This article provides a systematic review of the literature on net-zero carbon cities, their objectives and key features, current efforts, and performance. We discuss how net-zero differs from low-carbon cities, how different visions of a net-zero carbon city relate to urban greenhouse gas accounting, deep decarbonization pathways and their application to cities and urban infrastructure systems, net-zero carbon cities in theory versus practice, lessons learned from net-zero carbon city plans and implementation, and opportunities and challenges in transitioning toward net-zero carbon cities across both sectors and various spatial fabrics within cities. We conclude that it is possible for cities to get to or near net-zero carbon, but this requires systemic transformation. Crucially, a city cannot achieve net-zero by focusing only on reducing emissions within its administrative boundaries. Cities must decarbonize key transboundary supply chains and use urban and regional landscapes to sequester carbon from the atmosphere. Because of carbon lock-in, and the complex interplay between urban infrastructure and behavior, strategic sequencing of mitigation action is essential for cities to achieve net-zero.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. 
    IPCC (Intergov. Panel Clim. Change) 2018. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Geneva: IPCC
    [Google Scholar]
  2. 2. 
    Seto KC, Dhakal S, Bigio A, Blanco H, Delgado GC et al. 2014. Human settlements, infrastructure, and spatial planning. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner, et al 923–1000 Cambridge/New York: Cambridge Univ. Press
    [Google Scholar]
  3. 3. 
    Moran D, Kanemoto K, Jiborn M, Wood R, Többen J, Seto KC 2018. Carbon footprints of 13 000 cities. Environ. Res. Lett. 13:6064041
    [Google Scholar]
  4. 4. 
    UN DESA, Popul. Div. (UN Dep. Econ. Soc. Aff., Popul. Div.) 2019. World Urbanization Prospects: the 2018 revision. Rep. ST/ESA/SER.A/420, UN DESA, Popul. Div New York:
  5. 5. 
    Huang K, Li X, Liu X, Seto KC. 2019. Projecting global urban land expansion and heat island intensification through 2050. Environ. Res. Lett. 14:11114037
    [Google Scholar]
  6. 6. 
    Creutzig F, Baiocchi G, Bierkandt R, Pichler P-P, Seto KC. 2015. Global typology of urban energy use and potentials for an urbanization mitigation wedge. PNAS 112:206283–88
    [Google Scholar]
  7. 7. 
    Swilling M, Hajer M, Baynes T, Bergesen J, Labbe F et al. 2018. The weight of cities: resource requirements of future urbanization. Rep., Int. Resour. Panel, UN Environ. Progr Nairobi:
    [Google Scholar]
  8. 8. 
    Seto KC, Davis SJ, Mitchell RB, Stokes EC, Unruh G, Ürge-Vorsatz D. 2016. Carbon lock-in: types, causes, and policy implications. Annu. Rev. Environ. Resour 41425–52
  9. 9. 
    UNFCCC (UN Framew. Conv. Clim. Change) 2020. UNFCCC Race to Zero campaign Press Release, UNFCCC, June 5. https://unfccc.int/climate-action/race-to-zero-campaign
  10. 10. 
    Carbon Neutral Cities Alliance 2019. Carbon Neutral Cities Alliance Members. Carbon Neutral Cities Alliance https://carbonneutralcities.org/cities/
    [Google Scholar]
  11. 11. 
    USDN (Urban Sustain. Dir. Netw.) 2021. Zero Cities Project. Urban Sustainability Directors Network. https://www.usdn.org/projects/zero-cities-project.html
  12. 12. 
    Zero Carbon Cities Action Planning Network 2020. Zero carbon cities. Zero Carbon Cities Action Planning Network https://urbact.eu/zero-carbon-cities
    [Google Scholar]
  13. 13. 
    Beatley T, Manning K. 1997. The Ecology of Place: Planning for Environment, Economy, and Community Washington, DC: Island Press
  14. 14. 
    Breuste J, Artmann M, Ioja C, Qureshi S 2020. Making Green Cities: Concepts, Challenges and Practice. Cham, Switz: Springer
  15. 15. 
    Haughton G, Hunter C. 1994. Sustainable Cities London: Jessica Kingsley Publ.
  16. 16. 
    Newman P, Kenworthy J. 1999. Sustainability and Cities: Overcoming Automobile Dependence Washington, DC: Island Press
  17. 17. 
    Register R. 1994. Eco-cities: rebuilding civilization, restoring nature. Futures By Design: The Practice of Ecological Planning D Aberley 62–69 Gabriola Island, BC, Can: New Soc. Publ.
    [Google Scholar]
  18. 18. 
    Stren RE, White R, Whitney JB 1992. Sustainable Cities: Urbanization and the Environment in International Perspective Boulder, CO: Westview Press
  19. 19. 
    Bland W. 1857. Sanitary Reform of Towns and Cities Sydney: J. Cox & Co.
  20. 20. 
    Delleur JW. 2003. The evolution of urban hydrology: past, present, and future. J. Hydraulic Eng. 129:8563–73
    [Google Scholar]
  21. 21. 
    Howard E 1898. To-morrow: A Peaceful Path to Real Reform London: Swan Sonnenschein & Co
  22. 22. 
    Peterson JA. 2003. The Birth of City Planning in the United States1840–1917 Baltimore: Johns Hopkins Univ. Press
  23. 23. 
    Kostof S. 1991. The City Shaped: Urban Patterns and Meanings Through History New York: Little, Brown and Co.
  24. 24. 
    Roseland M. 1997. Dimensions of the eco-city. Cities 14:4197–202
    [Google Scholar]
  25. 25. 
    Wong THF, Brown RR. 2009. The water sensitive city: principles for practice. Water Sci. Technol. 60:3673–82
    [Google Scholar]
  26. 26. 
    Ismagilova E, Hughes L, Dwivedi YK, Raman KR. 2019. Smart cities: advances in research—an information systems perspective. Int. J. Inform. Manag. 47:88–100
    [Google Scholar]
  27. 27. 
    Ramaswami A, Russell AG, Culligan PJ, Sharma KR, Kumar E. 2016. Meta-principles for developing smart, sustainable, and healthy cities. Science 352:6288940–43
    [Google Scholar]
  28. 28. 
    Khanna N, Fridley D, Hong L 2014. China's pilot low-carbon city initiative: a comparative assessment of national goals and local plans. Sustain. Cities Soc. 12:110–21
    [Google Scholar]
  29. 29. 
    Ramaswami A, Bernard M, Chavez A, Hillman T, Whitaker M et al. 2012. Quantifying carbon mitigation wedges in U.S. cities: near-term strategy analysis and critical review. Environ. Sci. Technol. 46:73629–42
    [Google Scholar]
  30. 30. 
    City and County of Denver 2017. 80 x 50 climate goal: stakeholder report. Rep., City Cty. Denver Denver, CO:
  31. 31. 
    Newman P, Beatley T, Boyer H 2017. Produce a more cyclical and regenerative metabolism. Resilient Cities: Overcoming Fossil Fuel Dependence P Newman, T Beatley, H Boyer 155–77 Washington, DC: Island Press/Cent. Resour. Econ.
    [Google Scholar]
  32. 32. 
    Ramaswami A, Tong K, Canadell JG, Jackson RB, Stokes EK et al. 2021. Carbon analytics for net-zero emissions sustainable cities. Nat. Sustain. 4:460–63
    [Google Scholar]
  33. 33. 
    Global Platform for Sustainable Cities 2020. A Review of Integrated Urban Planning Tools for Greenhouse Gas Mitigation: Linking Land Use, Infrastructure Transition, Technology, and Behavioral Change Washington, DC: World Bank
  34. 34. 
    Churkina G. 2008. Modeling the carbon cycle of urban systems. Ecol. Model. 216:2107–13
    [Google Scholar]
  35. 35. 
    Chavez A, Ramaswami A. 2013. Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: mathematical relationships and policy relevance. Energy Policy 54:376–84
    [Google Scholar]
  36. 36. 
    Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T et al. 2009. Greenhouse gas emissions from global cities. Environ. Sci. Technol. 43:197297–302
    [Google Scholar]
  37. 37. 
    Ramaswami A, Hillman T, Janson B, Reiner M, Thomas G 2008. A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environ. Sci. Technol. 42:176455–61
    [Google Scholar]
  38. 38. 
    Ramaswami A, Weible C, Main D, Heikkila T, Siddiki S et al. 2012. A social-ecological-infrastructural systems framework for interdisciplinary study of sustainable city systems. J. Ind. Ecol. 16:6801–13
    [Google Scholar]
  39. 39. 
    Lombardi M, Laiola E, Tricase C, Rana R 2017. Assessing the urban carbon footprint: an overview. Environ. Impact Assess. Rev. 66:43–52
    [Google Scholar]
  40. 40. 
    Chen G, Shan Y, Hu Y, Tong K, Wiedmann T et al. 2019. Review on city-level carbon accounting. Environ. Sci. Technol 53105545–58
  41. 41. 
    Heinonen J, Ottelin J, Ala-Mantila S, Wiedmann T, Clarke J, Junnila S 2020. Spatial consumption-based carbon footprint assessments—a review of recent developments in the field. J. Cleaner Prod. 256:120335
    [Google Scholar]
  42. 42. 
    Liu J, Ciais P, Deng Z, Lei R, Davis SJ et al. 2020. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 11:5172
    [Google Scholar]
  43. 43. 
    Gurney KR, Liang J, Patarasuk R, Song Y, Huang J, Roest G. 2020. The Vulcan version 3.0 high-resolution fossil fuel CO2 emissions for the United States. J. Geophys. Res.: Atmos. 125:19e2020JD032974
    [Google Scholar]
  44. 44. 
    Lin J, Hu Y, Cui S, Kang J, Ramaswami A. 2015. Tracking urban carbon footprints from production and consumption perspectives. Environ. Res. Lett. 10:054001
    [Google Scholar]
  45. 45. 
    Jones CM, Kammen DM. 2011. Quantifying carbon footprint reduction opportunities for U.S. households and communities. Environ. Sci. Technol. 45:94088–95
    [Google Scholar]
  46. 46. 
    Larsen HN, Hertwich EG. 2009. The case for consumption-based accounting of greenhouse gas emissions to promote local climate action. Environ. Sci. Policy 12:7791–98
    [Google Scholar]
  47. 47. 
    Wiedmann T, Chen G, Owen A, Lenzen M, Doust M et al. 2021. Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 25:3735–50
    [Google Scholar]
  48. 48. 
    Chen S, Chen B, Feng K, Liu Z, Fromer N et al. 2020. Physical and virtual carbon metabolism of global cities. Nat. Commun. 11:1182
    [Google Scholar]
  49. 49. 
    Geels FW, Sovacool BK, Schwanen T, Sorrell S. 2017. Sociotechnical transitions for deep decarbonization. Science 357:63571242–44
    [Google Scholar]
  50. 50. 
    Jenkins J, Thernstrom S. 2017. Deep decarbonization of the electric power sector insights from recent literature Rep., Energy Innov. Reform Proj Arlington, VA:.
  51. 51. 
    Deep Decarbonization Pathways Project 2015. Pathways to deep decarbonization—2015 report: executive summary Rep., UN Sustain. Dev. Solut. Netw., New York/Inst. Sustain. Dev. Int. Relat Paris:
  52. 52. 
    Shukla P, Dhar S, Pathak M, Mahadevia D, Garg A 2015. Pathways to deep decarbonization in India Rep., UN Sustain. Dev. Solut. Netw., New York/Inst. Sustain. Dev. Int. Relat Paris:
  53. 53. 
    Teng F, Gu A, Yang X, Wang X, Liu Q et al. 2015. Pathways to deep decarbonization in China Rep., UN Sustain. Dev. Solut. Netw., New York/Inst. Sustain. Dev. Int. Relat Paris:
  54. 54. 
    Altieri K, Trollip H, Caetano T, Hughes A, Merven B, Winkler H. 2015. Pathways to deep decarbonization in South Africa Rep., UN Sustain. Dev. Solut. Netw., New York/Inst. Sustain. Dev. Int. Relat Paris:
  55. 55. 
    Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D et al. 2018. Net-zero emissions energy systems. Science 360:6396eaas9793
    [Google Scholar]
  56. 56. 
    Natl. Acad. Sci. Eng. Med 2021. Accelerating Decarbonization of the U.S. Energy System Washington, DC: Natl. Acad. Press
  57. 57. 
    Baker SE, Stolaroff JK, Peridas G et al. 2020. Getting to neutral: options for negative carbon emissions in California Rep., Lawrence Livermore Natl. Lab. Livermore, CA:
  58. 58. 
    Azevedo I, Davidson MR, Jenkins JD, Karplus VJ, Victor DG. 2020. The paths to net zero: how technology can save the planet. Foreign Affairs, May 8
  59. 59. 
    Guo Y, Tian J, Chen L 2020. Managing energy infrastructure to decarbonize industrial parks in China. Nat. Commun. 11:1981
    [Google Scholar]
  60. 60. 
    Ramaswami A, Tong K, Fang A, Lal RM, Nagpure AS et al. 2017. Urban cross-sector actions for carbon mitigation with local health co-benefits in China. Nat. Clim. Change 7:10736–42
    [Google Scholar]
  61. 61. 
    Sun L, Li H, Dong L, Fang K, Ren J et al. 2017. Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: a case of Liuzhou city. China. Resour. Conserv. Recycl. 119:78–88
    [Google Scholar]
  62. 62. 
    Christiansen LB, Cerin E, Badland H, Kerr J, Davey R et al. 2016. International comparisons of the associations between objective measures of the built environment and transport-related walking and cycling: IPEN adult study. J. Transp. Health 3:4467–78
    [Google Scholar]
  63. 63. 
    Ding C, Wang D, Liu C, Zhang Y, Yang J. 2017. Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance. Transp. Res. A: Policy Pract. 100:65–80
    [Google Scholar]
  64. 64. 
    Koohsari MJ, Sugiyama T, Mavoa S, Villanueva K, Badland H et al. 2016. Street network measures and adults’ walking for transport: application of space syntax. Health Place 38:89–95
    [Google Scholar]
  65. 65. 
    Liu Z, Ma J, Chai Y 2017. Neighborhood-scale urban form, travel behavior, and CO2 emissions in Beijing: implications for low-carbon urban planning. Urban Geogr 38:3381–400
    [Google Scholar]
  66. 66. 
    Ewing R, Cervero R. 2010. Travel and the built environment: a meta-analysis. J. Am. Plann. Assoc. 76:3265–94
    [Google Scholar]
  67. 67. 
    Newman P, Kenworthy J. 2015. The End of Automobile Dependence: How Cities are Moving Beyond Car-Based Planning Washington, DC: Island Press
  68. 68. 
    Teoh R, Anciaes P, Jones P 2020. Urban mobility transitions through GDP growth: policy choices facing cities in developing countries. J. Transp. Geogr. 88:102832
    [Google Scholar]
  69. 69. 
    Thomson G, Newman P. 2018. Urban fabrics and urban metabolism—from sustainable to regenerative cities. Resour. Conserv. Recycl. 132:218–29
    [Google Scholar]
  70. 70. 
    Nagpure AS, Reiner M, Ramaswami A. 2018. Resource requirements of inclusive urban development in India: insights from ten cities. Environ. Res. Lett. 13:2025010
    [Google Scholar]
  71. 71. 
    Bahramian M, Yetilmezsoy K. 2020. Life cycle assessment of the building industry: an overview of two decades of research (1995–2018). Energy Buildings 219:109917
    [Google Scholar]
  72. 72. 
    Salat S. 2009. Energy loads, CO2 emissions and building stocks: morphologies, typologies, energy systems and behaviour. Build. Res. Inf. 37:5–6598–609
    [Google Scholar]
  73. 73. 
    Sharma A, Saxena A, Sethi M, Shree VVarun 2011. Life cycle assessment of buildings: a review. Renew. Sustain. Energy Rev. 15:1871–75
    [Google Scholar]
  74. 74. 
    Gutowski TG, Sahni S, Allwood JM, Ashby MF, Worrell E 2013. The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371: 1986.20120003
    [Google Scholar]
  75. 75. 
    Müller DB, Liu G, Løvik AN, Modaresi R, Pauliuk S et al. 2013. Carbon emissions of infrastructure development. Environ. Sci. Technol. 47:2011739–46
    [Google Scholar]
  76. 76. 
    Andrew RM. 2017. Global CO2 emissions from cement production. Earth Syst. Sci. Data 10:1195–217
    [Google Scholar]
  77. 77. 
    Xi F, Davis SJ, Ciais P, Crawford-Brown D, Guan D et al. 2016. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 9:12880–83
    [Google Scholar]
  78. 78. 
    Churkina G, Organschi A, Reyer CPO, Ruff A, Vinke K et al. 2020. Buildings as a global carbon sink. Nat. Sustain. 3:4269–76
    [Google Scholar]
  79. 79. 
    Eckelman MJ, Ciacci L, Kavlak G, Nuss P, Reck BK, Graedel TE. 2014. Life cycle carbon benefits of aerospace alloy recycling. J. Cleaner Prod. 80:38–45
    [Google Scholar]
  80. 80. 
    Ürge-Vorsatz D, Khosla R, Bernhardt R, Chan YC, Vérez D et al. 2020. Advances toward a net-zero global building sector. Annu. Rev. Environ. Resour. 45:227–69
    [Google Scholar]
  81. 81. 
    Tamayao M-AM, Michalek JJ, Hendrickson C, Azevedo IML. 2015. Regional variability and uncertainty of electric vehicle life cycle CO2 emissions across the United States. Environ. Sci. Technol. 49:148844–55
    [Google Scholar]
  82. 82. 
    Carlin K, Rader B, Rucks G. 2015. Interoperable Transit Data: Enabling a Shift to Mobility as a Service Basalt, CO: Rocky Mt. Inst.
  83. 83. 
    Carbon Tracker 2020. Nothing to lose but your chains: the emerging market transport leapfrog. Carbon Tracker Nov. 20
    [Google Scholar]
  84. 84. 
    IEA (Int. Energy Agency) 2016. World energy outlook 2016 Rep., IEA, Paris
  85. 85. 
    Milnar M, Ramaswami A. 2020. Impact of urban expansion and in situ greenery on community-wide carbon emissions: method development and insights from 11 US cities. Environ. Sci. Technol. 54:2416086–96
    [Google Scholar]
  86. 86. 
    Lund PD, Mikkola J, Ypyä J. 2015. Smart energy system design for large clean power schemes in urban areas. J. Cleaner Prod. 103:437–45
    [Google Scholar]
  87. 87. 
    Jamasb T, Nepal R. 2010. Issues and options in waste management: a social cost-benefit analysis of waste-to-energy in the UK. Resour. Conserv. Recycl. 54:121341–52
    [Google Scholar]
  88. 88. 
    Otterpohl R, Grottker M, Lange J. 1997. Sustainable water and waste management in urban areas. Water Sci. Technol. 35:9121–33
    [Google Scholar]
  89. 89. 
    Tan ST, Hashim H, Lim JS, Ho WS, Lee CT, Yan J 2014. Energy and emissions benefits of renewable energy derived from municipal solid waste: analysis of a low carbon scenario in Malaysia. Appl. Energy 136:797–804
    [Google Scholar]
  90. 90. 
    Denholm P, Nunemaker J, Gagnon P, Cole W. 2020. The potential for battery energy storage to provide peaking capacity in the United States. Renew. Energy 151:1269–77
    [Google Scholar]
  91. 91. 
    Newman P. 2020. Covid, cities and climate: historical precedents and potential transitions for the new economy. Urban Sci 4:332
    [Google Scholar]
  92. 92. 
    Green J, Newman P. 2017. Citizen utilities: the emerging power paradigm. Energy Policy 105:283–93
    [Google Scholar]
  93. 93. 
    Newton P, Newman P 2013. The geography of solar photovoltaics (PV) and a new low carbon urban transition theory. Sustainability 5:62537–56
    [Google Scholar]
  94. 94. 
    Hansen P, Morrison GM, Zaman A, Liu X. 2020. Smart technology needs smarter management: disentangling the dynamics of digitalism in the governance of shared solar energy in Australia. Energy Res. Soc. Sci. 60:101322
    [Google Scholar]
  95. 95. 
    Andrade JCS, Dameno A, Pérez J, de Andrés Almeida JM, Lumbreras J. 2018. Implementing city-level carbon accounting: a comparison between Madrid and London. J. Cleaner Prod. 172:795–804
    [Google Scholar]
  96. 96. 
    Sprei F. 2018. Disrupting mobility. Energy Res. Soc. Sci. 37:238–42
    [Google Scholar]
  97. 97. 
    Newman P, Davies-Slate S, Jones E. 2018. The Entrepreneur Rail Model: funding urban rail through majority private investment in urban regeneration. Res. Transp. Econ. 67:19–28
    [Google Scholar]
  98. 98. 
    Glazebrook G, Newman P 2018. The city of the future. Urban Plann 3:21–20
    [Google Scholar]
  99. 99. 
    Waite M, Modi V 2020. Electricity load implications of space heating decarbonization pathways. Joule 4:2376–94
    [Google Scholar]
  100. 100. 
    Off. Energy Eff. Renew. Energy 2021. Heat pump systems. US Department of Energy. https://www.energy.gov/energysaver/heat-and-cool/heat-pump-systems
  101. 101. 
    McSurdy K. 2019. So hot right now: innovations in heat pump technology. Nexant Febr 7: https://www.nexant.com/resources/so-hot-right-now-innovations-heat-pump-technology
    [Google Scholar]
  102. 102. 
    Olajire AA. 2013. A review of mineral carbonation technology in sequestration of CO2. J. Pet. Sci. Eng. 109:364–92
    [Google Scholar]
  103. 103. 
    Chery D, Lair V, Cassir M 2015. Overview on CO2 valorization: challenge of molten carbonates. Front. Energy Res. 3:43
    [Google Scholar]
  104. 104. 
    Lu L, Guest JS, Peters CA, Zhu X, Rau GH, Ren ZJ. 2018. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 1:750–58
    [Google Scholar]
  105. 105. 
    Brandner R, Flatscher G, Ringhofer A, Schickhofer G, Thiel A. 2016. Cross laminated timber (CLT): overview and development. Eur. J. Wood Prod. 74:3331–51
    [Google Scholar]
  106. 106. 
    Haberl H, Sprinz D, Bonazountas M, Cocco P, Desaubies Y et al. 2012. Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Energy Policy 45:18–23
    [Google Scholar]
  107. 107. 
    Churkina G 2012. Carbonization of urban areas. Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle R Lal, K Lorenz, RF Hüttl, BU Schneider, J von Braun 369–82 Dordrecht: Springer Neth.
    [Google Scholar]
  108. 108. 
    Jo H-K, McPherson GE. 1995. Carbon storage and flux in urban residential greenspace. J. Environ. Manag. 45:2109–33
    [Google Scholar]
  109. 109. 
    Townsend-Small A, Czimczik CI. 2010. Carbon sequestration and greenhouse gas emissions in urban turf. Geophys. Res. Lett. 37:2L02707
    [Google Scholar]
  110. 110. 
    Chen WY. 2015. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: a nationwide estimate. Cities 44:112–20
    [Google Scholar]
  111. 111. 
    Trlica A, Hutyra LR, Morreale LL, Smith IA, Reinmann AB. 2020. Current and future biomass carbon uptake in Boston's urban forest. Sci. Total Environ. 709:136196
    [Google Scholar]
  112. 112. 
    Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E. 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 178:229–36
    [Google Scholar]
  113. 113. 
    World Bank 2021. Urban population growth (annual %) world. World Bank. https://data.worldbank.org/indicator/SP.URB.GROW?locations=1W
  114. 114. 
    Karatas A, El-Rayes K. 2015. Evaluating the performance of sustainable development in urban neighborhoods based on the feedback of multiple stakeholders. Sustain. Cities Soc. 14:374–82
    [Google Scholar]
  115. 115. 
    City of Bulawayo 2020. Corporate strategy coordination: City of Bulawayo Corporate Strategy 2020–2024. City of Bulawayo. http://www.citybyo.co.zw/News/CorporateStrategyCoordination
    [Google Scholar]
  116. 116. 
    City of Bulawayo 2020. City of Bulawayo report of studyMaster Plan2019–2034 Rep. City Bulawayo Bulawayo, Zimb:.
    [Google Scholar]
  117. 117. 
    Ndlovu V, Newman P, Sidambe M. 2020. Prioritisation and localisation of Sustainable Development Goals (SDGs): challenges and opportunities for Bulawayo. J. Sustain. Dev. 13:5104–18
    [Google Scholar]
  118. 118. 
    Rifkin J. 2019. The Green New Deal: Why the Fossil Fuel Civilization Will Collapse by 2028, and the Bold Economic Plan to Save Life on Earth New York: St. Martin's Press
  119. 119. 
    Ndlovu V, Newman P. 2020. Leapfrog technology and how it applies to Trackless Tram. J. Transp. Technol. 10:3198–213
    [Google Scholar]
  120. 120. 
    Steinmueller WE. 2001. ICTs and the possibilities for leapfrogging by developing countries. Int. Labour Review 140:2193–210
    [Google Scholar]
  121. 121. 
    Conroy MM, Berke PR 2004. What makes a good sustainable development plan? An analysis of factors that influence principles of sustainable development. Environ Plan A 36:81381–96
    [Google Scholar]
  122. 122. 
    Kazunga O. 2019. Bulawayo dreams of ‘Trackless Tram.. The Chronicle, May 9
  123. 123. 
    Newman P, Hargroves K, Davies-Slate S, Conley D, Verschuer M et al. 2018. The Trackless Tram: Is it the transit and city shaping catalyst we have been waiting for?. J. Transp. Technol. 9:131–55
    [Google Scholar]
  124. 124. 
    Norman B, Newman P, Steffen W. 2021. Apocalypse now: Australian bushfires and the future of urban settlements. NPJ Urban Sustain 1:2
    [Google Scholar]
  125. 125. 
    ACT Gov. (Aust. Cap. Territ. Gov.) 2019. ACT climate change strategy: 2019–25. Rep., ACT, Canberra, Aust .
  126. 126. 
    Ma X, de Jong M, den Hartog H. 2018. Assessing the implementation of the Chongming Eco Island policy: what a broad planning evaluation framework tells more than technocratic indicator systems. J. Cleaner Prod. 172:872–86
    [Google Scholar]
  127. 127. 
    Shanghai Dev. Reform Comm 2010. Chongming Eco-Island Construction Outline. Shanghai Development and Reform Commission https://www.shanghai.gov.cn/nw12344/20200814/0001-12344_21056.html
    [Google Scholar]
  128. 128. 
    Chongming Dev. Reform Comm 2015. The 13th five-year plan for the development of circular economy in Chongming. Chongming Development and Reform Committee http://www.shcm.gov.cn/cmmh_web/html/shcm/shcm_zwgk_ghjh_zxjhgj/Info/Detail_1626246.htm
    [Google Scholar]
  129. 129. 
    Cheng H, Hu Y. 2010. Planning for sustainability in China's urban development: status and challenges for Dongtan eco-city project. J. Environ. Monit. 12:1119–26
    [Google Scholar]
  130. 130. 
    Shanghai Urban Plann. Design Res. Inst 2005. Chongming Three Island Master Plan. Shanghai Urban Planning and Design Research Institute https://wenku.baidu.com/view/acede6d3240c844769eaee8c.html
    [Google Scholar]
  131. 131. 
    Chongming Statistic Bureau 2020. Chongming Statistic Yearbook. Chongming, Shanghai: Chongming Stat. Bureau
  132. 132. 
    Zhou SY, Hu J, Li LF. 2015. Prediction of Chongming Island's medium and long-term carbon emissions and its influencing factor. Changjiang Resour. Environ. 24:4632–39
    [Google Scholar]
  133. 133. 
    Xie L, Flynn A, Tan-Mullins M, Cheshmehzangi A. 2019. The making and remaking of ecological space in China: the political ecology of Chongming Eco-Island. Political Geogr 69:89–102
    [Google Scholar]
  134. 134. 
    Xie L, Cheshmehzangi A, Tan-Mullins M, Flynn A, Heath T 2020. Urban entrepreneurialism and sustainable development: a comparative analysis of Chinese eco-developments. J. Urban Technol. 27:13–26
    [Google Scholar]
  135. 135. 
    Denver Public Health and Environment 2018. . Denver: 80x50 Climate Action Plan Rep., Denver Public Health and Environment
  136. 136. 
    Xcel Energy 2019. Building a carbon-free future: carbon report. Rep., Xcel Energy, Minneapolis
  137. 137. 
    Newman P, Kosonen L, Kenworthy J. 2016. Theory of urban fabrics: planning the walking, transit/public transport and automobile/motor car cities for reduced car dependency. Town Plann. Rev. 87:4429–58
    [Google Scholar]
  138. 138. 
    Coalition for Urban Transitions, ed 2019. Climate Emergency, Urban Opportunity: How National Governments Can Secure Economic Prosperity and Avert Climate Catastrophe by Transforming Cities Washington, DC: World Resour. Inst. Ross Cent. Sustain. Cities/London: C40 Cities Clim. Leadersh. Group
  139. 139. 
    ICLEI - Local Governments for Sustainability 2018. Multilevel climate action: the path to 1.5 degrees Rep., ICLEI Bonn, Ger:.
  140. 140. 
    Hsu A, Tan J, Ng YM, Toh W, Vanda R, Goyal N 2020. Performance determinants show European cities are delivering on climate mitigation. Nat. Climate Change 10:111015–22
    [Google Scholar]
  141. 141. 
    Bulkeley H, Betsill MM. 2013. Revisiting the urban politics of climate change. Environ. Politics 22:1136–54
    [Google Scholar]
  142. 142. 
    Hsu A, Brandt J, Widerberg O, Chan S, Weinfurter A 2020. Exploring links between national climate strategies and non-state and subnational climate action in nationally determined contributions (NDCs). Climate Policy 20:4443–57
    [Google Scholar]
  143. 143. 
    Hsu A, Rauber R. 2021. Diverse climate actors show limited coordination in a large-scale text analysis of strategy documents. Commun. Earth Environ. 2:30
    [Google Scholar]
  144. 144. 
    Greater Amman Municipality 2019. The Amman Climate Plan: a vision for 2050 Amman Rep., Gt. Amann Munic Jordan:
  145. 145. 
    Durban Municipality 2019. Durban Climate Action Plan2019: towards climate resilience and carbon neutrality Rep. Durban Munic., Durban, S. Afr.
  146. 146. 
    Coalition for Urban Transitions 2019. Methodological annexes—Annex 11. Climate Emergency, Urban Opportunity: How National Governments Can Secure Economic Prosperity and Avert Climate Catastrophe by Transforming Cities Coalition for Urban Transition 1–74 Washington, DC/London: World Resour. Inst. Ross Cent. Sustain. Cities/C40 Cities Clim. Leadersh. Group.
    [Google Scholar]
  147. 147. 
    Adelaide City Council 2016. Carbon Neutral Adelaide: Action Plan2016–2021 Rep., City Adelaide Adelaide: Aust .
  148. 148. 
    Wellington City Council 2019. Our city tomorrow—Te Atakura—first to zero: Wellington's blueprint for a zero carbon capital Rep., Wellington City Counc Wellington, NZ:
  149. 149. 
    Deep Decarbonization Pathways Project 2015. Pathways to deep decarbonization—2015 report: synthesis report Rep., UN Sustain. Dev. Solut. Netw., New York/Inst. Sustain. Dev. Int. Relat Paris:
  150. 150. 
    City of Boulder 2021. Boulder's Community Greenhouse Gas Inventory. City of Boulder https://bouldercolorado.gov
    [Google Scholar]
  151. 151. 
    City of Boulder 2020. City of Boulder's 2019 greenhouse gas emissions inventory & summary report Rep., City Boulder Boulder, CO:
  152. 152. 
    City of Copenhagen 2016. CPH 2025 Climate Plan: Roadmap2017–2020. Rep., City Cph., Den .
  153. 153. 
    City of Hamburg 2019. First Revision of the Hamburg Climate Plan Hamburg, Ger: Hamburg Senate
  154. 154. 
    City of Amsterdam 2020. New Amsterdam Climate: Amsterdam Climate Neutral Roadmap 2050 Amsterdam: City of Amsterdam
  155. 155. 
    Stockholm Stad 2016. Strategy for a fossil-fuel free Stockholm by 2040 Rep. 134–175/2015, City Exec. Off Stockholm:
  156. 156. 
    City of Helsinki 2018. The Carbon-Neutral Helsinki 2035 Action Plan Helsinki: City of Helsinki
  157. 157. 
    Endo A, Tsurita I, Burnett K, Orencio PM. 2017. A review of the current state of research on the water, energy, and food nexus. J. Hydrol.: Reg. Stud. 11:20–30
    [Google Scholar]
  158. 158. 
    Quénard D. 2017. Buildings: the new energy nexus. C. R. Phys. 18:7415–27
    [Google Scholar]
  159. 159. 
    Webb R, Bai X, Smith MS, Costanza R, Griggs D et al. 2018. Sustainable urban systems: co-design and framing for transformation. Ambio 47:157–77
    [Google Scholar]
  160. 160. 
    Grimm NB, Baker LJ, Hope D 2003. An ecosystem approach to understanding cities: familiar foundations and uncharted frontiers. Understanding Urban Ecosystems: A New Frontier for Science and Education AR Berkowitz, CH Nilon, KS Hollweg 95–114 New York: Springer
    [Google Scholar]
  161. 161. 
    Caldera S, Desha C, Reid S, Newman P, Mouritz M. 2020. Principles of design for ensuring sustainable urban centres Paper presented at 1st Asia Pacific Sustainable Development of Energy Water and Environment Systems (SDEWES) Conference Gold Coast, Australia: April 6–9
  162. 162. 
    Beatley T. 2017. Handbook of Biophilic City Planning & Design Washington, DC: Island Press
  163. 163. 
    Söderlund J. 2019. The Emergence of Biophilic Design Cham, Switz: Springer Int. Publ.
  164. 164. 
    Bernstein S, Hoffmann M. 2018. The politics of decarbonization and the catalytic impact of subnational climate experiments. Policy Sci 51:2189–211
    [Google Scholar]
  165. 165. 
    Chester MV, Sperling J, Stokes E, Allenby B, Kockelman K et al. 2014. Positioning infrastructure and technologies for low-carbon urbanization. Earth's Future 2:10533–47
    [Google Scholar]
  166. 166. 
    EIA (US Energy Inf. Adm.) 2019. Investor-owned utilities served 72% of U.S. electricity customers in 2017. Today in Energy, U.S. Energy Information Administration https://www.eia.gov/todayinenergy/detail.php?id=40913
    [Google Scholar]
  167. 167. 
    Lebling K, Ge M, Levin K, Waite R, Friedrich J et al. 2020. State of climate action: assessing progress toward 2030 and 2050 Rep., World Resour. Inst Washington, DC:
  168. 168. 
    OECD (Organ. Econ. Co-op. Dev.), World Bank, UN Environment 2018. Financing climate futures: rethinking infrastructure—policy highlights. Rep., OECD, Paris/World Bank Washington, DC/UN Environ., Nairobi:
  169. 169. 
    Bhattacharya A, Oppenheim J, Stern N. 2015. Driving sustainable development through better infrastructure: key elements of a transformation program. Work. Pap. 91, Glob. Econ. Dev., Brookings, Washington, DC/New Clim. Dev., Washington, DC/Grantham Res. Int. Clim. Change Environ London:
    [Google Scholar]
  170. 170. 
    G20 Green Finance Study Group 2016. G20 green finance synthesis report. Rep., G20 Green Finance Study Group
  171. 171. 
    Andrijevic M, Schleussner C-F, Gidden MJ, McCollum DL, Rogelj J. 2020. COVID-19 recovery funds dwarf clean energy investment needs. Science 370:6514298–300
    [Google Scholar]
  172. 172. 
    Matan A, Newman P. 2016. People Cities: The Life and Legacy of Jan Gehl Washington, DC: Island Press. , 2nd ed..
  173. 173. 
    Harris S. 2020. Post lockdown: parking spaces and traffic lanes to vanish to encourage walking and cycling. ITV News May 6
    [Google Scholar]
  174. 174. 
    Laker L. 2020. World cities turn their streets over to walkers and cyclists. The Guardian April 11
    [Google Scholar]
  175. 175. 
    Hepburn C, O'Callaghan B, Stern N, Stiglitz J, Zenghelis D. 2020. Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?. Oxf. Rev. Econ. Policy 36:Suppl. 1S359–81
    [Google Scholar]
  176. 176. 
    Newman P. 2020. Hope in a time of civicide: regenerative development and IPAT. Sustainable Earth 3:13. https://doi.org/10.1186/s42055-020-00034-1
  177. 177. 
    Ramage MH, Burridge H, Busse-Wicher M, Fereday G, Reynolds Tet al 2017. The wood from the trees: the use of timber in construction. Renew. Sustain. Energy Rev 68:33359
    [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error