. Mo KC. 154.  2000. The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Weather Rev. 128:124097–107 [Google Scholar]
  155. Mounier F, Kiladis GN, Janicot S. 155.  2007. Analysis of the dominant mode of convectively coupled Kelvin waves in the west African monsoon. J. Clim. 20:81487–503 [Google Scholar]
  156. Nguyen H, Duvel JP. 156.  2008. Synoptic wave perturbations and convective systems over equatorial Africa. J. Clim. 21:6372–88 [Google Scholar]
  157. Guo Y, Jiang X, Waliser DE. 157.  2014. Modulation of the convectively coupled Kelvin waves over South America and tropical Atlantic Ocean in association with the Madden-Julian oscillation. J. Atmos. Sci. 71:1371–88 [Google Scholar]
  158. Ventrice MJ, Thorncroft CD, Janiga MA. 158.  2012. Atlantic tropical cyclogenesis: a three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Weather Rev. 140:41108–24 [Google Scholar]
  159. Liebmann B, Kiladis GN, Carvalho L. 159.  2009. Origin of convectively coupled Kelvin waves over South America. J. Clim. 22:300–15 [Google Scholar]
  160. Zhang C, Gottschalck J, Maloney ED. 160.  2013. Cracking the MJO nut. Geophys. Res. Lett. 40:1223–30 [Google Scholar]
  161. Tian B, Waliser DE. 161.  2012. Chemical and biological impacts. See Ref. 19 569–85
  162. Tian B, Yung YL, Waliser DE. 162.  2007. Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation. Geophys. Res. Lett. 34:L08704 [Google Scholar]
  163. Li KF, Tian B, Waliser DE, Schwartz MJ, Neu JL. 163.  et al. 2012. Vertical structure of MJO-related subtropical ozone variations from MLS, TES, and SHADOZ data. Atmos. Chem. Phys. 12:1425–36 [Google Scholar]
  164. Li KF, Tian B, Tung KK, Kuai L, Worden JR. 164.  et al. 2013. A link between tropical intraseasonal variability and Arctic stratospheric ozone. J. Geophys. Res. Atmos. 118:4280–89 [Google Scholar]
  165. Ziemke JR, Chandra S, Schoeberl MR, Froidevaux L, Read WG. 165.  et al. 2007. Intra-seasonal variability in tropospheric ozone and water vapor in the tropics. Geophys. Res. Lett. 34:17L17804 [Google Scholar]
  166. Cooper MJ, Martin RV, Livesey NJ. 166.  2013. Analysis of satellite remote sensing observations of low ozone events in the tropical upper troposphere and links with convection. Geophys. Res. Lett. 40:3761–65 [Google Scholar]
  167. Tian B, Waliser DE, Kahn RA, Li Q, Yung YL. 167.  et al. 2008. Does the Madden-Julian Oscillation influence aerosol variability?. J. Geophys. Res. Atmos. 113D12215 [Google Scholar]
  168. Tian B, Waliser DE, Kahn RA, Wong S. 168.  2011. Modulation of Atlantic aerosols by the Madden-Julian Oscillation. J. Geophys. Res. Atmos. 116:D15108 [Google Scholar]
  169. Guo Y, Tian B, Kahn RA, Kalashnikova O, Wong S, Waliser DE. 169.  2013. Tropical Atlantic dust and smoke aerosol variations related to the Madden-Julian Oscillation in MODIS and MISR observations. J. Geophys. Res. Atmos. 118:4947–63 [Google Scholar]
  170. Zuluaga MD, Webster PJ, Hoyos CD. 170.  2012. Variability of aerosols in the tropical Atlantic Ocean relative to African easterly waves and their relationship with atmospheric and oceanic environments. J. Geophys. Res. Atmos. 117:D16207 [Google Scholar]
  171. Reid JS, Xian P, Hyer EJ, Flatau MK, Ramirez EM. 171.  et al. 2012. Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent. Atmos. Chem. Phys. 12:42117–47 [Google Scholar]
  172. DeWitt HL, Coffman DJ, Schulz KJ, Brewer WA, Bates T, Quinn PK. 172.  2013. Atmospheric aerosol properties over the equatorial Indian Ocean and the impact of the Madden-Julian Oscillation. J. Geophys. Res. Atmos. 118:5736–49 [Google Scholar]
  173. Ragsdale KM, Barrett BS, Testino AP. 173.  2013. Variability of particulate matter (PM10) in Santiago, Chile by phase of the Madden-Julian Oscillation (MJO). Atmos. Environ. 81:304–10 [Google Scholar]
  174. Li KF, Tian B, Waliser DE, Yung YL. 174.  2010. Tropical mid-tropospheric CO2 variability driven by the Madden-Julian oscillation. Proc. Natl. Acad. Sci. USA 107:4519171–75 [Google Scholar]
  175. Lin J-L, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR. 175.  et al. 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Clim. 19:122665–90 [Google Scholar]
  176. Tulich SN, Kiladis GN, Suzuki-Parker A. 176.  2011. Convectively coupled Kelvin and easterly waves in a regional climate simulation of the tropics. Clim. Dyn. 36:1–2185–203 [Google Scholar]
  177. Wang Y, Xie SP, Xu H, Wang B. 177.  2004. Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part I: Control experiment. Mon. Weather Rev. 132:274–96 [Google Scholar]
  178. Wang Y, Xu H, Xie SP. 178.  2004. Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part II: Sensitivity experiments. Mon. Weather Rev. 132:2650–68 [Google Scholar]
  179. Small RJ, Xie S-P, Maloney ED, de Szoeke SP, Miyama T. 179.  2011. Intraseasonal variability in the Far-East Pacific: investigation of the role of air-sea coupling in a regional coupled model. Clim. Dyn. 36:5–6867–90 [Google Scholar]
  180. Hagos S, Leung LR, Dudhia J. 180.  2011. Thermodynamics of the Madden-Julian oscillation in a regional model with constrained moisture. J. Atmos. Sci. 68:91974–89 [Google Scholar]
  181. Lin J-L, Lee M-I, Kim D, Kang I-S, Frierson DMW. 181.  2008. The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Clim. 21:5883–909 [Google Scholar]
  182. Frierson DM, Kim D, Kang I-S, Lee M-I, Lin J. 182.  2011. Structure of AGCM-simulated convectively coupled Kelvin waves and sensitivity to convective parameterization. J. Atmos. Sci. 68:126–45 [Google Scholar]
  183. Zhou L, Neale RB, Jochum M, Murtugudde R. 183.  2012. Improved Madden-Julian oscillations with improved physics: the impact of modified convection parameterizations. J. Clim. 25:41116–36 [Google Scholar]
  184. Holloway CE, Woolnough SJ, Lister GMS. 184.  2013. The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part I: Characterization of large-scale organization and propagation. J. Atmos. Sci. 70:51342–69 [Google Scholar]
  185. Thayer-Calder K, Randall DA. 185.  2009. The role of convective moistening in the Madden-Julian oscillation. J. Atmos. Sci. 66:113297–312 [Google Scholar]
  186. Hannah WM, Maloney ED. 186.  2011. The role of moisture-convection feedbacks in simulating the Madden-Julian oscillation. J. Clim. 24:112754–70 [Google Scholar]
  187. Benedict JJ, Maloney ED, Sobel AH, Frierson DM, Donner LJ. 187.  2013. Tropical intraseasonal variability in version 3 of the GFDL atmosphere model. J. Clim. 26:2426–49 [Google Scholar]
  188. Kim D, Xavier P, Maloney E, Wheeler M, Waliser D. 188.  et al. 2014. Process-oriented MJO simulation diagnostic: moisture sensitivity of simulated convection. J. Clim. 275379–95 [Google Scholar]
  189. Maloney ED, Sobel AH, Hannah WM. 189.  2010. Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst. 2:1–24 [Google Scholar]
  190. Andersen JA, Kuang Z. 190.  2012. Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Clim. 25:2782–804 [Google Scholar]
  191. Pritchard MS, Bretherton CS. 191.  2013. Causal evidence that rotational moisture advection is critical to the superparameterized Madden-Julian oscillation. J. Atmos. Sci. 71:800–815 [Google Scholar]
  192. Maloney ED. 192.  2009. The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Clim. 22:3711–29 [Google Scholar]
  193. Miyakawa T, Takayabu YN, Nasuno T, Miura H, Satoh M, Moncrieff MW. 193.  2012. Convective momentum transport by rainbands within a Madden-Julian oscillation in a global nonhydrostatic model with explicit deep convective processes. Part I: Methodology and general results. J. Atmos. Sci. 69:41317–38 [Google Scholar]
  194. Straub KH, Haertel PT, Kiladis GN. 194.  2010. An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models. J. Clim. 23:113031–56 [Google Scholar]
  195. Mapes BE. 195.  2000. Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci. 57:101515–35 [Google Scholar]
  196. Kuang Z. 196.  2008. A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci. 65:834–54 [Google Scholar]
  197. Jiang X, Waliser DE, Kim D, Zhao M, Sperber KR. 197.  et al. 2012. Simulation of the intraseasonal variability over the eastern Pacific ITCZ in climate models. Clim. Dyn. 39:3–4617–36 [Google Scholar]
  198. Jiang X, Maloney ED, Li J-LF, Waliser DE. 198.  2013. Simulations of the eastern North Pacific intraseasonal variability in CMIP5 GCMs. J. Clim. 26:113489–510 [Google Scholar]
  199. Sheffield J, Langenbrunner B, Meyerson JE, Neelin JD, Camargo SJ. 199.  et al. 2013. North American climate in CMIP5 experiments. Part II: Evaluation of historical simulations of intra-seasonal to decadal variability. J. Clim. 26:9247–90 [Google Scholar]
  200. Kozar ME, Misra V. 200.  2012. Evaluation of twentieth-century Atlantic warm pool simulations in historical CMIP5 runs. Clim. Dyn. 41:9–102375–91 [Google Scholar]
  201. Waliser D. 201.  2012. Predictability and forecasting. See Ref. 19 433–76
  202. Vitart F, Woolnough S, Balmaseda MA, Tompkins AM. 202.  2007. Monthly forecast of the Madden-Julian oscillation using a coupled GCM. Mon. Weather Rev. 135:72700–715 [Google Scholar]
  203. Agudelo PA, Hoyos CD, Webster PJ, Curry JA. 203.  2008. Application of a serial extended forecast experiment using the ECMWF model to interpret the predictive skill of tropical intraseasonal variability. Clim. Dyn. 32:6855–72 [Google Scholar]
  204. Vitart F, Leroy A, Wheeler MC. 204.  2010. A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Weather Rev. 138:3671–82 [Google Scholar]
  205. Seo K-H, Wang W, Gottschalck J, Zhang Q, Schemm J-KE. 205.  et al. 2009. Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Clim. 22:92372–88 [Google Scholar]
  206. Zhang Q, van den Dool H. 206.  2012. Relative merit of model improvement versus availability of retrospective forecasts: the case of Climate Forecast System MJO prediction. Weather Forecast. 27:1045–51 [Google Scholar]
  207. Wang W, Hung M-P, Weaver SJ, Kumar A, Fu X. 207.  2013. MJO prediction in the NCEP Climate Forecast System version 2. Clim. Dyn. 42:2509–20 [Google Scholar]
  208. Rashid HA, Hendon HH, Wheeler MC, Alves O. 208.  2010. Prediction of the Madden-Julian oscillation with the POAMA dynamical prediction system. Clim. Dyn. 36:3–4649–61 [Google Scholar]
  209. Neena JM, Lee JY, Waliser DE, Wang B, Jiang X. 209.  2014. Predictability of the Madden-Julian Oscillation (MJO) in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Clim. 27:4531–43. doi: 10.1175/JCLI-D-13-00624.1 [Google Scholar]
  210. Bechtold P, Köhler M, Jung T. 210.  2008. Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q. J. R. Meteorol. Soc. 134:1337–51 [Google Scholar]
  211. Hirons LC, Inness P, Vitart F, Bechtold P. 211.  2012. Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO. Q. J. R. Meteorol. Soc. 139:1417–26 [Google Scholar]
  212. Hirons LC, Inness P, Vitart F, Bechtold P. 212.  2012. Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Q. J. R. Meteorol. Soc. 139:1427–44 [Google Scholar]
  213. Hannah WM, Maloney ED. 213.  2014. The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst. 62420–40 doi: 10.1002/2013MS000272 [Google Scholar]
  214. Jiang X, Waliser DE, Wheeler MC, Jones C, Lee M-I, Schubert SD. 214.  2008. Assessing the skill of an all-season statistical forecast model for the Madden-Julian oscillation. Mon. Weather Rev. 136:61940–56 [Google Scholar]
  215. Elsberry RL, Jordan MS, Vitart F. 215.  2010. Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model. Asia Pac. J. Atmos. Sci. 46:2135–53 [Google Scholar]
  216. Belanger JI, Curry JA, Webster PJ. 216.  2010. Predictability of North Atlantic tropical cyclone activity on intraseasonal time scales. Mon. Weather Rev. 138:4362–74 [Google Scholar]
  217. Gall JS, Ginis I, Lin S-J, Marchok TP, Chen J-H. 217.  2011. Experimental tropical cyclone prediction using the GFDL 25-km-resolution global atmospheric model. Weather Forecast. 26:61008–19 [Google Scholar]
  218. Winker DM, Pelon J. 218.  2003. The CALIPSO mission. Proc. IEEE 2:1329–31 [Google Scholar]
  219. Meehl GA, Moss RH, Taylor KE, Eyring V, Stouffer RJ. 219.  et al. 2014. Climate model intercomparisons: preparing for the next phase. Eos Trans. Am. Geophys. Union 95:977–78 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error