Almost 20 years ago, the first CO capture and storage (CCS) project began injecting CO into a deep geological formation in an offshore aquifer. Relevant science has advanced in areas such as chemical engineering, geophysics, and social psychology. Governments have generously funded demonstrations. As a result, a handful of industrial-scale CCS projects are currently injecting about 15 megatons of CO underground annually that contribute to climate change mitigation. However, CCS is struggling to gain a foothold in the set of options for dealing with climate change. This review explores why and discusses critical conditions for CCS to emerge as a viable mitigation option. Explanations for this struggle include the absence of government action on climate change, economic crisis–induced low carbon prices, public skepticism, increasing costs, and advances in other options including renewables and shale gas. Climate change action is identified as a critical condition for progress in CCS, in addition to community support, safe storage, robust policy support, and favorable CCS market conditions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Metz B, Davidson O, de Coninck H, Loos M, Meyer L. 1.  2005. IPCC Special Report on Carbon Dioxide Capture and Storage Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  2. Meadowcroft J, Langhelle O. 2.  2009. Caching the Carbon: The Politics and Policy of Carbon Capture and Storage Cheltenham, UK: Edgar Elgar [Google Scholar]
  3. Stephens JC. 3.  2013. Time to stop investing in carbon capture and storage and reduce government subsidies of fossil-fuels. WIREs Clim. Change 5:2169–73 [Google Scholar]
  4. Marchetti C. 4.  1977. On geoengineering and the CO2 problem. Clim. Change 1:59–68 [Google Scholar]
  5. Horn FL, Steinberg M. 5.  1982. Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery). Fuel 61:415–22 [Google Scholar]
  6. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S. 6.  et al. 2014. Carbon capture and storage update. Energy Environ. Sci. 7:1130–89 [Google Scholar]
  7. Dooley JJ, Dahowski RT, Davidson CL. 7.  2010. CO2-driven enhanced oil recovery as a stepping stone to what? PNNL-19557 Rep., Pac. Northwest Natl. Lab., Richland, WA [Google Scholar]
  8. Benson SM, Bennaceur K, Cook P, Davison J, de Coninck HC. 8.  et al. 2012. Carbon dioxide capture and storage. Global Energy Assessment: Toward a Sustainable Future L Gomez-Echeverri, TB Johansson, N Nakicenovic, A Patwardhan 993–1068 Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  9. 9. IEA 2004. Prospects for CO2 Capture and Storage Paris: IEA http://www.oecd-ilibrary.org/energy/prospects-for-co2-capture-and-storage_9789264108820-en [Google Scholar]
  10. 10. IEA 2009. Technology Roadmap: Carbon Capture and Storage Paris: IEA http://www.iea.org/publications/freepublications/publication/CCSRoadmap2009.pdf [Google Scholar]
  11. Abellera C, Short C. 11.  2011. The costs of CCS and other low-carbon technologies Issues Brief No. 2, Glob. CCS Inst., Canberra, Aust. http://cdn.globalccsinstitute.com/sites/default/files/publications/24202/costs-ccs-and-other-low-carbon-technologies.pdf [Google Scholar]
  12. Yanagisawa A. 12.  2013. Impacts of shale gas revolution on natural gas and coal demand IEEJ Work. Pap., Inst. Energy Econ. Jpn., Tokyo. http://eneken.ieej.or.jp/data/4687.pdf [Google Scholar]
  13. 13. Glob. CCS Inst 2013. The Global Status of CCS: 2013. Melbourne, Aust: Glob. CCS Inst http://decarboni.se/sites/default/files/publications/115198/Global-Status-CCS-2013.pdf [Google Scholar]
  14. Gale J, Bradshaw J, Chen Z, Garg A, Gomez D. 14.  et al. 2005. Sources of CO2. See Ref. 1 75–104
  15. 15. IEA/UNIDO 2011. Technology Roadmap: Carbon Capture and Storage in Industrial Applications Paris: IEA http://www.iea.org/publications/freepublications/publication/ccs_industry.pdf [Google Scholar]
  16. 16. IEAGHG 2014. CO2 pipeline infrastructure Rep. 2013/18, Jan., IEAGHG, Cheltenham, UK. http://cdn.globalccsinstitute.com/sites/default/files/publications/120301/co2-pipeline-infrastructure.pdf [Google Scholar]
  17. Yang A, Cui Y. 17.  2012. Global coal risk assessment: data analysis and market research Work. Pap., World Resour. Inst., Washington, DC. http://www.wri.org/publication/global-coal-risk-assessment [Google Scholar]
  18. Thambimuthu K, Soltanieh M, Abanades JC, Allam R, Bolland O. 18.  et al. 2005. Capture of CO2. See Ref. 1 105–78
  19. Wilcox J. 19.  2012. Carbon Capture New York: Springer [Google Scholar]
  20. Yu KMK, Curcic I, Gabriel J, Tsang SCE. 20.  2008. Recent advances in CO2 capture and utilization. ChemSusChem 1:11893–99 [Google Scholar]
  21. Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD. 21.  2008. Advances in CO2 capture technology—the US Department of Energy's Carbon Sequestration Program. Int. J. Greenh. Gas Control 2:19–20 [Google Scholar]
  22. D'Alessandro DM, Smit B, Long JR. 22.  2010. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49:356058–82 [Google Scholar]
  23. Rochelle G. 23.  2009. Amine scrubbing for CO2 capture. Science 325:59481652–54 [Google Scholar]
  24. Mathias PM, Reddy S, O'Connell JP. 24.  2010. Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. Int. J. Greenh. Gas Control 4:2174–79 [Google Scholar]
  25. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H. 25.  et al. 2008. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:5865939–43 [Google Scholar]
  26. Brennecke JF, Gurkan BE. 26.  2010. Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 1:243459–64 [Google Scholar]
  27. Du N, Park HB, Robertson GP, Dal-Cin MM, Visser T. 27.  et al. 2011. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 105372–75 [Google Scholar]
  28. MacFarlane DR, Pringle JM, Howlett PC, Forsyth M. 28.  2010. Ionic liquids and reactions at the electrochemical interface. Phys. Chem. Chem. Phys. 12:1659–69 [Google Scholar]
  29. Hasan MMF, First EL, Floudas CA. 29.  2013. Cost-effective CO2 capture based on in silico screening of zeolites and process optimization. Phys. Chem. Chem. Phys. 15:4017601–18 [Google Scholar]
  30. Drage TC, Blackman JM, Pevida C, Snape CE. 30.  2009. Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy Fuels 23:52790–96 [Google Scholar]
  31. Tuinier MJ, van Sint Annaland M, Kramer GJ, Kuipers JAM. 31.  2010. Cryogenic CO2 capture using dynamically operated packed beds. Chem. Eng. Sci. 65:114–19 [Google Scholar]
  32. Yang H, Xu Z, Fan M, Gupta R, Slimane RB. 32.  et al. 2008. Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. 20114–27 [Google Scholar]
  33. Goff F, Lackner KS. 33.  1998. Carbon dioxide sequestering using ultramafic rocks. Environ. Geosci. 5:389–101 [Google Scholar]
  34. Mazzotti M, Abanades JC, Allam R, Lackner KS, Meunier F. 34.  et al. 2005. Mineral carbonation and industrial uses of carbon dioxide. See Ref. 1 319–38
  35. Sahu RC, Patel RK, Ray BC. 35.  2010. Neutralization of red mud using CO2 sequestration cycle. J. Hazard. Mater. 179:128–34 [Google Scholar]
  36. He J, Jie Y, Zhang J, Yu Y, Zhang G. 36.  2013. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 37:108–18 [Google Scholar]
  37. House KZ, Baclig AC, Ranjan M, van Nierop EA, Wilcox J, Herzog HJ. 37.  2011. Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl. Acad. Sci. USA 108:5120428–33 [Google Scholar]
  38. 38. ECRA 2009. Development of state of the art-techniques in cement manufacturing: trying to look ahead CSI/ECRA Technol. Pap., June 4, Dusseldorf, Ger./Geneva, Switz. [Google Scholar]
  39. IEA UNIDO. 39.  2010. Global technology roadmap for CCS in industry. Sectoral assessment: cement. Final Rep., Aug., prepared by D Barker, Mott MacDonald Ltd., Brighton, UK. http://decarboni.se/publications/global-technology-roadmap-ccs-industry-sectoral-assessment-cement [Google Scholar]
  40. Markström P, Linderholm C, Lyngfelt A. 40.  2013. Chemical-looping combustion of solid fuels—design and operation of a 100 kW unit with bituminous coal. Int. J. Greenh. Gas Control 15:150–62 [Google Scholar]
  41. 41. UNIDO 2010. Carbon capture and storage in industrial applications. Technol. Synth. Rep., Work. Pap., Nov., UNIDO, Vienna, Austria [Google Scholar]
  42. Dooley JJ, Dahowski RT, Davidson CL. 42.  2009. Comparing existing pipeline networks with the potential scale of future US CO2 pipeline networks. Energy Proc. 1:11595–602 [Google Scholar]
  43. McCoy ST, Rubin ES. 43.  2008. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int. J. Greenh. Gas Control 2:2219–29 [Google Scholar]
  44. 44. Glob. CCS Inst 2012. The Global Status of CCS. Canberra, Aust: Glob. CCS Inst http://www.globalccsinstitute.com/publications/global-status-ccs-2012 [Google Scholar]
  45. Heinrich J, Herzog H, Reiner D. 45.  2004. Environmental assessment of geologic storage of CO2 MIT-LFEE 2003–002 Rep., Cambridge, MA. http://sequestration.mit.edu/pdf/LFEE_2003-002_RP.pdf [Google Scholar]
  46. Koornneef J, Spruijt M, Molag M, Ramírez A, Turkenburg W, Faaij A. 46.  2010. Quantitative risk assessment of CO2 transport by pipelines—a review of uncertainties and their impacts. J. Hazard. Mater. 177:112–27 [Google Scholar]
  47. Herzog H, Smekens K, Dadhich P, Dooley J, Fujii Y. 47.  et al. 2005. Costs and economic potential. See Ref. 1 , pp. 339–62
  48. 48. DOE-NETL 2011. Coal-fired power plants in the United States: examination of the costs of retrofitting with CO2 capture technology, revision 3 DOE/NETL-402/102309 Rep., Jan. 4, Natl. Energy Technol. Lab., Washington, DC [Google Scholar]
  49. 49. DOE-NETL 2011. Cost and performance baseline for fossil energy plants. Volume 3b: Low rank coal to electricity: combustion cases. Final Rep., DOE/NETL-2011/1463, March, Natl. Energy Technol. Lab., Washington, DC [Google Scholar]
  50. Rubin ES, Zhai H. 50.  2012. The cost of carbon capture and storage for natural gas combined cycle power plants. Environ. Sci. Technol. 46:63076–84 [Google Scholar]
  51. Al-Juaied M, Whitemore A. 51.  2009. Realistic costs of carbon capture Belfer Cent. Discuss. Pap. 2009–08, Harvard Univ., Cambridge, MA [Google Scholar]
  52. Bradshaw J, Dance T. 52.  2005. Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink matching. Proc. 7th Int. Conf. Greenh. Gas Control Technol., Sept. 5–9, 2004, Vancouver, Can. ES Rubin, DW Keith, CF Gilboy, pp. 583–92. Cheltenham, UK: IEA GHG [Google Scholar]
  53. Holloway S. 53.  1996. The underground disposal of carbon dioxide Final Rep. Joule 2 Proj. No. CT92-0031, Br. Geol. Surv., Keyworth, Nottingham, UK [Google Scholar]
  54. Gunter WD, Bachu S, Benson SM. 54.  2004. The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geol. Soc. Lond. Spec. Publ. 233:1129–45 [Google Scholar]
  55. Juanes R, Spiteri EJ, Orr FM, Blunt MJ. 55.  2006. Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42:12293 [Google Scholar]
  56. Gilfillan SM, Lollar BS, Holland G, Blagburn D, Stevens S. 56.  et al. 2009. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458:7238614–18 [Google Scholar]
  57. Riaz A, Hesse M, Tchelepi HA, Orr FM. 57.  2006. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548:87–111 [Google Scholar]
  58. Benson SM, Cole DR. 58.  2008. CO2 sequestration in deep sedimentary formations. Elements 4:325–31 [Google Scholar]
  59. Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G. 59.  et al. 2010. Geological storage of CO2 in saline aquifers—a review of the experience from existing storage operations. Int. J. Greenh. Gas Control 4:4659–67 [Google Scholar]
  60. Krevor S, Pini R, Zuo L, Benson SM. 60.  2012. Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour. Res. 48:248–49 [Google Scholar]
  61. MacMinn CW, Neufeld JA, Hesse MA, Huppert HE. 61.  2012. Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resour. Res. 48:118 [Google Scholar]
  62. Benson SM, Cook P, Anderson J, Bachu S, Nimir HB. 62.  et al. 2005. Underground geological storage. See Ref. 1 195–276
  63. McGrail BP, Schaef HT, Ho AM, Chien YJ, Dooley JJ, Davidson CL. 63.  2006. Potential for carbon dioxide sequestration in flood basalts. J. Geophys. Res. 111:B12201 [Google Scholar]
  64. Oelkers EH, Sigurdur R, Matter J. 64.  2008. Mineral carbonation of CO2. Elements 4:5333–37 [Google Scholar]
  65. Aradóttir ES, Sigurdardóttir H, Sigfússon B, Gunnlaugsson E. 65.  2011. CarbFix: a CCS pilot project imitating and accelerating natural CO2 sequestration. Greenh. Gases: Sci. Technol. 1:2105–18 [Google Scholar]
  66. White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW. 66.  2003. Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 53:6645–715 [Google Scholar]
  67. Bachu S, Bonijoly D, Bradshaw J, Burruss R, Holloway S. 67.  et al. 2007. CO2 storage capacity estimation: methodology and gaps. Int. J. Greenh. Gas Control 1:4430–43 [Google Scholar]
  68. 68. Nat. Resour. Can., SENER, US Dep. Energy 2012. North American Carbon Storage Atlas 2012 Pittsburgh, PA/Morgantown, WV: Natl. Energy Technol. Lab http://www.netl.doe.gov/File%20Library/Research/Carbon-Storage/NACSA2012.pdf [Google Scholar]
  69. Vangkilde-Pedersen T, Kirk K, Vincki O, Neele F, Le Nindre Y-M. 69.  et al. 2009. Assessing European capacity for geological storage of carbon dioxide. Final Rep. D42, EU GeoCapacity Consort. http://www.geology.cz/geocapacity/publications/D42%20GeoCapacity%20Final%20Report-red.pdf [Google Scholar]
  70. Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S. 70.  et al. 2007. CO2 storage capacity estimation: issues and development of standards. Int. J. Greenh. Gas Control 1:162–68 [Google Scholar]
  71. Ehlig-Economides C, Economides MJ. 71.  2010. Sequestering carbon dioxide in a closed underground volume. J. Petrol. Sci. Eng. 70:1123–30 [Google Scholar]
  72. Juanes R, MacMinn CW, Szulczewski ML. 72.  2010. The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Media 82:119–30 [Google Scholar]
  73. Nordbotten JM, Celia MA, Bachu S. 73.  2005. Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58:3339–60 [Google Scholar]
  74. Zhou Q, Birkholzer JT, Tsang CF, Rutqvist J. 74.  2008. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int. J. Greenh. Gas Control 2:4626–39 [Google Scholar]
  75. Verdon JP, Kendall JM, Stork AL, Chadwick RA, White DJ, Bissell RC. 75.  2013. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proc. Natl. Acad. Sci. USA 110:30E2762–71 [Google Scholar]
  76. Zoback MD, Gorelick SM. 76.  2012. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc. Natl. Acad. Sci. USA 109:2610164–68 [Google Scholar]
  77. Cavanagh AJ, Haszeldine RS, Blunt MJ. 77.  2010. Open or closed? A discussion of the mistaken assumptions in the Economides pressure analysis of carbon sequestration. J. Petrol. Sci. Eng. 74:1107–10 [Google Scholar]
  78. Szulczewski ML, MacMinn CW, Herzog HJ, Juanes R. 78.  2012. Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl. Acad. Sci. USA 109:145185–89 [Google Scholar]
  79. Birkholzer JT, Zhou Q, Tsang CF. 79.  2009. Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int. J. Greenh. Gas Control 3:2181–94 [Google Scholar]
  80. Birkholzer JT, Cihan A, Zhou Q. 80.  2012. Impact-driven pressure management via targeted brine extraction—conceptual studies of CO2 storage in saline formations. Int. J. Greenh. Gas Control 7:168–80 [Google Scholar]
  81. Chadwick A, Smith D, Hodrien C, Hovorka S, Mackay E. 81.  et al. 2010. The realities of storing carbon dioxide—a response to CO2 storage capacity issues raised by Ehlig-Economides & Economides. Nat. Preced. doi: 10.1038/npre.2010.4500.1. http://precedings.nature.com/documents/4500/version/1 [Google Scholar]
  82. Juanes R, Hager BH, Herzog HJ. 82.  2012. No geologic evidence that seismicity causes fault leakage that would render large-scale carbon capture and storage unsuccessful. Proc. Natl. Acad. Sci. USA 109:52E3623 [Google Scholar]
  83. Cappa F, Rutqvist J. 83.  2012. Seismic rupture and ground accelerations induced by CO2 injection in the shallow crust. Geophys. J. Int. 190:31784–89 [Google Scholar]
  84. Rinaldi AP, Rutqvist J, Cappa F. 84.  2014. Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection. Int. J. Greenh. Gas Control 20:117–31 [Google Scholar]
  85. Gan W, Frohlich C. 85.  2013. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas. Proc. Natl. Acad. Sci. USA 110:4718786–91 [Google Scholar]
  86. Frohlich C. 86.  2012. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas. Proc. Natl. Acad. Sci. USA 109:3513934–38 [Google Scholar]
  87. Arts RJ, Chadwick A, Eiken O, Thibeau S, Nooner S. 87.  2008. Ten years' experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 26:165–72 [Google Scholar]
  88. Mathieson A, Midgley J, Dodds K, Wright I, Ringrose P, Saoul N. 88.  2010. CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Lead. Edge 29:2216–22 [Google Scholar]
  89. White D. 89.  2009. Monitoring CO2 storage during EOR at the Weyburn-Midale Field. Lead. Edge 28:7838–42 [Google Scholar]
  90. Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai S. 90.  et al. 2006. Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ. Geosci. 13:2105–21 [Google Scholar]
  91. Hovorka SD, Meckel TA, Treviño RH. 91.  2013. Monitoring a large-volume injection at Cranfield, Mississippi—project design and recommendations. Int. J. Greenh. Gas Control 18:345–60 [Google Scholar]
  92. Jenkins CR, Cook PJ, Ennis-King J, Undershultz J, Boreham C. 92.  et al. 2012. Safe storage and effective monitoring of CO2 in depleted gas fields. Proc. Natl. Acad. Sci. USA 109:2E35–41 [Google Scholar]
  93. Martens S, Kempka T, Liebscher A, Lüth S, Möller F. 93.  et al. 2012. Europe's longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ. Earth Sci. 67:2323–34 [Google Scholar]
  94. Picard G, Bérard T, Chabora E, Marsteller S, Greenberg S. 94.  et al. 2011. Real-time monitoring of CO2 storage sites: application to Illinois Basin–Decatur Project. Energy Proced. 4:5594–98 [Google Scholar]
  95. Sato K, Mito S, Horie T, Ohkuma H, Saito H. 95.  et al. 2011. Monitoring and simulation studies for assessing macro-and meso-scale migration of CO2 sequestered in an onshore aquifer: experiences from the Nagaoka pilot site, Japan. Int. J. Greenh. Gas Control 5:1125–37 [Google Scholar]
  96. Couëslan ML, Ali S, Campbell A, Nutt WL, Leaney WS. 96.  et al. 2013. Monitoring CO2 injection for carbon capture and storage using time-lapse 3D VSPs. Lead. Edge 32:101268–76 [Google Scholar]
  97. Bergmann P, Schmidt-Hattenberger C, Kiessling D, Rücker C, Labitzke T. 97.  et al. 2012. Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics 77:6B253–67 [Google Scholar]
  98. Vasco DW, Rucci A, Ferretti A, Novali F, Bissell RC. 98.  et al. 2010. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophys. Res. Lett. 37:3L03303 [Google Scholar]
  99. Tao Q, Bryant SL, Meckel TA. 99.  2013. Modeling above-zone measurements of pressure and temperature for monitoring CCS sites. Int. J. Greenh. Gas Control 18:523–30 [Google Scholar]
  100. White D. 100.  2009. Monitoring CO2 storage during EOR at the Weyburn-Midale Field. Lead. Edge 28:7838–42 [Google Scholar]
  101. Spangler LH, Dobeck LM, Repasky KS, Nehrir AR, Humphries SD. 101.  et al. 2010. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ. Earth Sci. 60:2227–39 [Google Scholar]
  102. Krevor S, Perrin JC, Esposito A, Rella C, Benson SM. 102.  2010. Rapid detection and characterization of surface CO2 leakage through the real-time measurement of δ13 C signatures in CO2 flux from the ground. Int. J. Greenh. Gas Control 4:5811–15 [Google Scholar]
  103. Gasda SE, Bachu S, Celia MA. 103.  2004. Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ. Geol. 46:6–7707–20 [Google Scholar]
  104. Benson SM, Hepple R. 104.  2005. Prospects for early detection and options for remediation of leakage from CO2 storage projects. Carbon Dioxide Capture for Storage in Deep Geologic Formations 2 Geologic Storage of Carbon Dioxide with Monitoring and Verification D Thomas, S Benson 1189–203 London: Elsevier [Google Scholar]
  105. Wilson EJ, Johnson TL, Keith DW. 105.  2003. Regulating the ultimate sink: managing the risks of geologic CO2 storage. Environ. Sci. Technol. 37:163476–83 [Google Scholar]
  106. Tsang CF, Benson SM, Kobelski B, Smith RE. 106.  2002. Scientific considerations related to regulation development for CO2 sequestration in brine formations. Environ. Geol. 42:2–3275–81 [Google Scholar]
  107. Mikunda T, Haan-Kamminga A, van Engelenburg B. 107.  2013. Legal and regulatory barriers to CCS projects in Europe CATO2-WP4.1-D14 Rep., CATO2, Utrecht, Neth. [Google Scholar]
  108. Pollak M, Johnson Phillips S, Vajjhala S. 108.  2011. Carbon capture and storage policy in the United States: a new coalition endeavors to change existing policy. Glob. Environ. Change 21:313–23 [Google Scholar]
  109. Haan-Kamminga A, Roggenkamp MM, Woerdman E. 109.  2010. Legal uncertainties of carbon capture and storage in the EU: the Netherlands as an example. Carbon Clim. Law Rev. 4:3240–49 [Google Scholar]
  110. 110. IEA 2012. Carbon Capture and Storage: Legal and Regulatory Review Paris: IEA, 3rd ed.. [Google Scholar]
  111. Seligsohn D, Liu Y, Forbes S, Dogjie Z, West L. 111.  2010. CCS in China: toward an environmental, health, and safety regulatory framework WRI Issue Brief, World Resour. Inst., Washington, DC [Google Scholar]
  112. Garrett J, McCoy S. 112.  2013. Carbon capture and storage and the London Protocol: recent efforts to enable transboundary CO2 transfer. Energy Proced. 37:7747–55 [Google Scholar]
  113. De Coninck H, Bäckstrand K. 113.  2011. An international relations perspective on the global politics of carbon dioxide capture and storage. Glob. Environ. Change 21:368–78 [Google Scholar]
  114. Van Alphen K, van Ruijven J, Kasa S, Hekkert M, Turkenburg W. 114.  2009. The performance of the Norwegian carbon dioxide capture and storage innovation system. Energy Policy 37:43–55 [Google Scholar]
  115. FutureGen Alliance. 115.  2014. FutureGen 2.0 receives record of decision from U.S. Department of Energy. Community Corner Jan. http://futuregenalliance.org/community-corner/2014/02 [Google Scholar]
  116. Jiang K, Zhuang X, Miao R, He CM, He C. 116.  2013. China's role in attaining the global 2°C target. Clim. Policy 13:Suppl. 155–69 [Google Scholar]
  117. Ashworth P, Boughen N, Mayhew M, Millar F. 117.  2010. From research to action: Now we have to move on CCS communication. Int. J. Greenh. Gas Control 4:426–33 [Google Scholar]
  118. De Best-Waldhober M, Daamen D, Faaij A. 118.  2009. Informed and uninformed public opinions on CO2 capture and storage technologies in the Netherlands. Int. J. Greenh. Gas Control 3:3322–33 [Google Scholar]
  119. Singleton G, Herzog H, Ansolabehere S. 119.  2009. Public risk perspectives on the geologic storage of carbon dioxide. Int. J. Greenh. Gas Control 3:100–7 [Google Scholar]
  120. Terwel BW, ter Mors E, Daamen D. 120.  2012. It's not only about safety: beliefs and attitudes of 811 local residents regarding a CCS project in Barendrecht. Int. J. Greenh. Gas Control 9:41–51 [Google Scholar]
  121. Brunsting S, Upham P, Dütschke E, de Best-Waldhober M, Oltra C. 121.  et al. 2011. Communicating CCS: applying communications theory to public perceptions of carbon capture and storage. Int. J. Greenh. Gas Control 5:1651–62 [Google Scholar]
  122. De Coninck H, de Flach T, Curnow P, Richardson P, Anderson J. 122.  et al. 2009. The acceptability of CO2 capture and storage (CCS) in Europe: an assessment of the key determining factors. Part 1. Scientific, technical and economic dimensions. Int. J. Greenh. Gas Control 3:333–43 [Google Scholar]
  123. Stigson P, Hansson A, Lind A. 123.  2012. Obstacles for CCS deployment: an analysis of discrepancies of perceptions. Mitig. Adapt. Strateg. Glob. Change 17:6601–19 [Google Scholar]
  124. Evar B, Shackley S. 124.  2012. Technology management in the face of scientific uncertainty: a case study of the CCS Test Centre Mongstad. The Social Dynamics of Carbon Capture and Storage: Understanding CCS Representation, Governance and Innovation N Markusson, S Shackley, B Evar 172–87 London/New York: Routledge [Google Scholar]
  125. Edmonds J, Wise M. 125.  1998. Building Backstop Technologies and Policies to Implement the Framework Convention on Climate Change Washington DC: Pac. Northwest Natl. Lab. [Google Scholar]
  126. Groenenberg H, de Coninck HC. 126.  2008. Effective EU and member state policies for stimulating CCS. Int. J. Greenh. Gas Control 2:4653–64 [Google Scholar]
  127. Khesghi H, Crookshank S, Cunha P, Lee A, Bernstein L, Siveter R. 127.  2009. Carbon capture and storage business models. Energy Proced. 1:4481–86 [Google Scholar]
  128. 128. IEA/CSLF 2007. Near-term opportunities for carbon dioxide capture and storage. Summary Rep., Glob. Assess. Worksh., IEA, Paris [Google Scholar]
  129. 129. UNIDO 2010. CCS roadmap for industry: high-purity CO2 sources. Sectoral assessment. Final Draft Rep., prepared by P Zakkour, G Cook, Carbon Counts, London. http://decarboni.se/publications/ccs-roadmap-industry-high-purity-co2-sources-sectoral-assessment-final-draft-report [Google Scholar]
  130. Zakkour P, Dixon T, Cook G. 130.  2011. Financing early opportunity CCS projects in emerging economies through the carbon market: mitigation potential and costs. Energy Proced. 4:5692–99 [Google Scholar]
  131. Esposito R, Monroe L, Friedman JS. 131.  2011. Deployment models for commercialized carbon capture and storage. Environ. Sci. Technol. 45:139–46 [Google Scholar]
  132. McGrail BP, Schaef HT, Ho AM, Chien YJ, Dooley JJ, Davidson CL. 132.  2006. Potential for carbon dioxide sequestration in flood basalts. J. Geophys. Res. 111:B12201 [Google Scholar]
  133. Russell S, Markusson N, Scott V. 133.  2012. What will CCS demonstrations demonstrate?. Mitig. Adapt. Strateg. Glob. Change 17:6651–68 [Google Scholar]
  134. 134. IEA 2012. Energy Technology Perspectives 2012: Pathways to a Clean Energy System Paris: IEA http://www.iea.org/Textbase/nptoc/etp2012toc.pdf [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error