Achieving a truly sustainable energy transition requires progress across multiple dimensions beyond climate change mitigation goals. This article reviews and synthesizes results from disparate strands of literature on the coeffects of mitigation to inform climate policy choices at different governance levels. The literature documents many potential cobenefits of mitigation for nonclimate objectives, such as human health and energy security, but little is known about their overall welfare implications. Integrated model studies highlight that climate policies as part of well-designed policy packages reduce the overall cost of achieving multiple sustainability objectives. The incommensurability and uncertainties around the quantification of coeffects become, however, increasingly pervasive the more the perspective shifts from sectoral and local to economy wide and global, the more objectives are analyzed, and the more the results are expressed in economic rather than nonmonetary terms. Different strings of evidence highlight the role and importance of energy demand reductions for realizing synergies across multiple sustainability objectives.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Clarke L, Jiang K, Akimoto K, Babiker M, Blanford G. 1.  et al. 2014. Assessing transformation pathways. See Ref. 20 413–506
  2. Kriegler E, Weyant JP, Blanford GJ, Krey V, Clarke L. 2.  et al. 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123:3–4353–67 [Google Scholar]
  3. Luderer G, Pietzcker RC, Bertram C, Kriegler E, Meinshausen M, Edenhofer O. 3.  2013. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8:3034033 [Google Scholar]
  4. Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P. 4.  et al. 2013. The challenge to keep global warming below 2°C. Nat. Clim. Change 3:14–6 [Google Scholar]
  5. Riahi K, Kriegler E, Johnson N, Bertram C, den Elzen M. 5.  et al. 2015. Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90:Part A8–23 [Google Scholar]
  6. Rogelj J, McCollum DL, O'Neill BC, Riahi K. 6.  2013. 2020 emissions levels required to limit warming to below 2°C. Nat. Clim. Change 3:4405–12 [Google Scholar]
  7. Fleurbaey M, Kartha S, Bolwig S, Chee YL, Chen Y. 7.  et al. 2014. Sustainable development and equity. See Ref. 20 283–350
  8. Riahi K, Dentener F, Gielen D, Grubler A, Jewell J. 8.  et al. 2012. Energy pathways for sustainable development. See Ref. 118 1203–306
  9. van Vuuren D, Nakicenovic N, Riahi K, Brew-Hammond A, Kammen D. 9.  et al. 2012. An energy vision: the transformation towards sustainability—interconnected challenges and solutions. Curr. Opin. Environ. Sustain. 4:118–34 [Google Scholar]
  10. Edenhofer O, Kadner S, von Stechow C, Schwerhoff G, Luderer G. 10.  2014. Linking climate change mitigation research to sustainable development. Handbook of Sustainable Development G Atkinson, S Dietz, E Neumayer, M Agarwala 476–99 Cheltenham, UK: Edward Elgar, 2nd ed.. [Google Scholar]
  11. Edenhofer O, Pichs-Madruga R, Sokona Y, Kadner S, Minx JC. 11.  et al. 2014. Technical summary. See Ref. 20 31–107
  12. Ürge-Vorsatz D, Tirado Herrero S, Dubash NK, Lecocq F. 12.  2014. Measuring the co-benefits of climate change mitigation. Annu. Rev. Environ. Resour. 39:1549–82 [Google Scholar]
  13. Edenhofer O, Flachsland C, Jakob M, Lessmann K. 13.  2013. The atmosphere as a global commons—challenges for international cooperation and governance Discuss. Pap 2013–58 Harvard Proj. Clim. Agreem. http://belfercenter.hks.harvard.edu/publication/23364/atmosphere_as_a_global_commonschallenges_for_international_cooperation_and_governance.html
  14. Ostrom E, Burger J, Field CB, Norgaard RB, Policansky D. 14.  1999. Revisiting the commons: local lessons, global challenges. Science 284:5412278–82 [Google Scholar]
  15. Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M. 15.  2009. International climate policy architectures: overview of the EMF 22 international scenarios. Energy Econ. 31:Suppl. 2S64–81 [Google Scholar]
  16. van Vuuren DP, Weyant J, de la Chesnaye F. 16.  2006. Multi-gas scenarios to stabilize radiative forcing. Energy Econ. 28:1102–20 [Google Scholar]
  17. Dubash NK, Hagemann M, Höhne N, Upadhyaya P. 17.  2013. Developments in national climate change mitigation legislation and strategy. Clim. Policy 13:6649–64 [Google Scholar]
  18. Seto KC, Dhakal S, Bigio A, Blanco H, Delgado GC. 18.  et al. 2014. Human settlements, infrastructure and spatial planning. See Ref. 20 923–1000
  19. Somanathan E, Sterner T, Sugiyama T, Chimanikire D, Dubash NK. 19.  et al. 2014. National and sub-national policies and institutions. See Ref. 20 1141–205
  20. 20. IPCC 2014. Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner, K Seyboth, A Adler, I Baum, S Brunner, P Eickemeier, B Kriemann, J Savolainen, S Schlömer, C von Stechow, T Zwickel, JC Minx Cambridge, UK/New York: Cambridge Univ. Press
  21. Bruckner T, Bashmakov IA, Mulugetta Y, Chum H, de la Vega Navarro A. 21.  et al. 2014. Energy systems. See Ref. 20 511–97
  22. Kunreuther H, Gupta S, Bosetti V, Cooke R, Dutt V. 22.  et al. 2014. Integrated risk and uncertainty assessment of climate change response policies. See Ref. 20 151–205
  23. Grieneisen ML, Zhang M. 23.  2011. The current status of climate change research. Nat. Clim. Change 1:272–73 [Google Scholar]
  24. Creutzig F, von Stechow C, Klein D, Hunsberger C, Bauer N. 24.  et al. 2012. Can bioenergy assessments deliver?. Econ. Energy Environ. Policy 1:265–82 [Google Scholar]
  25. Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R. 25.  et al. 2014. Bioenergy and climate change mitigation: an assessment. Glob. Change Biol. Bioenergy 7:5916–944 [Google Scholar]
  26. Creutzig F, Corbera E, Bolwig S, Hunsberger C. 26.  2013. Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment. Environ. Res. Lett. 8:3035047 [Google Scholar]
  27. Creutzig F, Popp A, Plevin R, Luderer G, Minx J, Edenhofer O. 27.  2012. Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nat. Clim. Change 2:320–27 [Google Scholar]
  28. Edenhofer O, Seyboth K, Creutzig F, Schlömer S. 28.  2013. On the sustainability of renewable energy sources. Annu. Rev. Environ. Resour. 38:1169–200 [Google Scholar]
  29. Sathaye J, Lucon O, Rahman A, Christensen J, Denton F. 29.  et al. 2011. Renewable energy in the context of sustainable development. Special Report on Renewable Energy Sources and Climate Change Mitigation O Edenhofer, R Pichs-Madruga, Y Sokona, K Seyboth, P Matschoss, et al. 707–89 Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  30. van Vuuren D, Hoogwijk M, Barker T, Riahi K, Boeters S. 30.  et al. 2009. Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials. Energy Policy 37:125125–39 [Google Scholar]
  31. Edenhofer O, Kowarsch M. 31.  2015. Cartography of pathways: a new model for environmental policy assessments. Environ. Sci. Technol. 51:56–64 [Google Scholar]
  32. Joas F, Pahle M, Flachsland C. 32.  2014. Die Ziele der Energiewende: Eine Kartierung der Prioritäten. Ifo Schnelld. 67:0906–11 [Google Scholar]
  33. Davis D, Krupnick A, McGlynn G. 33.  2000. Ancillary benefits and costs of greenhouse gas mitigation: an overview. Ancillary Benefits and Costs of Greenhouse Gas Mitigation. Proc. IPCC Co-Sponsored Workshop, Washington, DC Mar. 27–29 9–49 Paris: Organ. Econ. Co-op. Dev. [Google Scholar]
  34. Kolstad C, Urama K, Broome J, Bruvoll A, Cariño Olvera M. 34.  et al. 2014. Social, economic and ethical concepts and methods. See Ref. 20 207–82
  35. Bell ML, Davis DL, Cifuentes LA, Krupnick AJ, Morgenstern RD, Thurston GD. 35.  2008. Ancillary human health benefits of improved air quality resulting from climate change mitigation. Environ. Health 7:41 [Google Scholar]
  36. Jack DW, Kinney PL. 36.  2010. Health co-benefits of climate mitigation in urban areas. Curr. Opin. Environ. Sustain. 2:3172–77 [Google Scholar]
  37. Allwood JM, Bosetti V, Dubash NK, Gómez-Echeverri L, von Stechow C. 37.  2014. Glossary. See Ref. 20 1249–79
  38. Anenberg SC, Schwartz J, Shindell D, Amann M, Faluvegi G. 38.  et al. 2012. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ. Health Perspect. 120:6831–39 [Google Scholar]
  39. Edenhofer E, Jakob M, Creutzig F, Flachsland C, Fuss S. 39.  et al. 2015. Closing the emission price gap. Glob. Environ. Chang. 31:132–43 [Google Scholar]
  40. McCollum DL, Krey V, Riahi K, Kolp P, Grubler A. 40.  et al. 2013. Climate policies can help resolve energy security and air pollution challenges. Clim. Change 119:2479–94 [Google Scholar]
  41. Nemet GF, Holloway T, Meier P. 41.  2010. Implications of incorporating air-quality co-benefits into climate change policymaking. Environ. Res. Lett. 5:1014007 [Google Scholar]
  42. Pittel K, Rübbelke DTG. 42.  2008. Climate policy and ancillary benefits: a survey and integration into the modelling of international negotiations on climate change. Ecol. Econ. 68:1–2210–20 [Google Scholar]
  43. Rao S, Pachauri S, Dentener F, Kinney P, Klimont Z. 43.  et al. 2013. Better air for better health: forging synergies in policies for energy access, climate change and air pollution. Glob. Environ. Change 23:51122–30 [Google Scholar]
  44. Swart R, Amann M, Raes F, Tuinstra W. 44.  2004. A good climate for clean air: linkages between climate change and air pollution: an editorial essay. Clim. Change 66:3263–69 [Google Scholar]
  45. Barker T, Bashmakov I, Alharthi A, Amann M, Cifuentes L. 45.  et al. 2007. Mitigation from a cross-sectoral perspective. See Ref. 48 619–90
  46. Holland SP. 46.  2010. Spillovers from climate policy Work. Pap. 16158, Natl. Bureau Econ. Res., Cambridge, MA
  47. Jakob M, Edenhofer O. 47.  2014. Green growth, degrowth, and the commons. Oxf. Rev. Econ. Policy 30:3447–68 [Google Scholar]
  48. 48. IPCC 2007. Climate Change 2007: Mitigation of Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change B Metz, OR Davidson, PR Bosch, R Dave, LA Meyer Cambridge, UK/New York: Cambridge Univ. Press
  49. Hertwich E. 49.  2014. Understanding the climate mitigation benefits of product systems: comment on “using attributional life cycle assessment to estimate climate-change mitigation….”. J. Ind. Ecol. 18:3464–65 [Google Scholar]
  50. Thompson W, Whistance J, Meyer S. 50.  2011. Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions. Energy Policy 39:95509–18 [Google Scholar]
  51. Rajagopal D, Hochman G, Zilberman D. 51.  2011. Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies. Energy Policy 39:1228–33 [Google Scholar]
  52. Lucon O, Ürge-Vorsatz D, Zain Ahmed A, Akbari H, Bertoldi P. 52.  et al. 2014. Buildings. See Ref. 20 671–738
  53. Azevedo IML. 53.  2014. Consumer end-use energy efficiency and rebound effects. Annu. Rev. Environ. Resour. 39:1393–418 [Google Scholar]
  54. Sims R, Schaeffer R, Creutzig F, Cruz-Núñez X, D'Agosto M. 54.  et al. 2014. Transport. See Ref. 20 599–670
  55. Blanco G, Gerlagh R, Suh S, Barrett J, de Coninck HC. 55.  et al. 2014. Drivers, trends and mitigation. See Ref. 20 351–411
  56. Victor DG, Zhou D, Ahmed EHM, Dadhich PK, Olivier JGJ. 56.  et al. 2014. Introductory chapter. See Ref. 20 111–50
  57. van Vuuren DP, Cofala J, Eerens HE, Oostenrijk R, Heyes C. 57.  et al. 2006. Exploring the ancillary benefits of the Kyoto protocol for air pollution in Europe. Energy Policy 34:4444–60 [Google Scholar]
  58. Shindell D, Kuylenstierna JCI, Vignati E, van Dingenen R, Amann M. 58.  et al. 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:6065183–89 [Google Scholar]
  59. West JJ, Smith SJ, Silva RA, Naik V, Zhang Y. 59.  et al. 2013. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change 3:10885–89 [Google Scholar]
  60. Burtraw D, Krupnick A, Palmer K, Paul A, Toman M, Bloyd C. 60.  2003. Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector. J. Environ. Econ. Manag. 45:3650–73 [Google Scholar]
  61. Klimont Z, Smith SJ, Cofala J. 61.  2013. The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett. 8:1014003 [Google Scholar]
  62. Markandya A, Armstrong BG, Hales S, Chiabai A, Criqui P. 62.  et al. 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: low-carbon electricity generation. Lancet 374:97062006–15 [Google Scholar]
  63. Rose SK, Richels R, Smith S, Riahi K, Strefler J, van Vuuren DP. 63.  2014. Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios. Clim. Change 123:3–4511–25 [Google Scholar]
  64. Smith KR, Haigler E. 64.  2008. Co-benefits of climate mitigation and health protection in energy systems: scoping methods. Annu. Rev. Public Health 29:111–25 [Google Scholar]
  65. Haines A, McMichael AJ, Smith KR, Roberts I, Woodcock J. 65.  et al. 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. Lancet 374:97072104–14 [Google Scholar]
  66. Goulder LH, Stavins RN. 66.  2011. Challenges from state-federal interactions in US climate change policy. Am. Econ. Rev. 101:3253–57 [Google Scholar]
  67. van Vuuren D, Kok M. 67.  2012. Roads from Rio+20 Pathways to Achieve Global Sustainability Goals by 2050 Hague, Neth.: PBL Neth. Environ. Agency
  68. Amann M, Klimont Z, Wagner F. 68.  2013. Regional and global emissions of air pollutants: recent trends and future scenarios. Annu. Rev. Environ. Resour. 38:31–55 [Google Scholar]
  69. Rogelj J, Schaeffer M, Meinshausen M, Shindell DT, Hare W. 69.  et al. 2014. Disentangling the effects of CO2 and short-lived climate forcer mitigation. PNAS 111:4616325–30 [Google Scholar]
  70. Rafaj P, Schöpp W, Russ P, Heyes C, Amann M. 70.  2013. Co-benefits of post-2012 global climate mitigation policies. Mitig. Adapt. Strateg. Glob. Change 18:6801–24 [Google Scholar]
  71. Rafaj P, Bertok I, Cofala J, Schöpp W. 71.  2013. Scenarios of global mercury emissions from anthropogenic sources. Atmos. Environ. 79:472–79 [Google Scholar]
  72. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T. 72.  et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118:115380–552 [Google Scholar]
  73. Mahowald N, Ward DS, Kloster S, Flanner MG, Heald CL. 73.  et al. 2011. Aerosol impacts on climate and biogeochemistry. Annu. Rev. Environ. Resour. 36:45–74 [Google Scholar]
  74. Ramanathan V, Carmichael G. 74.  2008. Global and regional climate changes due to black carbon. Nat. Geosci. 1:4221–27 [Google Scholar]
  75. Smith SJ, Mizrahi A. 75.  2013. Near-term climate mitigation by short-lived forcers. PNAS 110:3514202–6 [Google Scholar]
  76. Bowerman NHA, Frame DJ, Huntingford C, Lowe JA, Smith SM, Allen MR. 76.  2013. The role of short-lived climate pollutants in meeting temperature goals. Nat. Clim. Change 3:121021–24 [Google Scholar]
  77. Myhre G, Fuglestvedt JS, Berntsen TK, Lund MT. 77.  2011. Mitigation of short-lived heating components may lead to unwanted long-term consequences. Atmos. Environ. 45:336103–6 [Google Scholar]
  78. Cherp A, Jewell J, Vinichenko V, Bauer N, De Cian E. 78.  2013. Global energy security under different climate policies, GDP growth rates and fossil resource availabilities. Clim. Change doi: 10.1007/s10584-013-0950-x. In press
  79. Criqui P, Mima S. 79.  2012. European climate—energy security nexus: a model based scenario analysis. Energy Policy 41:827–42 [Google Scholar]
  80. Jewell J, Cherp A, Riahi K. 80.  2014. Energy security under de-carbonization scenarios: an assessment framework and evaluation under different technology and policy choices. Energy Policy 65:743–60 [Google Scholar]
  81. Kruyt B, van Vuuren DP, de Vries HJM, Groenenberg H. 81.  2009. Indicators for energy security. Energy Policy 37:62166–81 [Google Scholar]
  82. Shukla PR, Dhar S. 82.  2011. Climate agreements and India: aligning options and opportunities on a new track. Int. Environ. Agreem. Polit. Law Econ. 11:3229–43 [Google Scholar]
  83. Jewell J, Cherp A, Vinichenko V, Bauer N, Kober T. 83.  et al. 2013. Energy security of China, India, the E.U. and the U.S. under long-term scenarios: results from six IAMs. Clim. Change Econ. 4:41340011 [Google Scholar]
  84. Bauer N, Bosetti V, Hamdi-Cherif M, Kitous A, McCollum D. 84.  et al. 2015. CO2 emission mitigation and fossil fuel markets: dynamic and international aspects of climate policies. Technol. Forecast. Soc. Change 90:Part A243–56 [Google Scholar]
  85. Bauer N, Mouratiadou I, Luderer G, Baumstark L, Brecha RJ. 85.  et al. 2013. Global fossil energy markets and climate change mitigation—an analysis with REMIND. Clim. Change. doi:10.1007/s10584-013-0901-6. In press
  86. Haurie A, Vielle M. 86.  2010. A metamodel of the oil game under climate treaties. INFOR Inf. Syst. Oper. Res. 48:4215–28 [Google Scholar]
  87. McCollum D, Bauer N, Calvin K, Kitous A, Riahi K. 87.  2014. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds. Clim. Change 123:3–4413–26 [Google Scholar]
  88. McGlade C, Ekins P. 88.  2014. The geographical distribution of fossil fuels unused when limiting global warming to 2°C. Nature 517:7533187–90 [Google Scholar]
  89. Tavoni M, Kriegler E, Aboumahboub T, Calvin K, De Maere G. 89.  et al. 2013. The distribution of the major economies' effort in the Durban platform scenarios. Clim. Change Econ. 04:041340009 [Google Scholar]
  90. Johansson DJA, Azar C, Lindgren K, Persson TA. 90.  2009. OPEC strategies and oil rent in a climate conscious world. Energy J. 30:323–50 [Google Scholar]
  91. Nemet GF, Brandt AR. 91.  2012. Willingness to pay for a climate backstop: liquid fuel producers and direct CO2 air capture. Energy J. 33:153–82 [Google Scholar]
  92. Persson TA, Azar C, Johansson D, Lindgren K. 92.  2007. Major oil exporters may profit rather than lose, in a carbon-constrained world. Energy Policy 35:126346–53 [Google Scholar]
  93. Rozenberg J, Hallegatte S, Vogt-Schilb A, Sassi O, Guivarch C. 93.  et al. 2010. Climate policies as a hedge against the uncertainty on future oil supply. Clim. Change 101:3–4663–68 [Google Scholar]
  94. Gracceva F, Zeniewski P. 94.  2014. A systemic approach to assessing energy security in a low-carbon EU energy system. Appl. Energy 123:335–48 [Google Scholar]
  95. Bollen J, Hers S, van der Zwaan B. 95.  2010. An integrated assessment of climate change, air pollution, and energy security policy. Energy Policy 38:84021–30 [Google Scholar]
  96. Jakob M, Steckel JC. 96.  2014. How climate change mitigation could harm development in poor countries. WIREs Clim. Change 5:2161–68 [Google Scholar]
  97. Kaundinya DP, Balachandra P, Ravindranath NH. 97.  2009. Grid-connected versus stand-alone energy systems for decentralized power—a review of literature. Renew. Sustain. Energy Rev. 13:82041–50 [Google Scholar]
  98. van Ruijven BJ, Schers J, van Vuuren DP. 98.  2012. Model-based scenarios for rural electrification in developing countries. Energy 38:1386–97 [Google Scholar]
  99. Pachauri S. 99.  2014. Household electricity access a trivial contributor to CO2 emissions growth in India. Nat. Clim. Change 4:121073–76 [Google Scholar]
  100. Pachauri S, van Ruijven BJ, Nagai Y, Riahi K, van Vuuren DP. 100.  et al. 2013. Pathways to achieve universal household access to modern energy by 2030. Environ. Res. Lett. 8:2024015 [Google Scholar]
  101. Rogelj J, McCollum DL, Riahi K. 101.  2013. The UN's “sustainable energy for all” initiative is compatible with a warming limit of 2°C. Nat. Clim. Change 3:6545–51 [Google Scholar]
  102. Smith P, Bustamante M, Ahammad H, Clark H, Dong H. 102.  et al. 2014. Agriculture, forestry and other land use (AFOLU). See Ref. 20 811–922
  103. Popp A, Rose SK, Calvin K, van Vuuren DP, Dietrich JP. 103.  et al. 2014. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123:3–4495–509 [Google Scholar]
  104. Rose SK, Ahammad H, Eickhout B, Fisher B, Kurosawa A. 104.  et al. 2012. Land-based mitigation in climate stabilization. Energy Econ. 34:1365–80 [Google Scholar]
  105. Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B. 105.  et al. 2009. Implications of limiting CO2 concentrations for land use and energy. Science 324:59311183–86 [Google Scholar]
  106. Hoff H. 106.  2011. Understanding the nexus: background paper for the Bonn2011 nexus conference Bonn2011 Conference: the water, energy and food security nexus. Stockh. Environ. Inst., Stockholm
  107. Howells M, Hermann S, Welsch M, Bazilian M, Segerström R. 107.  et al. 2013. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Change 3:7621–26 [Google Scholar]
  108. Bazilian M, Rogner H, Howells M, Hermann S, Arent D. 108.  et al. 2011. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39:127896–906 [Google Scholar]
  109. Bustamante M, Robledo-Abad C, Harper R, Mbow C, Ravindranat NH. 109.  et al. 2014. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector. Glob. Change Biol. 20:103270–90 [Google Scholar]
  110. Humpenöder F, Popp A, Dietrich JP, Klein D, Lotze-Campen H. 110.  et al. 2014. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ. Res. Lett. 9:6064029 [Google Scholar]
  111. Smith P, Haberl H, Popp A, Erb K, Lauk C. 111.  et al. 2013. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Glob. Change Biol. 19:82285–302 [Google Scholar]
  112. Lotze-Campen H, von Lampe M, Kyle P, Fujimori S, Havlik P. 112.  et al. 2014. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric. Econ. 45:1103–16 [Google Scholar]
  113. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P. 113.  et al. 2011. Bioenergy. Special Report on Renewable Energy Sources and Climate Change Mitigation O Edenhofer, R Pichs-Madruga, Y Sokona, K Seyboth, P Matschoss, et al. 209–331 Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  114. Hejazi MI, Edmonds J, Clarke L, Kyle P, Davies E. 114.  et al. 2013. Integrated assessment of global water scarcity over the 21st century—Part 2: climate change mitigation policies. Hydrol. Earth Syst. Sci. Discuss 10:33383–425 [Google Scholar]
  115. Bonsch M, Humpenöder F, Popp A, Bodirsky B, Dietrich JP. 115.  et al. 2014. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Change Biol. Bioenergy. doi:10.1111/gcbb.12226. In press
  116. De Fraiture C, Giordano M, Liao Y. 116.  2008. Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10:Suppl. 167–81 [Google Scholar]
  117. Arnell NW, van Vuuren DP, Isaac M. 117.  2011. The implications of climate policy for the impacts of climate change on global water resources. Glob. Environ. Change 21:2592–603 [Google Scholar]
  118. 118. GEA Writ. Team 2012. Global Energy Assessment: Toward a Sustainable Future. Cambridge, UK/New York: Cambridge Univ. Press/Int. Inst. Appl. Syst. Anal.
  119. McCollum DL, Krey V, Riahi K. 119.  2011. An integrated approach to energy sustainability. Nat. Clim. Change 1:9428–29 [Google Scholar]
  120. Chuwah C, van Noije T, van Vuuren DP, Hazeleger W, Strunk A. 120.  et al. 2013. Implications of alternative assumptions regarding future air pollution control in scenarios similar to the representative concentration pathways. Atmos. Environ. 79:787–801 [Google Scholar]
  121. Calvin K, Wise M, Kyle P, Patel P, Clarke L, Edmonds J. 121.  2014. Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Clim. Change 123:3–4691–704 [Google Scholar]
  122. Akimoto K, Sano F, Hayashi A, Homma T, Oda J. 122.  et al. 2012. Consistent assessments of pathways toward sustainable development and climate stabilization. Nat. Resour. Forum 36:4231–44 [Google Scholar]
  123. Kainuma M, Shukla PR, Jiang K. 123.  2012. Framing and modeling of a low carbon society: an overview. Energy Econ. 34:Suppl. 3S316–24 [Google Scholar]
  124. Shukla PR, Chaturvedi V. 124.  2012. Low carbon and clean energy scenarios for India: analysis of targets approach. Energy Econ. 34:Suppl. 3S487–95 [Google Scholar]
  125. Shukla PR, Dhar S, Mahapatra D. 125.  2008. Low-carbon society scenarios for India. Clim. Policy 8:Suppl. 1S156–76 [Google Scholar]
  126. Strachan N, Foxon T, Fujino J. 126.  2008. Low-carbon society (LCS) modelling. Clim. Policy 8:Suppl. 1S3–4 [Google Scholar]
  127. Hourcade J-C, Crassous R. 127.  2008. Low-carbon societies: a challenging transition for an attractive future. Clim. Policy 8:6607–12 [Google Scholar]
  128. Amann M, Kejun J, Jiming H, Wang S, Xing Z. 128.  et al. 2008. . GAINS-Asia. Scenarios for Cost-Effective Control of Air Pollution and Greenhouse Gases in China. Laxenburg, Austria: Int. Inst. Appl. Syst. Anal.
  129. Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C. 129.  et al. 2011. Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ. Model. Softw. 26:121489–501 [Google Scholar]
  130. Anthoff D, Tol RS. 130.  2009. The impact of climate change on the balanced growth equivalent: an application of fund. Environ. Resour. Econ. 43:3351–67 [Google Scholar]
  131. Nordhaus WD. 131.  2010. Economic aspects of global warming in a post-Copenhagen environment. PNAS 107:2611721–26 [Google Scholar]
  132. Stern N. 132.  2008. The economics of climate change. Am. Econ. Rev. 98:21–37 [Google Scholar]
  133. Krey V, Masera O, Blanford G, Bruckner T, Cooke R. 133.  et al. 2014. Annex II: metrics & methodology. See Ref. 20 1281–328
  134. Lipsey RG, Lancaster K. 134.  1956. The general theory of second best. Rev. Econ. Stud. 24:111–32 [Google Scholar]
  135. Babiker MH, Eckaus RS. 135.  2007. Unemployment effects of climate policy. Environ. Sci. Policy 10:7–8600–9 [Google Scholar]
  136. Guivarch C, Crassous R, Sassi O, Hallegatte S. 136.  2011. The costs of climate policies in a second-best world with labour market imperfections. Clim. Policy 11:1768–88 [Google Scholar]
  137. Goulder LH. 137.  1995. Environmental taxation and the double dividend: a reader's guide. Int. Tax Public Financ. 2:2157–83 [Google Scholar]
  138. Fullerton D, Metcalf GE. 138.  2001. Environmental controls, scarcity rents, and pre-existing distortions. J. Public Econ. 80:2249–67 [Google Scholar]
  139. Patt AG, van Vuuren DP, Berkhout F, Aaheim A, Hof AF. 139.  et al. 2010. Adaptation in integrated assessment modeling: Where do we stand?. Clim. Change 99:3–4383–402 [Google Scholar]
  140. Bosello F, Carraro C, De Cian E. 140.  2010. Climate policy and the optimal balance between mitigation, adaptation and unavoided damage. Clim. Change Econ. 1:271–92 [Google Scholar]
  141. De Bruin KC, Dellink RB, Tol RS. 141.  2009. AD-DICE: an implementation of adaptation in the DICE model. Clim. Change 95:1–263–81 [Google Scholar]
  142. De Cian E, Hof AF, Tavoni M, van Vuuren DP. 142.  2015. Sharing the effort of mitigation, adaptation, and damages. Environ. Res. Lett. Submitted
  143. Hof AF, den Elzen MG, van Vuuren DP. 143.  2010. Including adaptation costs and climate change damages in evaluating post-2012 burden-sharing regimes. Mitig. Adapt. Strateg. Glob. Change 15:119–40 [Google Scholar]
  144. Stewart RB, Oppenheimer M, Rudyk B. 144.  2013. A new strategy for global climate protection. Clim. Change 120:1–12 [Google Scholar]
  145. Parry I, Veung C, Heine D. 145.  2014. How much carbon pricing is in countries' own interests? The critical role of co-benefits. CESifo Work. Pap. No. 5015, CESifo Group Munich. http://www.cesifo-group.de/de/ifoHome/publications/working-papers/CESifoWP/CESifoWPdetails?wp_id=19131827
  146. Sarewitz D. 146.  2004. How science makes environmental controversies worse. Environ. Sci. Policy 7:5385–403 [Google Scholar]
  147. Fischedick M, Roy J, Abdel-Aziz A, Acquaye A, Allwood JM. 147.  et al. 2014. Industry. See Ref. 20 739–810
  148. Cherp A, Adenikinju A, Goldthau A, Hernandez F, Hughes L. 148.  et al. 2012. Energy and security. See Ref. 118 325–84
  149. Havlík P, Schneider UA, Schmid E, Böttcher H, Fritz S. 149.  et al. 2011. Global land-use implications of first and second generation biofuel targets. Energy Policy 39:105690–702 [Google Scholar]
  150. Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW. 150.  et al. 2009. Indirect emissions from biofuels: how important?. Science 326:59581397–99 [Google Scholar]
  151. Reilly J, Melillo J, Cai Y, Kicklighter D, Gurgel A. 151.  et al. 2012. Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environ. Sci. Technol. 46:115672–79 [Google Scholar]
  152. Rose SK, Kriegler E, Bibas R, Calvin K, Popp A. 152.  et al. 2014. Bioenergy in energy transformation and climate management. Clim. Change 123:3–4477–93 [Google Scholar]
  153. Hanasaki N, Fujimori S, Yamamoto T, Yoshikawa S, Masaki Y. 153.  et al. 2013. A global water scarcity assessment under shared socio-economic pathway—Part 2: water availability and scarcity. Hydrol. Earth Syst. Sci. 17:72393–413 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error