1932

Abstract

The Anthropocene is characterized as an epoch when human influence has begun to fundamentally alter many aspects of the Earth system and many of the planet's biomes. Here, we review and synthesize our understanding of Anthropocene changes in tropical forests. Key facets include deforestation driven by agricultural expansion, timber and wood extraction, the loss of fauna that maintain critical ecological connections, the spread of fire, landscape fragmentation, the spread of second-growth forests, new species invasion and pathogen spread, increasing CO, and climate change. The patterns of change are spatially heterogeneous, are often characterized by strong interactions among different drivers, can have both large-scale and remote effects, and can play out through ecological cascades over long timescales. As a consequence, most tropical forests are on a trajectory to becoming altered ecosystems, with the degree of alteration dependent on the intensity and duration of the current bottleneck of human-induced pressures. We highlight the importance of this understanding to develop the strategies necessary for shaping the transition of tropical forests through the early Anthropocene, as well as highlight the opportunities and challenges for the tropical forest science community in the coming decades.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-030713-155141
2014-10-17
2024-07-20
Loading full text...

Full text loading...

/deliver/fulltext/energy/39/1/annurev-environ-030713-155141.html?itemId=/content/journals/10.1146/annurev-environ-030713-155141&mimeType=html&fmt=ahah

Literature Cited

  1. Crutzen PJ. 1.  2002. Geology of mankind. Nature 415:686723 [Google Scholar]
  2. Steffen W, Grinevald J, Crutzen P, McNeill J. 2.  2011. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. A 369:1938842–67 [Google Scholar]
  3. Smith BD, Zeder MA. 3.  2013. The onset of the Anthropocene. Anthropocene 48–13 [Google Scholar]
  4. Steffen W, Crutzen PJ, McNeill JR. 4.  2007. The Anthropocene: Are humans now overwhelming the great forces of nature. AMBIO 36:8614–21 [Google Scholar]
  5. Malhi Y. 5.  2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. J. Ecol. 100:165–75 [Google Scholar]
  6. Pimm SL, Raven P. 6.  2000. Extinction by numbers. Nature 403:6772843–45 [Google Scholar]
  7. Corlett R, Primack R. 7.  2006. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 21:2104–10 [Google Scholar]
  8. Parmentier I, Malhi Y, Senterre B, Whittaker RJ, Alfonso Alonso ATDN. 8.  et al. 2007. The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests?. J. Ecol. 95:51058–71 [Google Scholar]
  9. Eriksson A, Betti L, Friend AD, Lycett SJ, Singarayer JS. 9.  et al. 2012. Late Pleistocene climate change and the global expansion of anatomically modern humans. Proc. Natl. Acad. Sci. USA 109:4016089–94 [Google Scholar]
  10. Corlett RT. 10.  2013. The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol. Conserv. 163:13–21 [Google Scholar]
  11. Koch PL, Barnosky AD. 11.  2006. Late quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37:1215–50 [Google Scholar]
  12. Lima-Ribeiro MS, Nogués-Bravo D, Terribile LC, Batra P, Diniz-Filho JAF. 12.  2013. Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392:546–56 [Google Scholar]
  13. Duncan RP, Boyer AG, Blackburn TM. 13.  2013. Magnitude and variation of prehistoric bird extinctions in the Pacific. Proc. Natl. Acad. Sci. USA 110:166436–41 [Google Scholar]
  14. Guimarães PR, Galetti M, Jordano P. 14.  2008. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLOS ONE 3:3e1745 [Google Scholar]
  15. Blake S, Deem SL, Mossimbo E, Maisels F, Walsh P. 15.  2009. Forest elephants: tree planters of the Congo. Biotropica 41:4459–68 [Google Scholar]
  16. Poulsen JR, Clark CJ, Palmer TM. 16.  2013. Ecological erosion of an Afrotropical forest and potential consequences for tree recruitment and forest biomass. Biol. Conserv. 163:122–30 [Google Scholar]
  17. Doughty CE, Wolf A, Malhi Y. 17.  2013. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6:9761–64 [Google Scholar]
  18. Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M. 18.  et al. 2003. Amazonia 1492: pristine forest or cultural parkland?. Science 301:56401710–14 [Google Scholar]
  19. Oslisly R, White L, Bentaleb I, Favier C, Fontugne M. 19.  et al. 2013. Climatic and cultural changes in the west Congo Basin forests over the past 5000 years. Philos. Trans. R. Soc. B 368:162520120304 [Google Scholar]
  20. Mann CC. 20.  2005. 1491: New Revelations of the Americas Before Columbus New York: Knopf [Google Scholar]
  21. Bhagwat SA, Nogué S, Willis KJ. 21.  2012. Resilience of an ancient tropical forest landscape to 7500 years of environmental change. Biol. Conserv. 153:C108–17 [Google Scholar]
  22. Barlow J, Gardner TA, Lees AC, Parry L, Peres CA. 22.  2012. How pristine are tropical forests? An ecological perspective on the pre-Columbian human footprint in Amazonia and implications for contemporary conservation. Biol. Conserv. 151:45–49 [Google Scholar]
  23. Geist HJ, Lambin EF. 23.  2002. Proximate causes and underlying driving forces of tropical deforestation. BioScience 52:2143–50 [Google Scholar]
  24. Laurance WF, Sayer J, Cassman KG. 24.  2014. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29:2107–16 [Google Scholar]
  25. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P. 25.  et al. 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 107:3816732–37 [Google Scholar]
  26. Grainger A. 26.  2008. Difficulties in tracking the long-term global trend in tropical forest area. Proc. Natl. Acad. Sci. USA 105:2818–23 [Google Scholar]
  27. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA. 27.  et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:6160850–53 [Google Scholar]
  28. Kissinger G, Herold M, de Sy V. 28.  2012. Drivers of deforestation and forest degradation: a synthesis report for REDD+ policymakers Rep., Lexeme Consult., Vancouver, Can. https://www.forestcarbonpartnership.org/sites/fcp/files/DriversOfDeforestation.pdf_N_S.pdf [Google Scholar]
  29. Mayaux P, Pekel J-F, Desclée B, Donnay F, Lupi A. 29.  et al. 2013. State and evolution of the African rainforests between 1990 and 2010. Philos. Trans. R. Soc. B 368:162520120300 [Google Scholar]
  30. Rudel TK. 30.  2013. The national determinants of deforestation in sub-Saharan Africa. Philos. Trans. R. Soc. B 368:162520120405 [Google Scholar]
  31. Malhi Y, Adu-Bredu S, Asare RA, Lewis SL, Mayaux P. 31.  2013. African rainforests: past, present and future. Philos. Trans. R. Soc. B 368:162520120312 [Google Scholar]
  32. 32. Coord.-Geral Obs. Terra (OBT) 2013. Projeto PRODES: monitoramento da floresta Amazônica Brasileira por satellite [PRODES Project: satellite monitoring of Brazilian Amazon Forest]. Rep., Natl. Inst. Space Res. (INPE), São Jose dos Campos, SP, Brazil. http://www.obt.inpe.br/prodes/index.php [Google Scholar]
  33. Rosa IMD, Souza JC, Ewers RM. 33.  2012. Changes in size of deforested patches in the Brazilian Amazon. Conserv. Biol. 26:5932–37 [Google Scholar]
  34. 34. Int. Trop. Timber Organ. (ITTO), Div. Econ. Inf. Mark. Intell 2007. Annual Review and Assessment of the World Timber Situation 2007. Yokohama, Jpn.: Int. Trop. Timber Organ. (ITTO). http://www.itto.int/annual_review/ [Google Scholar]
  35. 35. UN Food Agric. Organ. (FAO) 2010. Global Forest Resources Assessment 2010 Rome: UN [Google Scholar]
  36. Asner GP, Rudel TK, Aide TM, Defries R, Emerson R. 36.  2009. A contemporary assessment of change in humid tropical forests. Conserv. Biol. 23:61386–95 [Google Scholar]
  37. Souza CM Jr, Siqueira JV, Sales MH, Fonseca AV, Ribeiro JG. 37.  et al. 2013. Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sens. 5:115493–513 [Google Scholar]
  38. Bryan JE, Shearman PL, Asner GP, Knapp DE, Aoro G, Lokes B. 38.  2013. Extreme differences in forest degradation in Borneo: comparing practices in Sarawak, Sabah, and Brunei. PLOS ONE 8:7e69679 [Google Scholar]
  39. 39. UN Food Agric. Organ. (FAO) 2005. Global Forest Resources Assessment 2005: Progress Towards Sustainable Forest Management Rome: UN [Google Scholar]
  40. Ahrends A, Burgess ND, Milledge SAH, Bulling MT, Fisher B. 40.  et al. 2010. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc. Natl. Acad. Sci. USA 107:14556–61 [Google Scholar]
  41. Furukawa T, Fujiwara K, Kiboi SK, Mutiso PBC. 41.  2011. Threshold change in forest understory vegetation as a result of selective fuelwood extraction in Nairobi, Kenya. For. Ecol. Manag. 262:6962–69 [Google Scholar]
  42. Laufer J, Michalski F, Peres CA. 42.  2013. Assessing sampling biases in logging impact studies in tropical forests. Trop. Conserv. Sci. 6:116–34 [Google Scholar]
  43. Ramage BS, Sheil D, Salim HMW, Fletcher C, Mustafa N-ZA. 43.  et al. 2013. Pseudoreplication in tropical forests and the resulting effects on biodiversity conservation. Conserv. Biol. 27:2364–72 [Google Scholar]
  44. Pinard MA, Putz FE. 44.  1996. Retaining forest biomass by reducing logging damage. Biotropica 28:3278–95 [Google Scholar]
  45. Struebig MJ, Turner A, Giles E, Lasmana F, Tollington S. 45.  et al. 2013. Quantifying the biodiversity value of repeatedly logged rainforests: gradient and comparative approaches from Borneo. Adv. Ecol. Res. 48:183–224 [Google Scholar]
  46. Barlow J, Peres CA, Henriques LMP, Stouffer PC, Wunderle JM. 46.  2006. The responses of understorey birds to forest fragmentation, logging and wildfires: an Amazonian synthesis. Biol. Conserv. 128:2182–92 [Google Scholar]
  47. Berry NJ, Phillips OL, Lewis SL, Hill JK, Edwards DP. 47.  et al. 2010. The high value of logged tropical forests: lessons from northern Borneo. Biodivers. Conserv. 19:4985–97 [Google Scholar]
  48. Putz FE, Zuidema PA, Synnott T, Pinard MA, Sheil D. 48.  et al. 2012. Sustaining conservation values in selectively logged forests: the attained and the attainable. Conserv. Lett. 5:296–303 [Google Scholar]
  49. Edwards DP, Larsen TH, Docherty TDS, Ansell FA, Hsu WW. 49.  et al. 2011. Degraded lands worth protecting: the biological importance of Southeast Asia's repeatedly logged forests. Proc. R. Soc. B 278:170282–90 [Google Scholar]
  50. Peters SJL, Malcolm JR, Zimmerman BL. 50.  2006. Effects of selective logging on bat communities in the southeastern Amazon. Conserv. Biol. 20:51410–21 [Google Scholar]
  51. Poulsen JR, Clark CJ, Bolker BM. 51.  2011. Decoupling the effects of logging and hunting on an Afrotropical animal community. Ecol. Appl. 21:51819–36 [Google Scholar]
  52. Adum GB, Eichhorn MP, Oduro W, Ofori-Boateng C, Rödel M-O. 52.  2013. Two-stage recovery of amphibian assemblages following selective logging of tropical forests. Conserv. Biol. 27:2354–63 [Google Scholar]
  53. Clark CJ, Poulsen JR, Malonga R, Elkan PW Jr. 53.  2009. Logging concessions can extend the conservation estate for Central African tropical forests. Conserv. Biol. 23:51281–93 [Google Scholar]
  54. Gunawardene NR, Majer JD, Edirisinghe JP. 54.  2010. Investigating residual effects of selective logging on ant species assemblages in Sinharaja Forest Reserve, Sri Lanka. For. Ecol. Manag. 259:3555–62 [Google Scholar]
  55. Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G. 55.  et al. 2001. Ecological meltdown in predator-free forest fragments. Science 294:55481923–26 [Google Scholar]
  56. Gibson L, Lynam AJ, Bradshaw CJA, He F, Bickford DP. 56.  et al. 2013. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341:61531508–10 [Google Scholar]
  57. Stoner KE, Vulinec K, Wright SJ, Peres CA. 57.  2007. Hunting and plant community dynamics in tropical forests: a synthesis and future directions. Biotropica 39:3385–92 [Google Scholar]
  58. Peres CA. 58.  2001. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15:61490–1505 [Google Scholar]
  59. Fahrig L. 59.  2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34:487–515 [Google Scholar]
  60. Markl JS, Schleuning M, Forget PM, Jordano P, Lambert JE. 60.  et al. 2012. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv. Biol. 26:61072–81 [Google Scholar]
  61. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J. 61.  et al. 2011. Trophic downgrading of planet Earth. Science 333:6040301–6 [Google Scholar]
  62. Laurance WF, Useche DC. 62.  2009. Environmental synergisms and extinctions of tropical species. Conserv. Biol. 23:61427–37 [Google Scholar]
  63. Fa JE, Ryan SF, Bell DJ. 63.  2005. Hunting vulnerability, ecological characteristics and harvest rates of bushmeat species in Afrotropical forests. Biol. Conserv. 121:2167–76 [Google Scholar]
  64. Peres CA, Palacios E. 64.  2007. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39:3304–15 [Google Scholar]
  65. Laurance WF, Useche DC, Rendeiro J, Kalka M, Bradshaw CJA. 65.  et al. 2012. Averting biodiversity collapse in tropical forest protected areas. Nature 489:7415290–94 [Google Scholar]
  66. Benítez-López A, Alkemade R, Verweij PA. 66.  2010. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143:61307–16 [Google Scholar]
  67. Potapov P, Yaroshenko A, Turubanova S, Dubinin M, Laestadius L. 67.  et al. 2008. Mapping the world's intact forest landscapes by remote sensing. Ecol. Soc. 13:251 [Google Scholar]
  68. Abernethy KA, Coad L, Taylor G, Lee ME, Maisels F. 68.  2013. Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Philos. Trans. R. Soc. B 368:162520120303 [Google Scholar]
  69. Fa JE, Peres CA, Meeuwig J. 69.  2002. Bushmeat exploitation in tropical forests: an intercontinental comparison. Conserv. Biol. 16:1232–37 [Google Scholar]
  70. Peres CA. 70.  2000. Evaluating the impact of sustainability of subsistence hunting at multiple Amazonian forest sites. Hunting for Sustainability in Tropical Forests JG Robinson, EL Bennett 31–56 New York: Columbia Univ. Press [Google Scholar]
  71. Xaud HAM, Martins FSRV, dos Santos JR. 71.  2013. Tropical forest degradation by mega-fires in the northern Brazilian Amazon. For. Ecol. Manag. 294:97–106 [Google Scholar]
  72. Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers RM. 72.  et al. 2007. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLOS ONE 2:10e1017 [Google Scholar]
  73. Wilkie DS, Bennett EL, Peres CA, Cunningham AA. 73.  2011. The empty forest revisited. Ann. NY Acad. Sci. 1223:1120–28 [Google Scholar]
  74. Terborgh JW, Feeley KJ. 74.  2008. Ecosystem decay in closed forest fragments. Tropical Forest Community Ecology WP Carson, SA Schnitzer 308–21 New York: Blackwell [Google Scholar]
  75. Fa JE, Brown D. 75.  2009. Impacts of hunting on mammals in African tropical moist forests: a review and synthesis. Mammal Rev. 39:4231–64 [Google Scholar]
  76. Tabarelli M, Lopes AV, Peres CA. 76.  2008. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40:6657–61 [Google Scholar]
  77. Dirzo R, Miranda A. 77.  1990. Contemporary neotropical defaunation and forest structure, function, and diversity—a sequel to John Terborgh. Conserv. Biol. 4:4444–47 [Google Scholar]
  78. Laurance WF, Vasconcelos HL, Lovejoy TE. 78.  2000. Forest loss and fragmentation in the Amazon: implications for wildlife conservation. Oryx 34:139–45 [Google Scholar]
  79. Galetti M, Dirzo R. 79.  2013. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163:1–6 [Google Scholar]
  80. Phillips OL. 80.  1997. The changing ecology of tropical forests. Biodivers. Conserv. 6:2291–311 [Google Scholar]
  81. Terborgh JW, Feeley KJ. 81.  2010. High functional redundancy and diffuse vertical links create multiple pathways for the trophic cascade in tropical forests. Trophic Cascades JW Terborgh, JA Estes 125–40 Washington, DC: Island [Google Scholar]
  82. Kurten EL. 82.  2013. Cascading effects of contemporaneous defaunation on tropical forest communities. Biol. Conserv. 163:22–32 [Google Scholar]
  83. Wyatt JL, Silman MR. 83.  2004. Distance-dependence in two Amazonian palms: effects of spatial and temporal variation in seed predator communities. Oecologia 140:126–35 [Google Scholar]
  84. Terborgh J. 84.  2013. Using Janzen-Connell to predict the consequences of defaunation and other disturbances of tropical forests. Biol. Conserv. 163:7–12 [Google Scholar]
  85. Terborgh J, Feeley K, Silman M, Nuñez P, Balukjian B. 85.  2006. Vegetation dynamics of predator-free land-bridge islands. J. Ecol. 94:2253–63 [Google Scholar]
  86. Harrison RD, Tan S, Plotkin JB, Slik F, Detto M. 86.  et al. 2013. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16:5687–94 [Google Scholar]
  87. Shlisky A, Alencar AAC, Nolasco MM, Curan LM. 87.  2009. Global fire regime conditions, threats, and opportunities for fire management in the tropics. Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics MA Cochrane 65–83 Chichester: Springer Praxis [Google Scholar]
  88. McMichael CH, Piperno DR, Bush MB, Silman MR, Zimmerman AR. 88.  et al. 2012. Sparse pre-Columbian human habitation in western Amazonia. Science 336:1429–31 [Google Scholar]
  89. Iriarte J, Power MJ, Rostain S, Mayle FE, Jones H, Watling J. 89.  2012. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl. Acad. Sci. USA 109:176473–78 [Google Scholar]
  90. Cochrane MA. 90.  2003. Fire science for rainforests. Nature 421:6926913–19 [Google Scholar]
  91. van der Werf GR, Dempewolf J, Trigg SN, Randerson JT, Kasibhatla PS. 91.  et al. 2008. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl. Acad. Sci. USA 105:5120350–55 [Google Scholar]
  92. Langner A, Miettinen J, Siegert F. 92.  2007. Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob. Change Biol. 13:112329–40 [Google Scholar]
  93. Barlow J, Lagan BO, Peres CA. 93.  2003. Morphological correlates of fire-induced tree mortality in a central Amazonian forest. J. Trop. Ecol. 19:3291–99 [Google Scholar]
  94. Gerwing JJ. 94.  2002. Degradation of forests through logging and fire in the eastern Brazilian Amazon. For. Ecol. Manag. 157:1–3131–41 [Google Scholar]
  95. Van Nieuwstadt MGL, Sheil D. 95.  2005. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. J. Ecol. 93:1191–201 [Google Scholar]
  96. Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE. 96.  et al. 2014. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl. Acad. Sci. USA 111:176347–52 [Google Scholar]
  97. Barlow J, Peres CA. 97.  2004. Avifaunal responses to single and recurrent wildfires in Amazonian forests. Ecol. Appl. 14:51358–73 [Google Scholar]
  98. Adeney JM, Ginsberg JR, Russell GJ, Kinnaird MF. 98.  2006. Effects of an ENSO-related fire on birds of a lowland tropical forest in Sumatra. Anim. Conserv. 9:292–301 [Google Scholar]
  99. Barlow J, Peres CA. 99.  2008. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. B 363:14981787–94 [Google Scholar]
  100. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. 100.  2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142:61141–53 [Google Scholar]
  101. Broadbent EN, Asner GP, Keller M, Knapp DE, Oliviera PJC. 101.  et al. 2008. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141:71745–57 [Google Scholar]
  102. Ferraz G, Nichols JD, Hines JE, Stouffer PC, Bierregaard RO Jr, Lovejoy TE. 102.  2007. A large-scale deforestation experiment: effects of patch area and isolation on Amazon birds. Science 315:5809238–41 [Google Scholar]
  103. Lees AC, Peres CA. 103.  2009. Gap-crossing movements predict species occupancy in Amazonian forest fragments. Oikos 118:2280–90 [Google Scholar]
  104. Mokross K, Ryder TB, Côrtes MC, Wolfe JD, Stouffer PC. 104.  2014. Decay of interspecific avian flock networks along a disturbance gradient in Amazonia. Proc. R. Soc. B 281:177620132599 [Google Scholar]
  105. Laurance WF, Camargo JLC, Luizão RCC, Laurance SG, Pimm SL. 105.  et al. 2011. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144:56–67 [Google Scholar]
  106. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L. 106.  et al. 2012. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. 87:661–85 [Google Scholar]
  107. Pardini R, Bueno ADA, Gardner TA, Prado PI, Metzger JP. 107.  2010. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLOS ONE 5:10e13666 [Google Scholar]
  108. Wearn OR, Reuman DC, Ewers RM. 108.  2012. Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337:6091228–32 [Google Scholar]
  109. Larsen TB. 109.  2008. Forest butterflies in West Africa have resisted extinction…so far (Lepidoptera: Papilionoidea and Hesperioidea). Biodivers. Conserv. 17:122833–47 [Google Scholar]
  110. 110. RAISG 2012. Amazonia Under Pressure São Paulo: RAISG Amazon. Netw. [Google Scholar]
  111. Lugo AE, Helmer EH. 111.  2004. Emerging forests on abandoned land: Puerto Rico's new forests. For. Ecol. Manag. 190:2–3145–61 [Google Scholar]
  112. Chazdon RL. 112.  2014. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation Chicago: Univ. Chicago Press [Google Scholar]
  113. Martin PA, Newton AC, Bullock JM. 113.  2013. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc. R. Soc. B 280:177320132236 [Google Scholar]
  114. Dunn RR. 114.  2004. Recovery of faunal communities during tropical forest regeneration. Conserv. Biol. 18:2302–9 [Google Scholar]
  115. Dent DH, Joseph Wright S. 115.  2009. The future of tropical species in secondary forests: a quantitative review. Biol. Conserv. 142:122833–43 [Google Scholar]
  116. Chazdon RL, Peres CA, Dent D, Sheil D, Lugo AE. 116.  et al. 2009. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23:61406–17 [Google Scholar]
  117. Lawrence D. 117.  2005. Biomass accumulation after 10–200 years of shifting cultivation in Bornean rain forest. Ecology 86:126–33 [Google Scholar]
  118. Grau HR, Aide TM, Zimmerman JK, Thomlinson JR, Helmer E, Zou X. 118.  2003. The ecological consequences of socioeconomic and land-use changes in postagriculture Puerto Rico. BioScience 53:121159–68 [Google Scholar]
  119. Chazdon RL, Letcher SG, van Breugel M, Martínez-Ramos M, Bongers F, Finegan B. 119.  2007. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos. Trans. R. Soc. B 362:1478273–89 [Google Scholar]
  120. Dent DH, DeWalt SJ, Denslow JS. 120.  2013. Secondary forests of central Panama increase in similarity to old-growth forest over time in shade tolerance but not species composition. J. Veg. Sci. 24:3530–42 [Google Scholar]
  121. Neeff T, Lucas RM, Santos JD, Brondizio ES, Freitas CC. 121.  2006. Area and age of secondary forests in Brazilian Amazonia 1978–2002: an empirical estimate. Ecosystems 9:4609–23 [Google Scholar]
  122. van Breugel M, Hall JS, Craven D, Bailon M, Hernandez A. 122.  et al. 2013. Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape. PLOS ONE 8:12e82433 [Google Scholar]
  123. Rosenzweig ML. 123.  2001. The four questions: What does the introduction of exotic species do to diversity?. Evol. Ecol. Res. 3:3361–67 [Google Scholar]
  124. Fritts TH, Rodda GH. 124.  1998. The role of introduced species in the degradation of island ecosystems: a case history of Guam. Annu. Rev. Ecol. Syst. 29:113–40 [Google Scholar]
  125. Mortensen HS, Dupont YL, Olesen JM. 125.  2008. A snake in paradise: disturbance of plant reproduction following extirpation of bird flower-visitors on Guam. Biol. Conserv. 141:82146–54 [Google Scholar]
  126. Fine PVA. 126.  2002. The invasibility of tropical forests by exotic plants. J. Trop. Ecol. 18:687–705 [Google Scholar]
  127. Asner GP, Hughes RF, Vitousek PM, Knapp DE, Kennedy-Bowdoin T. 127.  et al. 2008. Invasive plants transform the three-dimensional structure of rain forests. Proc. Natl. Acad. Sci. USA 105:114519–23 [Google Scholar]
  128. Lugo A. 128.  2013. Novel tropical forests: nature's response to global change. Trop. Conserv. Sci. 6:3325–37 [Google Scholar]
  129. Kupfer JA, Malanson GP, Franklin SB. 129.  2006. Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob. Ecol. Biogeogr. 15:8–20 [Google Scholar]
  130. Bos MM, Tylianakis JM, Steffan-Dewenter I, Tscharntke T. 130.  2008. The invasive yellow crazy ant and the decline of forest ant diversity in Indonesian cacao agroforests. Biol. Invasions 10:81399–409 [Google Scholar]
  131. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC. 131.  et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:7393186–94 [Google Scholar]
  132. Catenazzi A, Lehr E, Rodriguez LO, Vredenburg VT. 132.  2011. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the Upper Manu National Park, southeastern Peru. Conserv. Biol. 25:382–91 [Google Scholar]
  133. Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F. 133.  et al. 2011. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc. Natl. Acad. Sci. USA 108:4618732–36 [Google Scholar]
  134. Crawford AJ, Lips KR, Bermingham E. 134.  2010. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc. Natl. Acad. Sci. USA 107:3113777–82 [Google Scholar]
  135. Colón-Gaud C, Whiles MR, Kilham SS, Lips KR, Pringle CM. 135.  et al. 2009. Assessing ecological responses to catastrophic amphibian declines: patterns of macroinvertebrate production and food web structure in upland Panamanian streams. Limnol. Oceanogr. 54:1331–43 [Google Scholar]
  136. Malhi Y, Aragão LE, Galbraith D, Huntingford C, Fisher R. 136.  et al. 2009. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. USA 106:4920610–15 [Google Scholar]
  137. Zelazowski P, Malhi Y, Huntingford C, Sitch S, Fisher JB. 137.  2011. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. R. Soc. A 369:1934137–60 [Google Scholar]
  138. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB. 138.  et al. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 104:166550–55 [Google Scholar]
  139. Davin EL, de Noblet-Ducoudré N. 139.  2010. Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J. Clim. 23:197–112 [Google Scholar]
  140. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK. 140.  et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105:186668–72 [Google Scholar]
  141. Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT. 141.  2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:5899258–61 [Google Scholar]
  142. Feeley KJ, Silman MR, Bush MB, Farfan W, Cabrera KG. 142.  et al. 2011. Upslope migration of Andean trees. J. Biogeogr. 38:4783–91 [Google Scholar]
  143. Feeley KJ, Silman MR. 143.  2010. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16:61830–36 [Google Scholar]
  144. Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL. 144.  2013. Heat freezes niche evolution. Ecol. Lett. 16:91206–19 [Google Scholar]
  145. Jaramillo C, Cárdenas A. 145.  2013. Global warming and neotropical rainforests: a historical perspective. Annu. Rev. Earth Planet. Sci. 41:1741–66 [Google Scholar]
  146. Dick CW, Lewis SL, Maslin M, Bermingham E. 146.  2013. Neogene origins and implied warmth tolerance of Amazon tree species. Ecol. Evol. 3:1162–69 [Google Scholar]
  147. Bush MB, Silman MR, Urrego DH. 147.  2004. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303:5659827–29 [Google Scholar]
  148. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 148.  2009. The velocity of climate change. Nature 462:72761052–55 [Google Scholar]
  149. Wright SJ, Muller-Landau HC, Schipper J. 149.  2009. The future of tropical species on a warmer planet. Conserv. Biol. 23:61418–26 [Google Scholar]
  150. Chen I-C, Shiu H-J, Benedick S, Holloway JD, Chey VK. 150.  et al. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. USA 106:51479–83 [Google Scholar]
  151. Feeley KJ, Hurtado J, Saatchi S, Silman MR, Clark DB. 151.  2013. Compositional shifts in Costa Rican forests due to climate-driven species migrations. Glob. Change Biol. 19:3472–80 [Google Scholar]
  152. Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S. 152.  et al. 2013. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6:41–6 [Google Scholar]
  153. Hickler T, Smith B, Prentice IC, Mjöfors K, Miller P. 153.  et al. 2008. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14:71531–42 [Google Scholar]
  154. Lloyd J, Farquhar GD. 154.  2008. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos. Trans. R. Soc. B 363:14981811–17 [Google Scholar]
  155. Cernusak LA, Winter K, Dalling JW, Holtum JAM, Jaramillo C. 155.  et al. 2013. Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct. Plant Biol. 40:6531–51 [Google Scholar]
  156. Loader NJ, Walsh RPD, Robertson I, Bidin K, Ong RC. 156.  et al. 2011. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo. Philos. Trans. R. Soc. B 366:15823330–39 [Google Scholar]
  157. Peñuelas J, Canadell JG, Ogaya R. 157.  2011. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20:4597–608 [Google Scholar]
  158. Phillips OL, Aragão LE, Lewis SL, Fisher JB, Lloyd J. 158.  et al. 2009. Drought sensitivity of the Amazon rainforest. Science 323:59191344–47 [Google Scholar]
  159. Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR. 159.  et al. 2009. Increasing carbon storage in intact African tropical forests. Nature 457:72321003–6 [Google Scholar]
  160. Gloor M, Phillips OL, Lloyd JJ, Lewis SL, Malhi Y. 160.  et al. 2009. Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data?. Glob. Change Biol. 15:102418–30 [Google Scholar]
  161. Espírito-Santo FDB, Gloor M, Keller M, Malhi Y, Saatchi S. 161.  et al. 2014. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 5:34341–6 [Google Scholar]
  162. Malhi Y. 162.  2010. The carbon balance of tropical forest regions, 1990–2005. Curr. Opin. Environ. Sustain. 2:4237–44 [Google Scholar]
  163. Phillips OL, Lewis SL, Baker TR, Chao KJ. 163.  Higuchi N 2008. The changing Amazon forest. Philos. Trans. R. Soc. B 363:14981819–27 [Google Scholar]
  164. Lewis SL, Lloyd J, Sitch S, Mitchard ETA, Laurance WF. 164.  2009. Changing ecology of tropical forests: evidence and drivers. Annu. Rev. Ecol. Evol. Syst. 40:1529–49 [Google Scholar]
  165. Schnitzer SA, Bongers F. 165.  2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol. Lett. 14:4397–406 [Google Scholar]
  166. Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ. 166.  2011. Long-term change in the nitrogen cycle of tropical forests. Science 334:6056664–66 [Google Scholar]
  167. Spracklen DV, Arnold SR, Taylor CM. 167.  2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:7415282–85 [Google Scholar]
  168. van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC. 168.  2010. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46:9WO9525 [Google Scholar]
  169. Feng X, Porporato A, Rodriguez-Iturbe I. 169.  2013. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3:61–5 [Google Scholar]
  170. Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J. 170.  et al. 2013. Intensification of the Amazon hydrological cycle over the last two decades. Geophys. Res. Lett. 40:91729–33 [Google Scholar]
  171. Fu R, Yin L, Li W, Arias PA, Dickinson RE. 171.  et al. 2013. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl. Acad. Sci. USA 110:4518110–15 [Google Scholar]
  172. da Costa ACL, Galbraith D, Almeida S, Portela BTT, da Costa M. 172.  et al. 2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187:3579–91 [Google Scholar]
  173. McDowell NG. 173.  2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155:31051–59 [Google Scholar]
  174. Myneni RB, Yang W, Nemani RR, Huete AR, Dickinson RE. 174.  et al. 2007. Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl. Acad. Sci. USA 104:124820–23 [Google Scholar]
  175. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J. 175.  et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:7318951–54 [Google Scholar]
  176. Pau S, Wolkovich EM, Cook BI, Nytch CJ, Regetz J. 176.  et al. 2013. Clouds and temperature drive dynamic changes in tropical flower production. Nat. Clim. Change 3:71–5 [Google Scholar]
  177. Swinfield T, Lewis OT, Bagchi R, Freckleton RP. 177.  2012. Consequences of changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecol. Evol. 2:71408–13 [Google Scholar]
  178. Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS. 178.  et al. 2009. A safe operating space for humanity. Nature 461:472–75 [Google Scholar]
  179. Tabarelli M, Cardoso da Silva JM, Gascon C. 179.  2004. Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers. Conserv. 13:1419–25 [Google Scholar]
  180. Nepstad DC, Veríssimo A, Alencar A, Nobre C, Lima E. 180.  et al. 1999. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–8 [Google Scholar]
  181. Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA. 181.  et al. 2009. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12:6561–82 [Google Scholar]
  182. Lambin EF, Meyfroidt P. 182.  2011. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 108:93465–72 [Google Scholar]
  183. Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI. 183.  2007. Habitat split and the global decline of amphibians. Science 318:58571775–77 [Google Scholar]
  184. Malhado ACM, Pires GF, Costa MH. 184.  2010. Cerrado conservation is essential to protect the Amazon rainforest. AMBIO 39:8580–84 [Google Scholar]
  185. Metzger JP, Martensen AC, Dixo M, Bernacci LC, Ribeiro MC. 185.  et al. 2009. Time-lag in biological responses to landscape changes in a highly dynamic Atlantic Forest region. Biol. Conserv. 142:61166–77 [Google Scholar]
  186. Ewers RM, Didham RK, Pearse WD, Lefebvre VER, Rosa IMD. 186.  et al. 2013. Using landscape history to predict biodiversity patterns in fragmented landscapes. Ecol. Lett. 16:1221–33 [Google Scholar]
  187. Aoyagi R, Imai N, Kitayama K. 187.  2013. Ecological significance of the patches dominated by pioneer trees for the regeneration of dipterocarps in a Bornean logged-over secondary forest. For. Ecol. Manag. 289:378–84 [Google Scholar]
  188. Asner GP, Broadbent EN, Oliveira PJC, Keller M, Knapp DE, Silva JNM. 188.  2006. Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 103:3412947–50 [Google Scholar]
  189. Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A. 189.  et al. 2005. Forest transitions: towards a global understanding of land use change. Glob. Environ. Change 15:123–31 [Google Scholar]
  190. Aide TM, Clark ML, Grau HR, López-Carr D, Levy MA. 190.  et al. 2012. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45:2262–71 [Google Scholar]
  191. Melo FPL, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M. 191.  2013. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28:8462–68 [Google Scholar]
  192. Feeley KJ, Malhi Y, Zelazowski P, Silman MR. 192.  2012. The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of Amazonian plant species. Glob. Change Biol. 18:82636–47 [Google Scholar]
  193. Chapin FS. Carpenter SR, Kofinas GP, Folke C, Abel N. 193.  III, et al. 2010. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 25:4241–49 [Google Scholar]
  194. Wright SJ. 194.  2010. The future of tropical forests. Ann. NY Acad. Sci. 1195:11–27 [Google Scholar]
  195. Blaser J, Sarre A, Poore D, Johnson S. 195.  2011. Status of tropical forest management 2011 ITTO Tech. Ser. No. 38, Int. Trop. Timber Organ., Yokohama, Jpn. http://www.itto.int/direct/topics/topics_pdf_download/topics_id=2660&no=0&disp=inline [Google Scholar]
  196. Ramankutty N, Foley JA. 196.  1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13:4997–1027 [Google Scholar]
  197. Pitman N. 197.  2011. Volume and geographical distribution of ecological research in the Andes and the Amazon, 1995–2008. Trop. Conserv. Sci. 4:164–81 [Google Scholar]
/content/journals/10.1146/annurev-environ-030713-155141
Loading
/content/journals/10.1146/annurev-environ-030713-155141
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error