1932

Abstract

Humans have had an impact on regional and global environments even prior to the Industrial Revolution through anthropogenic fire, agriculture, and the extinction of the Pleistocene megafauna. The preindustrial impact of anthropogenic fire to modify ecosystems and affect climate may have been small because in regions where impacts were once thought to be large, such as in Australia, the evidence now suggests a smaller effect. Both the extinction of the megafauna, which evidence indicates to be at least partially caused by humans, and preindustrial agriculture may have affected climate, but the effects may have offset each other. For instance, climate simulations indicate that megafauna extinctions may have led to a slight global warming, but later, agriculture led to a slight global cooling. Prior to the industrial era, the largest ecological and climate anomaly may have been associated with forest expansion during the early and mid-Holocene when there were few megafauna and agriculturalists to reduce this expansion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-032012-095147
2013-10-17
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/energy/38/1/annurev-environ-032012-095147.html?itemId=/content/journals/10.1146/annurev-environ-032012-095147&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Intergov. Panel Clim. Change 2007. Summary for policymakers. Climate Change 2007: Synthesis Report. Geneva, Switz.: IPCC http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf [Google Scholar]
  2. Steffen W, Crutzen PJ, McNeill JR. 2.  2007. The Anthropocene: Are humans now overwhelming the great forces of nature?. AMBIO 36:614–21 [Google Scholar]
  3. Doney SC. 3.  2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–16 [Google Scholar]
  4. Zalasiewicz J, Williams M, Fortey R, Smith A, Barry TL. 4.  et al. 2011. Stratigraphy of the Anthropocene. Philos. Trans. R. Soc. A 369:1036–55 [Google Scholar]
  5. Kruge MA. 5.  2008. Organic chemostratigraphic markers characteristic of the (informally designated) Anthropocene epoch. Eos Trans. Am. Geophys. Union 89 (Fall Meet. Suppl.):GC11A–0675 (Abstr.) [Google Scholar]
  6. Wilkinson BH. 6.  2005. Humans as geologic agents: a deep-time perspective. Geology 33:161–64 [Google Scholar]
  7. Syvitski JPM, Kettner A. 7.  2011. Sediment flux and the Anthropocene. Philos. Trans. R. Soc. A 369:957–75 [Google Scholar]
  8. Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA. 8.  1986. Human appropriation of the products of photosynthesis. BioScience 36:368–73 [Google Scholar]
  9. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A. 9.  et al. 2007. Quantifying and mapping the human appropriation of net primary production in Earth's terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 104:12942–45 [Google Scholar]
  10. Ellis EC, Ramankutty N. 10.  2008. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6:439–47 [Google Scholar]
  11. Ellis EC. 11.  2011. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A 369:1010–35 [Google Scholar]
  12. Ruddiman WF. 12.  2003. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 61:261–93 [Google Scholar]
  13. Miller GH, Fogel ML, Magee JW, Gagan MK, Clarke SJ, Johnson BJ. 13.  2005. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309:287–90 [Google Scholar]
  14. Miller G, Mangan J, Pollard D, Thompson S, Felzer B, Magee J. 14.  2005. Sensitivity of the Australian monsoon to insolation and vegetation: implications for human impact on continental moisture balance. Geology 33:65–68 [Google Scholar]
  15. Doughty CE, Wolf A, Field CB. 15.  2010. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming?. Geophys. Res. Lett. 37:L15703 [Google Scholar]
  16. Bonan GB. 16.  2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–49 [Google Scholar]
  17. Claussen M, Brovkin V, Ganopolski A. 17.  2001. Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys. Res. Lett. 28:1011–14 [Google Scholar]
  18. Betts RA. 18.  2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–90 [Google Scholar]
  19. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB. 19.  et al. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 104:6550–55 [Google Scholar]
  20. Bathiany S, Claussen M, Brovkin V, Raddatz T, Gayler V. 20.  2010. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI Earth System model. Biogeosciences 7:1383–99 [Google Scholar]
  21. Pongratz J, Reick CH, Raddatz T, Caldeira K, Claussen M. 21.  2011. Past land use decisions have increased mitigation potential of reforestation. Geophys. Res. Lett. 38:L15701 [Google Scholar]
  22. Swann AL, Fung IY, Levis S, Bonan GB, Doney SC. 22.  2010. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl. Acad. Sci. USA 107:1295–300 [Google Scholar]
  23. Dickinson RE, Henderson-Sellers A. 23.  1988. Modelling tropical deforestation: a study of GCM land-surface parametrizations. Q. J. R. Meteorol. Soc. 114:439–62 [Google Scholar]
  24. Doughty CE, Loarie SR, Field CB. 24.  2012. Theoretical impact of changing albedo on precipitation at the southernmost boundary of the ITCZ in South America. Earth Interact. 16:1–14 [Google Scholar]
  25. Juang JY, Katul G, Siqueira M, Stoy P, Novick K. 25.  2007. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34:L21408 [Google Scholar]
  26. Berna F, Goldberg P, Horwitz LK, Brink J, Holt S. 26.  et al. 2012. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl. Acad. Sci. USA 109:E1215–20 [Google Scholar]
  27. Roebroeks W, Villa P. 27.  2011. On the earliest evidence for habitual use of fire in Europe. Proc. Natl. Acad. Sci. USA 108:5209–14 [Google Scholar]
  28. Ségalen L, Lee-Thorp JA, Cerling T. 28.  2007. Timing of C4 grass expansion across sub-Saharan Africa. J. Hum. Evol. 53:549–59 [Google Scholar]
  29. Wrangham RW, Jones JH, Laden G, Pilbeam D, Conklin-Brittain N. 29.  1999. The raw and the stolen. Cooking and the ecology of human origins. Curr. Anthropol. 40:567–94 [Google Scholar]
  30. Pyne SJ. 30.  2001. Fire: A Brief History Seattle: Univ. Wash. Press [Google Scholar]
  31. Bowman DJMS, Balch JK, Artaxo P, Bond WJ, Carlson JM. 31.  et al. 2009. Fire in the Earth System. Science 324:481–84 [Google Scholar]
  32. Daniau AL, Harrison SP, Bartlein PJ. 32.  2010. Fire regimes during the Last Glacial. Quat. Sci. Rev. 29:2918–30 [Google Scholar]
  33. Power MJ, Marlon J, Ortiz N, Bartlein PJ, Harrison SP. 33.  et al. 2008. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 30:887–907 [Google Scholar]
  34. Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP. 34.  et al. 2008. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1:697–702 [Google Scholar]
  35. Dodson JR, Robinson M, Tardy C. 35.  2005. Two fine-resolution Pliocene charcoal records and their bearing on pre-human fire frequency in south-western Australia. Austral Ecol. 30:592–99 [Google Scholar]
  36. Stevenson J, Hope G. 36.  2005. A comparison of late Quaternary forest changes in New Caledonia and northeastern Australia. Quat. Res. 64:372–83 [Google Scholar]
  37. Mooney SD, Harrison SP, Bartlein PJ, Daniau AL, Stevenson J. 37.  et al. 2011. Late Quaternary fire regimes of Australasia. Quat. Sci. Rev. 30:28–46 [Google Scholar]
  38. McWethy DB, Whitlock C, Wilmshurst JM, McGlone MS, Fromont M. 38.  et al. 2010. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proc. Natl. Acad. Sci. USA 107:21343–48 [Google Scholar]
  39. Fletcher MS, Thomas I. 39.  2010. The origin and temporal development of an ancient cultural landscape. J. Biogeogr. 37:2183–96 [Google Scholar]
  40. Bush MB, Silman MR, McMichael C, Saatchi S. 40.  2008. Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philos. Trans. R. Soc. B 363:1795–802 [Google Scholar]
  41. Ferretti DF, Miller JB, White JWC, Etheridge DM, Lassey KR. 41.  et al. 2005. Unexpected changes to the global methane budget over the past 2000 years. Science 309:1714–17 [Google Scholar]
  42. Iriarte J, Power MJ, Rostain S, Mayle FE, Jones H. 42.  et al. 2012. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl. Acad. Sci. USA 109:6473–78 [Google Scholar]
  43. Archibald S, Staver AC, Levin SA. 43.  2012. Evolution of human-driven fire regimes in Africa. Proc. Natl. Acad. Sci. USA 109:847–52 [Google Scholar]
  44. Olsson F, Gaillard MJ, Lemdahl G, Greisman A, Lanos P. 44.  et al. 2010. A continuous record of fire covering the last 10,500 calendar years from southern Sweden: the role of climate and human activities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291:128–41 [Google Scholar]
  45. Rius D, Vannière B, Galop D. 45.  2012. Holocene history of fire, vegetation and land use from the central Pyrenees (France). Quat. Res. 77:54–64 [Google Scholar]
  46. Van Wilgen BW, Govender N, Biggs HC, Ntsala D, Funda XN. 46.  2004. Response of savanna fire regimes to changing fire-management policies in a large African National Park. Conserv. Biol. 18:1533–40 [Google Scholar]
  47. Pitman AJ, Hesse PP. 47.  2007. The significance of large-scale land cover change on the Australian palaeomonsoon. Quat. Sci. Rev. 26:189–200 [Google Scholar]
  48. Bevan SL, North PRJ, Grey WMF, Los SO, Plummer SE. 48.  2009. Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought. J. Geophys. Res. Atmos. 114:D09204 [Google Scholar]
  49. Bowman DJMS, Balch J, Artaxo P, Bond WJ, Cochrane MA. 49.  et al. 2011. The human dimension of fire regimes on Earth. J. Biogeogr. 38:2223–36 [Google Scholar]
  50. Vegas-Vilarrubia T, Rull V, Montoya E, Safont E. 50.  2011. Quaternary palaeoecology and nature conservation: a general review with examples from the neotropics. Quat. Sci. Rev. 30:2361–88 [Google Scholar]
  51. Allred BW, Fuhlendorf SD, Smeins FE, Taylor CA. 51.  2012. Herbivore species and grazing intensity regulate community composition and an encroaching woody plant in semi-arid rangeland. Basic Appl. Ecol. 13:149–58 [Google Scholar]
  52. Flannery T. 52.  1994. The Future Eaters Chatswood, Aust.: Reed [Google Scholar]
  53. Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB. 53.  2004. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306:70–75 [Google Scholar]
  54. Martin PS. 54.  1967. Prehistoric Extinctions: The Search for a Cause New Haven, CT: Yale Univ. Press [Google Scholar]
  55. Alroy J. 55.  2001. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 293:1893–96 [Google Scholar]
  56. Guthrie RD. 56.  2006. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441:207–9 [Google Scholar]
  57. Asner GP, Levick SR. 57.  2012. Landscape-scale effects of herbivores on treefall in African savannas. Ecol. Lett. 15:1211–17 [Google Scholar]
  58. Surovell T, Waguespack N, Brantingham PJ. 58.  2005. Global archaeological evidence for proboscidean overkill. Proc. Natl. Acad. Sci. USA 102:6231–36 [Google Scholar]
  59. Steadman DW, Martin PS, MacPhee RDE, Jull AJT, McDonald HG. 59.  et al. 2005. Asynchronous extinction of late Quaternary sloths on continents and islands. Proc. Natl. Acad. Sci. USA 102:11763–68 [Google Scholar]
  60. Barnosky AD, Lindsey EL. 60.  2010. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 217:10–29 [Google Scholar]
  61. Louys J, Curnoe D, Tong HW. 61.  2007. Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243:152–73 [Google Scholar]
  62. Nikolskiy PA, Sulerzhitsky LD, Pitulko VV. 62.  2011. Last straw versus blitzkrieg overkill: climate-driven changes in the Arctic Siberian mammoth population and the Late Pleistocene extinction problem. Quat. Sci. Rev. 30:2309–28 [Google Scholar]
  63. Prideaux GJ, Gully GA, Couzens AMC, Ayliffe LK, Jankowski NR. 63.  et al. 2010. Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia. Proc. Natl. Acad. Sci. USA 107:22157–62 [Google Scholar]
  64. Campos PF, Willerslev E, Sher A, Orlando L, Axelsson E. 64.  et al. 2010. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc. Natl. Acad. Sci. USA 107:5675–80 [Google Scholar]
  65. Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J. 65.  et al. 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479:359–64 [Google Scholar]
  66. Faith JT, Surovell TA. 66.  2009. Synchronous extinction of North America's Pleistocene mammals. Proc. Natl. Acad. Sci. USA 106:20641–45 [Google Scholar]
  67. Johnson CN. 67.  2009. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B 276:2509–19 [Google Scholar]
  68. Janzen DH, Martin PS. 68.  1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:19–27 [Google Scholar]
  69. Guimaraes PR, Galetti M, Jordano P. 69.  2008. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE 3:e1745 [Google Scholar]
  70. Feer F. 70.  1995. Seed dispersal in African forest ruminants. J. Trop. Ecol. 11:683–89 [Google Scholar]
  71. Chapman LJ, Chapman CA, Wrangham RW. 71.  1992. Balanites wilsoniana: elephant dependent dispersal. J. Trop. Ecol 8:275–83 [Google Scholar]
  72. Barlow C. 72.  2001. Anachronistic fruits and the ghosts who haunt them. Arnoldia 61:14–21 [Google Scholar]
  73. Campos-Arceiza A, Blake S. 73.  2011. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol 37:542–53 [Google Scholar]
  74. Hansen DM, Galetti M. 74.  2009. The forgotten megafauna. Science 324:42–43 [Google Scholar]
  75. Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M. 75.  et al. 2003. Amazonia 1492: Pristine forest or cultural parkland?. Science 301:1710–14 [Google Scholar]
  76. Scholtz CH, Davis A, Kryger U. 76.  2009. Evolutionary Biology and Conservation of Dung Beetles Sofia, Bulg.: Pensoft [Google Scholar]
  77. Nichols E, Gardner TA, Peres CA, Spector S, Network SR. 77.  2009. Co-declining mammals and dung beetles: an impending ecological cascade. Oikos 118:481–87 [Google Scholar]
  78. Halffter G, Halffter V. 78.  2009. Why and where coprophagous beetles (Coleoptera: Scarabaeinae) eat seeds, fruits or vegetable detritus. Bol. Soc. Entomol. Aragon. 45:1–22 [Google Scholar]
  79. Nichols E, Spector S, Louzada J, Larsen T, Amequita S. 79.  et al. 2008. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141:1461–74 [Google Scholar]
  80. Caughley G. 80.  1976. The elephant problem—an alternative hypothesis. Afr. J. Ecol. 14:265–83 [Google Scholar]
  81. Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS. 81.  2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1100–3 [Google Scholar]
  82. Asner GP, Levick SR, Kennedy-Bowdoin T, Knapp DE, Emerson R. 82.  et al. 2009. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl. Acad. Sci. USA 106:4947–52 [Google Scholar]
  83. Duffy KJ, Page BR, Swart JH, Bajić VB. 83.  1999. Realistic parameter assessment for a well known elephant-tree ecosystem model reveals that limit cycles are unlikely. Ecol. Model. 121:115–25 [Google Scholar]
  84. Owens-Smith RN. 84.  1988. Megaherbivores: The Influence of Very Large Body Size on Ecology London: Cambridge Univ. Press [Google Scholar]
  85. Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS, Reynolds JF, Chapin MC III. 85.  1995. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am. Nat. 146:765–94 [Google Scholar]
  86. Zimov SA, Zimov NS, Tikhonov AN, Chapin FS. 86.  2012. Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev. 57:26–45 [Google Scholar]
  87. Lister A, Bahn P. 87.  2007. Mammoths: Giants of the Ice Age Berkeley: Univ. Calif. Press [Google Scholar]
  88. Davis OK, Shafer DS. 88.  2006. Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr. Palaeoclimatol. Palaeoecol. 237:40–50 [Google Scholar]
  89. Rule S, Brook BW, Haberle SG, Turney CSM, Kershaw AP, Johnson CN. 89.  2012. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335:1483–86 [Google Scholar]
  90. Sturm M, Douglas T, Racine C, Liston GE. 90.  2005. Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res. Biogeosci. 110:G01004 [Google Scholar]
  91. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP. 91.  et al. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–95 [Google Scholar]
  92. Feranec RS, Miller NG, Lothrop JC, Graham RW. 92.  2011. The Sporormiella proxy and end-Pleistocene megafaunal extinction: a perspective. Quat. Int. 245:333–38 [Google Scholar]
  93. Wood JR, Wilmshurst JM. 93.  2012. Wetland soil moisture complicates the use of Sporormiella to trace past herbivore populations. J. Quat. Sci. 27:254–59 [Google Scholar]
  94. Brault M, Mysak L, Matthews H, Simmons C. 94.  2013. Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate. Clim. Past Discuss. 9:435–65 [Google Scholar]
  95. Barnosky AD. 95.  2008. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl. Acad. Sci. USA 105:11543–48 [Google Scholar]
  96. Smith FA, Elliott SM, Lyons SK. 96.  2010. Methane emissions from extinct megafauna. Nat. Geosci. 3:374–75 [Google Scholar]
  97. Brook EJ, Severinghaus JP. 97.  2011. Methane and megafauna. Nat. Geosci. 4:271–72 [Google Scholar]
  98. Kelt DA, Van Vuren DH. 98.  2001. The ecology and macroecology of mammalian home range area. Am. Nat. 157:637–45 [Google Scholar]
  99. Demment MW, Vansoest PJ. 99.  1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125:641–72 [Google Scholar]
  100. Hutchinson GE. 100.  1950. Biogeochemistry of Vertebrate Excretion New York: Am. Mus. Nat. Hist554 [Google Scholar]
  101. Frank DA, Inouye RS, Huntly N, Minshall GW, Anderson JE. 101.  1994. The biogeochemistry of a north-temperate grassland with native ungulates—nitrogen dynamics in Yellowstone National Park. Biogeochemistry 26:163–88 [Google Scholar]
  102. Stevenson PR, Guzman-Caro DC. 102.  2010. Nutrient transport within and between habitats through seed dispersal processes by woolly monkeys in north-western Amazonia. Am. J. Primatol. 72:992–1003 [Google Scholar]
  103. Abbas F, Merlet J, Morellet N, Verheyden H, Hewison AJM. 103.  et al. 2012. Roe deer may markedly alter forest nitrogen and phosphorus budgets across Europe. Oikos 121:1271–78 [Google Scholar]
  104. Doughty CE, Wolf A, Malhi Y. 104.  2013. The legacy of the Pleistocene megafaunal extinctions on nutrient availability in the Amazon basin. Nat. Geosci. In press [Google Scholar]
  105. Wolf A, Doughty CE, Malhi Y. 105.  2013. Lateral diffusion of nutrients by mammalian herbivores in terrestrial ecosystems. PLoS ONE 8:e71352 [Google Scholar]
  106. Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR. 106.  et al. 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–46 [Google Scholar]
  107. Doughty CE, Field CB. 107.  2010. Agricultural net primary production in relation to that liberated by the extinction of Pleistocene mega-herbivores: An estimate of agricultural carrying capacity?. Environ. Res. Lett. 5:044001 [Google Scholar]
  108. Balter M. 108.  2007. Seeking agriculture's ancient roots. Science 316:1830–35 [Google Scholar]
  109. Doughty CE. 109.  2010. The development of agriculture in the Americas: an ecological perspective. Ecosphere 1:art21 [Google Scholar]
  110. Hays JD, Imbrie J, Shackleton NJ. 110.  1976. Variations in the Earth's orbit: pacemaker of ice ages. Science 194:1121–32 [Google Scholar]
  111. Augustin L, Barbante C, Barnes PRF, Barnola JM, Bigler M. 111.  et al. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429:623–28 [Google Scholar]
  112. Claussen M, Brovkin V, Calov R, Ganopolski A, Kubatzki C. 112.  2005. Did humankind prevent a Holocene glaciation?. Clim. Change 69:409–17 [Google Scholar]
  113. Broecker WS, Stocker TL. 113.  2006. The Holocene CO2 rise: anthropogenic or natural?. Eos Trans. Am. Geophys. Union 87:27 [Google Scholar]
  114. Rohling EJ, Braun K, Grant K, Kucera M, Roberts AP. 114.  et al. 2010. Comparison between Holocene and marine isotope stage-11 sea-level histories. Earth Planet. Sci. Lett. 291:97–105 [Google Scholar]
  115. Ruddiman WF, Kutzbach JE, Vavrus SJ. 115.  2011. Can natural or anthropogenic explanations of late-Holocene CO2 and CH4 increases be falsified?. Holocene 21:865–79 [Google Scholar]
  116. Crucifix M. 116.  2011. How can a glacial inception be predicted?. Holocene 21:831–42 [Google Scholar]
  117. Tzedakis PC, Channell JET, Hodell DA, Kleiven HF, Skinner LC. 117.  2012. Determining the natural length of the current interglacial. Nat. Geosci. 5:138–41 [Google Scholar]
  118. Chappellaz J, Blunier T, Kints S, Dallenbach A, Barnola JM. 118.  et al. 1997. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J. Geophys. Res. Atmos. 102:15987–97 [Google Scholar]
  119. Sowers T. 119.  2010. Atmospheric methane isotope records covering the Holocene period. Quat. Sci. Rev. 29:213–21 [Google Scholar]
  120. Burns SJ. 120.  2011. Speleothem records of changes in tropical hydrology over the Holocene and possible implications for atmospheric methane. Holocene 21:735–41 [Google Scholar]
  121. Singarayer JS, Valdes PJ, Friedlingstein P, Nelson S, Beerling DJ. 121.  2011. Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470:82–85 [Google Scholar]
  122. Ruddiman WF, Guo ZT, Zhou X, Wu HB, Yu YY. 122.  2008. Early rice farming and anomalous methane trends. Quat. Sci. Rev. 27:1291–95 [Google Scholar]
  123. Fuller DQ, van Etten J, Manning K, Castillo C, Kingwell-Banham E. 123.  et al. 2011. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21:743–59 [Google Scholar]
  124. Broecker WS, Clark E, McCorkle DC, Peng TH, Hajdas I, Bonani G. 124.  1999. Evidence for a reduction in the carbonate ion content of the deep sea during the course of the Holocene. Paleoceanography 14:744–52 [Google Scholar]
  125. Ridgwell AJ, Watson AJ, Maslin MA, Kaplan JO. 125.  2003. Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum. Paleoceanography 18:1083 [Google Scholar]
  126. Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M. 126.  et al. 2009. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461:507–10 [Google Scholar]
  127. Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK. 127.  2011. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21:775–91 [Google Scholar]
  128. Ruddiman WF, Ellis EC. 128.  2009. Effect of per-capita land use changes on Holocene forest clearance and CO2 emissions. Quat. Sci. Rev. 28:3011–15 [Google Scholar]
  129. Yu ZC. 129.  2011. Holocene carbon flux histories of the world's peatlands: global carbon-cycle implications. Holocene 21:761–74 [Google Scholar]
  130. Pongratz J, Reick CH, Raddatz T, Claussen M. 130.  2009. Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob. Biogeochem. Cycles 23:GB4001 [Google Scholar]
  131. Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D. 131.  et al. 2006. Biogeophysical effects of historical land cover changes simulated by six Earth System models of intermediate complexity. Clim. Dyn. 26:587–600 [Google Scholar]
  132. Lamb H. 132.  1965. The early medieval warm epoch and its sequel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1:13–37 [Google Scholar]
  133. Crowley TJ. 133.  2000. Causes of climate change over the past 1000 years. Science 289:270–77 [Google Scholar]
  134. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V. 134.  et al. 2010. Climate and carbon-cycle variability over the last millennium. Clim. Past 6:723–37 [Google Scholar]
  135. Yeloff D, van Geel B. 135.  2007. Abandonment of farmland and vegetation succession following the Eurasian plague pandemic of AD 1347–52. J. Biogeogr. 34:575–82 [Google Scholar]
  136. Shindell DT, Schmidt GA, Miller RL, Mann ME. 136.  2003. Volcanic and solar forcing of climate change during the preindustrial era. J. Clim. 16:4094–107 [Google Scholar]
  137. Nevle RJ, Bird DK. 137.  2008. Effects of syn-pandemic fire reduction and reforestation in the tropical Americas on atmospheric CO2 during European conquest. Palaeogeogr. Palaeoclimatol. Palaeoecol. 264:25–38 [Google Scholar]
  138. Pongratz J, Caldeira K, Reick CH, Claussen M. 138.  2011. Coupled climate-carbon simulations indicate minor global effects of wars and epidemics on atmospheric CO2 between AD 800 and 1850. Holocene 21:843–51 [Google Scholar]
  139. Govindasamy B, Duffy PB, Caldeira K. 139.  2001. Land use changes and Northern Hemisphere cooling. Geophys. Res. Lett. 28:291–94 [Google Scholar]
  140. Pongratz J, Raddatz T, Reick CH, Esch M, Claussen M. 140.  2009. Radiative forcing from anthropogenic land cover change since AD 800. Geophys. Res. Lett. 36:L02709 [Google Scholar]
  141. Betts RA, Falloon PD, Goldewijk KK, Ramankutty N. 141.  2007. Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric. For. Meteorol. 142:216–33 [Google Scholar]
  142. Zimov SA. 142.  2005. Pleistocene park: return of the mammoth's ecosystem. Science 308:796–98 [Google Scholar]
/content/journals/10.1146/annurev-environ-032012-095147
Loading
/content/journals/10.1146/annurev-environ-032012-095147
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error