Antarctica and the Southern Ocean comprise a critical part of the Earth System. Their environments are better understood than ever before, yet the region remains poorly considered among international agreements to improve the state of the global environment. In part the situation owes to isolated regional regulation within the Antarctic Treaty System, and in part to the dated notion that Antarctica and the Southern Ocean are well conserved and relatively free from human impact. Here we review growth in knowledge of Antarctic environments and anthropogenic pressures on them. We show that the region's unusual diversity is facing substantial local and globally mediated anthropogenic pressure, on a par with environments globally. Antarctic environmental management and regulation is being challenged to keep pace with the change. Much benefit can be derived from consideration of Antarctic environmental and resource management in the context of global agreements.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. 
    Dodds KH, Hemmings AD, Roberts P 2017. Handbook on the Politics of Antarctica Cheltenham, UK: Edward Elgar Publ.
  2. 2. 
    Secretariat of the Convention on Biological Diversity 2014. Global Biodiversity Outlook 4 Montreal: Convention on Biological Diversity https://www.cbd.int/
  3. 3. 
    Coetzee BWT, Convey P, Chown SL 2017. Expanding the protected area network in Antarctica is urgent and readily achievable. Conserv. Lett. 10:670–80
    [Google Scholar]
  4. 4. 
    De Villiers MS, Cooper J, Carmichael N, Glass JP, Liddle GM et al. 2006. Conservation management at Southern Ocean Islands: towards the development of best-practice guidelines. Polarforschung 75:113–31
    [Google Scholar]
  5. 5. 
    Secretariat of the Antarctic Treaty 1959. Antarctic Treaty Buenos Aires: Secr. Antarct. Treaty https://www.ats.aq/index_e.htm
  6. 6. 
    Secretariat of the Antarctic Treaty 2017. Final Report of the Fortieth Antarctic Treaty Meeting Buenos Aires: Secr. Antarctic Treaty https://www.ats.aq/index_e.htm
  7. 7. 
    Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA 2015. The changing form of Antarctic biodiversity. Nature 522:431–38
    [Google Scholar]
  8. 8. 
    Peck L. 2018. Antarctic marine biodiversity: adaptations, environments and responses to change. Oceanogr. Mar. Biol.: Annu. Rev. 56:105–236
    [Google Scholar]
  9. 9. 
    Chown SL, Brooks CM, Terauds A, Le Bohec C, van Klaveren-Impagliazzo C et al. 2017. Antarctica and the strategic plan for biodiversity. PLOS Biol 15:e2001656
    [Google Scholar]
  10. 10. 
    Rintoul SR. 2018. The global influence of localized dynamics in the Southern Ocean. Nature 558:209–18
    [Google Scholar]
  11. 11. 
    Pertierra LR, Hughes KA, Vega GC, Olalla-Tarraga MA 2017. High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of avifauna. PLOS ONE 12:e0168280
    [Google Scholar]
  12. 12. 
    Brooks CM, Ainley DG, Abrams PA, Dayton PK, Hofman RJ et al. 2018. Watch over Antarctic waters. Nature 558:177–80
    [Google Scholar]
  13. 13. 
    Ban NC, Bax NJ, Gjerde KM, Devillers R, Dunn DC et al. 2014. Systematic conservation planning: a better recipe for managing the high seas for biodiversity conservation and sustainable use. Conserv. Lett. 7:41–54
    [Google Scholar]
  14. 14. 
    Gjerde KM, Reeve LLN, Harden-Davies H, Ardron J, Dolan R et al. 2016. Protecting Earth's last conservation frontier: scientific, management and legal priorities for MPAs beyond national boundaries. Aquatic Conserv: Mar. Freshwater Ecosyst. 26:45–60
    [Google Scholar]
  15. 15. 
    Pattyn F, Ritz C, Hanna E, Asay-Davis X, DeConto R et al. 2018. The Greenland and Antarctic ice sheets under 1.5°C global warming. Nat. Clim. Change 8:1053–61
    [Google Scholar]
  16. 16. 
    Intergovernmental Panel on Climate Change (IPCC) 2018. Special Report on the Ocean and Cryosphere in a Changing Climate Geneva: IPCC https://www.ipcc.ch/report/srocc/
  17. 17. 
    Rintoul SR, Chown SL, DeConto RM, England MH, Fricker HA et al. 2018. Choosing the future of Antarctica. Nature 558:233–41
    [Google Scholar]
  18. 18. 
    Bastmeijer K. 2018. Introduction: The Madrid Protocol 1998–2018. The need to address ‘the Success Syndrome’. Polar J 8:230–40
    [Google Scholar]
  19. 19. 
    Hemmings AD. 2017. Antarctic politics in a transforming global geopolitics. Handbook on the Politics of Antarctica KH Dodds, AD Hemmings, P Roberts 507–22 Cheltenham: Edward Elgar Publ.
    [Google Scholar]
  20. 20. 
    McIntosh EJ, Pressey RL, Lloyd S, Smith RJ, Grenyer R 2017. The impact of systematic conservation planning. Annu. Rev. Environ. Resourc. 42:677–97
    [Google Scholar]
  21. 21. 
    Swart NC, Gille ST, Fyfe JC, Gillett NP 2018. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11:836–41
    [Google Scholar]
  22. 22. 
    Meehl GA, Arblaster JM, Chung CTY, Holland MM, DuVivier A et al. 2019. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10:14
    [Google Scholar]
  23. 23. 
    Snow National, Center Ice Data 2019. Sea Ice Index. Arctic- and Antarctic-wide Changes in Sea Ice Boulder, CO: Natl. Snow Ice Data Cent https://nsidc.org/data/seaice_index
  24. 24. 
    Jones JM, Gille ST, Goosse H, Abram NJ, Canziani PO et al. 2016. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6:917–26
    [Google Scholar]
  25. 25. 
    Turner J, Lu H, White I, King JC, Phillips T et al. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:411–15
    [Google Scholar]
  26. 26. 
    Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M et al. 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558:219–22
    [Google Scholar]
  27. 27. 
    Golledge NR, Keller ED, Gomez N, Naughten KA, Bernales J et al. 2019. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566:65–72
    [Google Scholar]
  28. 28. 
    De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem D'Acoz C et al. 2014. Biogeographic Atlas of the Southern Ocean Cambridge, UK: Sci. Comm. Antarctic Res.
  29. 29. 
    International Union for Conservation of Nature (IUCN) 2018. Fourth important marine mammal areas workshop adds 15 candidate IMMAs for the Southern Ocean and Sub-Antarctic Islands Gland, Switz.: IUCN https://www.iucn.org/news/marine-and-polar/201810/fourth-important-marine-mammal-areas-workshop-adds-15-candidate-immas-southern-ocean-and-sub-antarctic-islands
  30. 30. 
    Douglass LL, Turner J, Grantham HS, Kaiser S, Constable A et al. 2014. A hierarchical classification of benthic biodiversity and assessment of protected areas in the Southern Ocean. PLOS ONE 9:e100551
    [Google Scholar]
  31. 31. 
    Terauds A, Lee JR. 2016. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Divers. Distrib. 22:836–40
    [Google Scholar]
  32. 32. 
    Harris CM, Lorenz K, Fishpool LDC, Lascelles B, Cooper J et al. 2015. Important Bird Areas in Antarctica Cambridge, UK: BirdLife Int. Environ. Res. Assess.
  33. 33. 
    Cavicchioli R. 2015. Microbial ecology of Antarctic aquatic systems. Nat. Rev. Microbiol. 13:691–706
    [Google Scholar]
  34. 34. 
    Bergstrom DM, Convey P, Huiskles AHL 2006. Trends in Antarctic Terrestrial and Limnetic Ecosystems Dordrecht, Neth.: Springer
  35. 35. 
    Imura S, Bando T, Saito S, Seto K, Kanda H 1999. Benthic moss pillars in Antarctic lakes. Polar Biol 22:137–40
    [Google Scholar]
  36. 36. 
    Rastrojo A, Alcamí A. 2018. Viruses in polar lake and soil ecosystems. Adv. Virus Res. 101:39–54
    [Google Scholar]
  37. 37. 
    Hodgson DA, Graham AGC, Roberts SJ, Bentley MJ, Cofaigh et al. 2014. Terrestrial and submarine evidence for the extent and timing of the Last Glacial Maximum and the onset of deglaciation on the maritime-Antarctic and sub-Antarctic islands. Quaternary Sci. Rev. 100:137–58
    [Google Scholar]
  38. 38. 
    Leihy RI, Duffy GA, Chown SL 2018. Species richness and turnover among indigenous and introduced plants and insects of the Southern Ocean Islands. Ecosphere 9:e02358
    [Google Scholar]
  39. 39. 
    Chown SL, Convey P. 2016. Antarctic entomology. Annu. Rev. Entomol. 61:119–37
    [Google Scholar]
  40. 40. 
    Bergstrom DM, Bricher PK, Raymond B, Terauds A, Doley D et al. 2015. Rapid collapse of a sub-Antarctic alpine ecosystem: the role of climate and pathogens. J. Appl. Ecol. 52:774–83
    [Google Scholar]
  41. 41. 
    Smith VR, French DD. 1988. Patterns of variation in the climates, soils and vegetation of some subantarctic and Antarctic islands. S. Afr. J. Bot. 54:35–46
    [Google Scholar]
  42. 42. 
    Wilson BR, Wilson SC, Sindel B, Williams LK, Hawking KL et al. 2019. Soil properties on sub-Antarctic Macquarie Island: fundamental indicators of ecosystem function and potential change. Catena 177:167–79
    [Google Scholar]
  43. 43. 
    Le Roux PC, McGeoch MA 2008. Rapid range expansion and community reorganization in response to warming. Glob. Change Biol. 14:2950–62
    [Google Scholar]
  44. 44. 
    Selkirk PM, Seppelt RD, Selkirk DR 1990. Subantarctic Macquarie Island: Environment and Biology Cambridge, UK: Cambridge Univ. Press
  45. 45. 
    Chown SL, Froneman PW. 2008. The Prince Edward Islands. Land-Sea Interactions in a Changing Ecosystem. Stellenbosch, S. Afr.: Sun Press
  46. 46. 
    Richter S, Gerum RC, Schneider W, Fabry B, Le Bohec C, Zitterbart DP 2018. A remote-controlled observatory for behavioural and ecological research: a case study on emperor penguins. Methods Ecol. Evol. 9:1168–78
    [Google Scholar]
  47. 47. 
    Fretwell PT, LaRue MA, Morin P, Kooyman GL, Wienecke B et al. 2012. An emperor penguin population estimate: the first global, synoptic survey of a species from space. PLOS ONE 7:e33751
    [Google Scholar]
  48. 48. 
    Schwaller MR, Lynch HJ, Tarroux A, Prehn B 2018. A continent-wide search for Antarctic petrel breeding sites with satellite remote sensing. Remote Sens. Environ. 210:444–51
    [Google Scholar]
  49. 49. 
    Casanovas P, Black M, Fretwell P, Convey P 2015. Mapping lichen distribution on the Antarctic Peninsula using remote sensing, lichen spectra and photographic documentation by citizen scientists. Polar Res 34:25633
    [Google Scholar]
  50. 50. 
    Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46:523–49
    [Google Scholar]
  51. 51. 
    McInnes JC, Alderman R, Lea MA, Raymond B, Deagle BE et al. 2017. High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding. Mol. Ecol. 26:4831–45
    [Google Scholar]
  52. 52. 
    Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L et al. 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559:392–95
    [Google Scholar]
  53. 53. 
    Brooks ST, Jabour J, van den Hoff J, Bergstrom DM 2019. Our footprint on Antarctica competes with nature for rare ice-free land. Nat. Sustainability 2:185–90
    [Google Scholar]
  54. 54. 
    Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C et al. 2014. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob. Change Biol. 20:3004–25
    [Google Scholar]
  55. 55. 
    Hughes KA, Convey P, Pertierra LR, Vega GC, Aragon P, Olalla-Tarraga MA 2019. Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: a preliminary risk assessment. J. Environ. Manag. 232:73–89
    [Google Scholar]
  56. 56. 
    Preston GR, Dilley BJ, Cooper J, Beaumont J, Chauke F et al. 2019. A plan to eradicate introduced house mice on South Africa's sub-Antarctic Marion Island. Island Invasives: Scaling Up to Meet the Challenge ed. CR Veitch, MN Clout, AR Martin, JC Russell, CJ West 40–46 Gland: IUCN
    [Google Scholar]
  57. 57. 
    McGeoch MA, Shaw JD, Terauds A, Lee JE, Chown SL 2015. Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Glob. Environ. Change 32:108–25
    [Google Scholar]
  58. 58. 
    Waller CL, Griffiths HJ, Waluda CM, Thorpe SE, Loaiza I et al. 2017. Microplastics in the Antarctic marine system: an emerging area of research. Sci. Total Environ. 598:220–27
    [Google Scholar]
  59. 59. 
    Wilcox C, Van Sebille E, Hardesty BD 2015. Threat of plastic pollution to seabirds is global, pervasive, and increasing. PNAS 112:11899–904
    [Google Scholar]
  60. 60. 
    Atkinson A, Siegel V, Pakhomov EA, Rothery P 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–3
    [Google Scholar]
  61. 61. 
    Cox MJ, Candy S, de la Mare WK, Nicol S, Kawaguchi S, Gales N 2018. No evidence for a decline in the density of Antarctic krill Euphausiasuperba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crustacean Biol. 38:656–61
    [Google Scholar]
  62. 62. 
    Atkinson A, Hill SL, Pakhomov EA, Siegel V, Reiss CS et al. 2019. Krill (Euphausiasuperba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9:142–47
    [Google Scholar]
  63. 63. 
    Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) 2018. Report of the XXXVII Meeting of the Commission Hobart, Aust.: CCAMLR Secr https://www.ccamlr.org/en/meetings/26
  64. 64. 
    Abrams PA, Ainley D, Blight LK, Dayton P, Eastman J, Jacquet J 2016. Necessary elements of precautionary management: implications for the Antarctic toothfish. Fish Fisheries 17:1152–74
    [Google Scholar]
  65. 65. 
    Scientific Committee of CAMLR 2018. Report of the XXXVII Meeting of the CAMLR Scientific Committee Hobart, Austr.: Secr. Comm. Conserv. Antarct. Mar. Living Resour https://www.ccamlr.org/en/meetings/27
  66. 66. 
    Agreement on the Conservation of Albatrosses and Petrels 2018. Agreement on the Conservation of Albatrosses and Petrels Species Assessments Hobart, Austr.: Agreem. Conserv. Albatrosses and Petrels Secr https://acap.aq/en/acap-species
  67. 67. 
    Dias MP, Oppel S, Bond AL, Carneiro APB, Cuthbert RJ et al. 2017. Using globally threatened pelagic birds to identify priority sites for marine conservation in the South Atlantic Ocean. Biol. Conserv. 211:76–84
    [Google Scholar]
  68. 68. 
    Che-Castaldo C, Jenouvrier S, Youngflesh C, Shoemaker KT, Humphries G et al. 2017. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nat. Commun. 8:832
    [Google Scholar]
  69. 69. 
    Lynch HJ, Naveen R, Trathan PN, Fagan WF 2012. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93:1367–77
    [Google Scholar]
  70. 70. 
    Dunn MJ, Jackson JA, Adlard S, Lynnes AS, Briggs DR et al. 2016. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLOS ONE 11:e0164025
    [Google Scholar]
  71. 71. 
    Borboroglu PG, Boersma PD. 2015. Penguins: Natural History and Conservation Seattle: Univ. Wash. Press
  72. 72. 
    Weimerskirch H, Le Bouard F, Ryan PG, Bost CA 2018. Massive decline of the world's largest king penguin colony at Île aux Cochons, Crozet. Antarctic Sci 30:236–42
    [Google Scholar]
  73. 73. 
    Barbraud C, Gavrilo M, Mizin Y, Weimerskirch H 2011. Comparison of emperor penguin declines between Point Géologie and Haswell Island. Antarctic Sci 23:461–68
    [Google Scholar]
  74. 74. 
    Fretwell PT, Trathan PN. 2019. Emperors on thin ice: three years of breeding failure at Halley Bay. Antarctic Sci https://doi.org/10.1017/S0954102019000099
    [Crossref] [Google Scholar]
  75. 75. 
    Jenouvrier S, Garnier J, Patout F, Desvillettes L 2017. Influence of dispersal processes on the global dynamics of Emperor penguin, a species threatened by climate change. Biol. Conserv. 212:63–73
    [Google Scholar]
  76. 76. 
    Trathan PN, Garcia-Borboroglu P, Boersma D, Bost CA, Crawford RJ et al. 2015. Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conserv. Biol. 29:31–41
    [Google Scholar]
  77. 77. 
    Ainley DG, Crockett EL, Eastman JT, Fraser WR, Nur N et al. 2017. How overfishing a large piscine mesopredator explains growth in Ross Sea penguin populations: a framework to better understand impacts of a controversial fishery. Ecol. Model. 349:69–75
    [Google Scholar]
  78. 78. 
    Forcada J, Trathan PN, Boveng PL, Boyd IL, Burns JM et al. 2012. Responses of Antarctic pack-ice seals to environmental change and increasing krill fishing. Biol. Conserv. 149:40–50
    [Google Scholar]
  79. 79. 
    Southwell CJ, Bengston J, Bester MN, Blix AS, Bornemann H et al. 2012. A review of data on abundance, trends in abundance, habitat use and diet of ice-breeding seals in the Southern Ocean. CCAMLR Sci 19:49–74
    [Google Scholar]
  80. 80. 
    Hindell MA, McMahon CR, Bester MN, Boehme L, Costa DP et al. 2016. Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere 7:e01213
    [Google Scholar]
  81. 81. 
    Wege M, Etienne M-P, Oosthuizen WC, Reisinger RR, Bester MN, de Bruyn PJN 2016. Trend changes in sympatric Subantarctic and Antarctic fur seal pup populations at Marion Island, Southern Ocean. Mar. Mammal Sci. 32:960–82
    [Google Scholar]
  82. 82. 
    Rocha JRC, Clapham PJ, Ivashchenko Y 2015. Emptying the oceans: a summary of industrial whaling catches in the 20th century. Mar. Fisheries Rev. 76:37–48
    [Google Scholar]
  83. 83. 
    Thomas PO, Reeves RR, Brownell RL 2016. Status of the world's baleen whales. Mar. Mammal Sci. 32:682–734
    [Google Scholar]
  84. 84. 
    Tulloch VJD, Plagányi ÉE, Matear R, Brown CJ, Richardson AJ 2018. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fisheries 19:117–37
    [Google Scholar]
  85. 85. 
    LaRue MA, Rotella JJ, Garrott RA, Siniff DB, Ainley DG et al. 2011. Satellite imagery can be used to detect variation in abundance of Weddell seals (Leptonychotesweddellii) in Erebus Bay, Antarctica. Polar Biol 34:1727–37
    [Google Scholar]
  86. 86. 
    Miller BS, Miller EJ. 2018. The seasonal occupancy and diel behaviour of Antarctic sperm whales revealed by acoustic monitoring. Sci. Rep. 8:5429
    [Google Scholar]
  87. 87. 
    Massom RA, Scambos TA, Bennetts LG, Reid P, Squire VA, Stammerjohn SE 2018. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558:383–89
    [Google Scholar]
  88. 88. 
    Charman DJ, Amesbury MJ, Roland TP, Royles J, Hodgson DA et al. 2018. Spatially coherent late Holocene Antarctic Peninsula surface air temperature variability. Geology 46:1071–74
    [Google Scholar]
  89. 89. 
    Cannone N, Guglielmin M, Convey P, Worland MR, Favero Longo SE 2016. Vascular plant changes in extreme environments: effects of multiple drivers. Clim. Change 134:651–65
    [Google Scholar]
  90. 90. 
    Robinson SA, King DH, Bramley-Alves J, Waterman MJ, Ashcroft MB et al. 2018. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8:879–84
    [Google Scholar]
  91. 91. 
    Gooseff MN, Barrett JE, Adams BJ, Doran PT, Fountain AG et al. 2017. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1:1334–38
    [Google Scholar]
  92. 92. 
    Steinberg DK, Ruck KE, Gleiber MR, Garzio LM, Cope JS et al. 2015. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. Part I 101:54–70
    [Google Scholar]
  93. 93. 
    Schofield O, Saba G, Coleman K, Carvalho F, Couto N et al. 2017. Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula. Deep Sea Res. Part I 124:42–54
    [Google Scholar]
  94. 94. 
    Hendry KR, Meredith MP, Ducklow HW 2018. The marine system of the West Antarctic Peninsula: status and strategy for progress. Philos. Trans. R. Soc. A 376:20170179
    [Google Scholar]
  95. 95. 
    Schofield O, Brown M, Kohut J, Nardelli S, Saba G et al. 2018. Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philos. Trans. R. Soc. A 376:20170173
    [Google Scholar]
  96. 96. 
    Farman JC, Gardiner BG, Shanklin JD 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–10
    [Google Scholar]
  97. 97. 
    Weiler CS, Penhale PA, eds. 1994. Ultraviolet Radiation in Antarctica: Measurement and Biological Effects. Antarctic Research Series Volume 62 Washington, DC: American Geophysical Union
  98. 98. 
    Newsham KK, Robinson SA. 2009. Responses of plants in polar regions to UVB exposure: a meta-analysis. Glob. Change Biol. 15:2574–89
    [Google Scholar]
  99. 99. 
    Bornman JF, Barnes PW, Robinson SA, Ballare CL, Flint SD, Caldwell MM 2015. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems. Photochem. Photobiol. Sci. 14:88–107
    [Google Scholar]
  100. 100. 
    Moreau S, Vidussi F, Ferreyra G, Mostajir B 2016. Ecological impacts of ultraviolet-B radiation in marine ecosystems. Stressors in the Marine Environment ed. M Solan, NM Whitely 261–81 Oxford: Oxford Univ. Press
    [Google Scholar]
  101. 101. 
    Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK et al. 2019. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem. Photobiol. Sci. 18:681–716
    [Google Scholar]
  102. 102. 
    Karentz D, Bosch I. 2001. Influence of ozone-related increases in ultraviolet radiation on Antarctic marine organisms. Am. Zool. 41:3–16
    [Google Scholar]
  103. 103. 
    Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J et al. 2015. The Southern Ocean ecosystem under multiple climate change stresses—an integrated circumpolar assessment. Glob. Change Biol. 21:1434–53
    [Google Scholar]
  104. 104. 
    Williamson CE, Zepp RG, Lucas RM, Madronich S, Austin AT et al. 2014. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4:434–41
    [Google Scholar]
  105. 105. 
    Robinson SA, Erickson DJ 3rd 2015. Not just about sunburn–the ozone hole's profound effect on climate has significant implications for Southern Hemisphere ecosystems. Glob. Change Biol. 21:515–27
    [Google Scholar]
  106. 106. 
    Weimerskirch H, Louzao M, de Grissac S, Delord K 2012. Changes in wind pattern alter albatross distribution and life-history traits. Science 335:211–14
    [Google Scholar]
  107. 107. 
    Davies RG, Irlich UM, Chown SL, Gaston KJ 2010. Ambient, productive and wind energy, and ocean extent predict global species richness of procellariiform seabirds. Glob. Ecol. Biogeogr. 19:98–110
    [Google Scholar]
  108. 108. 
    Solomon S, Ivy DJ, Kinnison D, Mills MJ, Neely RR III, Schmidt A 2016. Emergence of healing in the Antarctic ozone layer. Science 353:269–74
    [Google Scholar]
  109. 109. 
    Wang G, Hendon HH, Arblaster JM, Lim EP, Abhik S, van Rensch P 2019. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 10:13
    [Google Scholar]
  110. 110. 
    Ball WT, Alsing J, Mortlock DJ, Staehelin J, Haigh JD et al. 2018. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmos. Chem. Phys. 18:1379–94
    [Google Scholar]
  111. 111. 
    Montzka SA, Dutton GS, Yu P, Ray E, Portmann RW et al. 2018. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557:413–17
    [Google Scholar]
  112. 112. 
    Maxwell SL, Fuller RA, Brooks TM, Watson JEM 2016. The ravages of guns, nets and bulldozers. Nature 536:143–45
    [Google Scholar]
  113. 113. 
    Weinstein BG, Double M, Gales N, Johnston DW, Friedlaender AS 2017. Identifying overlap between humpback whale foraging grounds and the Antarctic krill fishery. Biol. Conserv. 210:184–91
    [Google Scholar]
  114. 114. 
    Hinke JT, Cossio AM, Goebel ME, Reiss CS, Trivelpiece WZ, Watters GM 2017. Identifying risk: concurrent overlap of the Antarctic Krill Fishery with krill-dependent predators in the Scotia Sea. PLOS ONE 12:e0170132
    [Google Scholar]
  115. 115. 
    Trathan PN, Warwick-Evans V, Hinke JT, Young EF, Murphy EJ et al. 2018. Managing fishery development in sensitive ecosystems: identifying penguin habitat use to direct management in Antarctica. Ecosphere 9:e02392
    [Google Scholar]
  116. 116. 
    Warwick-Evans V, Ratcliffe N, Lowther AD, Manco F, Ireland L et al. 2018. Using habitat models for chinstrap penguins Pygoscelisantarctica to advise krill fisheries management during the penguin breeding season. Divers. Distrib. 24:1756–71
    [Google Scholar]
  117. 117. 
    Brooks CM, Crowder LB, Curran LM, Dunbar RM, Ainley DG et al. 2016. Science-based management in decline in the Southern Ocean. Science 354:185–87
    [Google Scholar]
  118. 118. 
    Hanchet S, Dunn A, Parker S, Horn P, Stevens D, Mormede S 2015. The Antarctic toothfish (Dissostichusmawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761:397–414
    [Google Scholar]
  119. 119. 
    Ainley D, Eastman J, Brooks C 2016. Comments on “The Antarctic toothfish (Dissostichusmawsoni): biology, ecology, and life history in the Ross Sea region,” by S. Hanchet et al. Hydrobiologia 771:1–7
    [Google Scholar]
  120. 120. 
    Salas L, Nur N, Ainley DG, Burns J, Rotella J, Ballard G 2017. Coping with the loss of large, energy-dense prey: a potential bottleneck for Weddell Seals in the Ross Sea. Ecol. Appl. 27:10–25
    [Google Scholar]
  121. 121. 
    Pitman RL, Fearnbach H, Durban JW 2018. Abundance and population status of Ross Sea killer whales (Orcinusorca, type C) in McMurdo Sound, Antarctica: evidence for impact by commercial fishing?. Polar Biol 41:781–92
    [Google Scholar]
  122. 122. 
    Bando T, Nakai K, Kanbayashi J, Umeda K, Kin Y et al. 2018. Results of the third biological field survey of NEWREP-A during the 2017/18 austral summer season International Whaling Commission SC/67B/SCSCP/08 Cambridge:
  123. 123. 
    Summerson R, Tin T. 2018. Twenty years of protection of wilderness values in Antarctica. Polar J 8:265–88
    [Google Scholar]
  124. 124. 
    McClelland GTW, Altwegg R, Van Aarde RJ, Ferreira S, Burger AE, Chown SL 2018. Climate change leads to increasing population density and impacts of a key island invader. Ecol. Appl. 28:212–24
    [Google Scholar]
  125. 125. 
    Smith VR, Steenkamp M. 1990. Climatic change and its ecological implications at a subantarctic island. Oecologia 85:14–24
    [Google Scholar]
  126. 126. 
    Treasure AM, Chown SL. 2014. Antagonistic effects of biological invasion and temperature change on body size of island ectotherms. Divers. Distrib. 20:202–13
    [Google Scholar]
  127. 127. 
    Jenouvrier S, Desprez M, Fay R, Barbraud C, Weimerskirch H et al. 2018. Climate change and functional traits affect population dynamics of a long-lived seabird. J. Anim. Ecol. 87:906–20
    [Google Scholar]
  128. 128. 
    DeConto RM, Pollard D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531:591–97
    [Google Scholar]
  129. 129. 
    Bronselaer B, Winton M, Griffies SM, Hurlin WJ, Rodgers KB et al. 2018. Change in future climate due to Antarctic meltwater. Nature 564:53–58
    [Google Scholar]
  130. 130. 
    Lee JR, Raymond B, Bracegirdle TJ, Chades I, Fuller RA et al. 2017. Climate change drives expansion of Antarctic ice-free habitat. Nature 547:49–54
    [Google Scholar]
  131. 131. 
    Leach NJ, Millar RJ, Haustein K, Jenkins S, Graham E, Allen MR 2018. Current level and rate of warming determine emissions budgets under ambitious mitigation. Nat. Geosci. 11:574–79
    [Google Scholar]
  132. 132. 
    Burke KD, Willaims JM, Chandler MA, Haywood AM, Lunt DJ, Otto-Bliesner BL 2018. Pliocene and Eocene provide best analogs for near-future climates. PNAS 115:13288–93
    [Google Scholar]
  133. 133. 
    International Energy Agency 2018. World Energy Outlook Paris: OECD Int. Energy Agency https://www.iea.org/weo/
  134. 134. 
    Peck LS, Morley SA, Richard J, Clark MS 2014. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217:16–22
    [Google Scholar]
  135. 135. 
    Ashton GV, Morley SA, Barnes DKA, Clark MS, Peck LS 2017. Warming by 1°C drives species and assemblage level responses in Antarctica's marine shallows. Curr. Biol. 27:2698–705.e3
    [Google Scholar]
  136. 136. 
    Griffiths HJ, Meijers AJS, Bracegirdle TJ 2017. More losers than winners in a century of future Southern Ocean seafloor warming. Nat. Clim. Change 7:749–54
    [Google Scholar]
  137. 137. 
    Cristofari R, Liu X, Bonadonna F, Cherel Y, Pistorius P et al. 2018. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8:245–51
    [Google Scholar]
  138. 138. 
    Krüger L, Ramos JA, Xavier JC, Grémillet D, González-Solís J et al. 2018. Projected distributions of Southern Ocean albatrosses, petrels and fisheries as a consequence of climatic change. Ecography 41:195–208
    [Google Scholar]
  139. 139. 
    Grémillet D, Ponchon A, Paleczny M, Palomares MD, Karpouzi V, Pauly D 2018. Persisting worldwide seabird-fishery competition despite seabird community decline. Curr. Biol. 28:1–5
    [Google Scholar]
  140. 140. 
    Sala E, Mayorga J, Costello C, Kroodsma D, Palomares MLD et al. 2018. The economics of fishing the high seas. Sci. Adv. 4: eaat2504
    [Google Scholar]
  141. 141. 
    Kroodsma DA, Mayorga J, Hochberg T, Miller NA, Boerder K et al. 2018. Tracking the global footprint of fisheries. Science 359:904–8
    [Google Scholar]
  142. 142. 
    Kawaguchi S, Ishida A, King R, Raymond B, Waller N et al. 2013. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Change 3:843–47
    [Google Scholar]
  143. 143. 
    Ericson JA, Hellessey N, Kawaguchi S, Nicol S, Nichols PD et al. 2018. Adult Antarctic krill proves resilient in a simulated high CO2 ocean. Commun. Biol. 1:190
    [Google Scholar]
  144. 144. 
    Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Jones EM et al. 2012. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5:881–85
    [Google Scholar]
  145. 145. 
    Peck VL, Oakes RL, Harper EM, Manno C, Tarling GA 2018. Pteropods counter mechanical damage and dissolution through extensive shell repair. Nat. Commun. 9:264
    [Google Scholar]
  146. 146. 
    Gardner J, Manno C, Bakker DCE, Peck VL, Tarling GA 2018. Southern Ocean pteropods at risk from ocean warming and acidification. Mar. Biol. 165:8
    [Google Scholar]
  147. 147. 
    Smith KE, Aronson RB, Steffel BV, Amsler MO, Thatje S et al. 2017. Climate change and the threat of novel marine predators in Antarctica. Ecosphere 8:e02017
    [Google Scholar]
  148. 148. 
    Griffiths HJ, Whittle RJ, Roberts SJ, Belchier M, Linse K 2013. Antarctic crabs: invasion or endurance?. PLOS ONE 8:e66981
    [Google Scholar]
  149. 149. 
    Byrne M, Gall M, Wolfe K, Aguera A 2016. From pole to pole: the potential for the Arctic seastar Asteriasamurensis to invade a warming Southern Ocean. Glob. Change Biol. 22:3874–87
    [Google Scholar]
  150. 150. 
    Lee JE, Chown SL. 2009. Temporal development of hull-fouling assemblages associated with an Antarctic supply vessel. Mar. Ecol. Progress Ser. 386:97–105
    [Google Scholar]
  151. 151. 
    Fraser CI, Morrison AK, Hogg AM, Macaya EC, van Sebille E et al. 2018. Antarctica's ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8:704–8
    [Google Scholar]
  152. 152. 
    Duffy GA, Coetzee BWT, Latombe G, Akerman AH, McGeoch MA, Chown SL 2017. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23:982–96
    [Google Scholar]
  153. 153. 
    Pertierra LR, Aragon P, Shaw JD, Bergstrom DM, Terauds A, Olalla-Tarraga MA 2017. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Glob. Change Biol. 23:2863–73
    [Google Scholar]
  154. 154. 
    Hughes KA, Pertierra LR, Molina-Montenegro MA, Convey P 2015. Biological invasions in terrestrial Antarctica: What is the current status and can we respond. ? Biodivers. Conserv. 24:1031–35
    [Google Scholar]
  155. 155. 
    Kearney M, Porter M. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett. 12:334–50
    [Google Scholar]
  156. 156. 
    Lebouvier M, Laparie M, Hullé M, Marais A, Cozic Y et al. 2011. The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol. Invasions 13:1195–208
    [Google Scholar]
  157. 157. 
    Raymond B, McInnes J, Dambacher JM, Way S, Bergstrom DM 2011. Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J. Appl. Ecol. 48:181–91
    [Google Scholar]
  158. 158. 
    Laparie M, Renault D. 2014. Physiological responses to temperature in Merizodussoledadinus (Col., Carabidae), a subpolar carabid beetle invading sub-Antarctic islands. Polar Biol 39:35–45
    [Google Scholar]
  159. 159. 
    Dutton A, Carlson AE, Long AJ, Milne GA, Clark PU et al. 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349:aaa4019
    [Google Scholar]
  160. 160. 
    Pecl GT, Araujo MB, Bell JD, Blanchard J, Bonebrake TC et al. 2017. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214
    [Google Scholar]
  161. 161. 
    Chown SL, Duffy GA. 2017. The veiled ecological danger of rising sea levels. Nat. Ecol. Evol. 1:1219–21
    [Google Scholar]
  162. 162. 
    Brown S, Nicholls RJ, Goodwin P, Haigh ID, Lincke D et al. 2018. Quantifying land and people exposed to sea-level rise with no mitigation and 1.5°C and 2.0°C rise in global temperatures to year 2300. Earth's Future 6:583–600
    [Google Scholar]
  163. 163. 
    Tittensor DP, Walpole M, Hill SLL, Boyce DG, Britten GL et al. 2014. A mid-term analysis of progress toward international biodiversity targets. Science 346:241–44
    [Google Scholar]
  164. 164. 
    Watson JEM, Venter O, Lee J, Jones KR, Robinson JG et al. 2018. Protect the last of the wild. Nature 563:27–30
    [Google Scholar]
  165. 165. 
    Berkman PA, Lang MA, Walton DWH, Young OR 2011. Science Diplomacy. Antarctica, Science, and the Governance of International Spaces Washington, DC: Smithsonian Inst.
  166. 166. 
    Hughes KA, Convey P. 2010. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob. Environ. Change 20:96–112
    [Google Scholar]
  167. 167. 
    Chown SL, Lee JE, Hughes KA, Barnes J, Barrett PJ et al. 2012. Challenges to the future conservation of the Antarctic. Science 337:158–59
    [Google Scholar]
  168. 168. 
    Lynch MA, Foley CM, Thorne LH, Lynch HJ 2016. Improving the use of biological data in Antarctic management. Antarctic Sci 28:425–31
    [Google Scholar]
  169. 169. 
    Liggett D, Frame B, Gilbert N, Morgan F 2017. Is it all going south? Four future scenarios for Antarctica. Polar Record 53:459–78
    [Google Scholar]
  170. 170. 
    Anonymous 2018. Reform the Antarctic Treaty. Nature 558:161
    [Google Scholar]
  171. 171. 
    Hemmings AD. 2018. Liability postponed: the failure to bring Annex VI of the Madrid Protocol into force. Polar J 8:315–32
    [Google Scholar]
  172. 172. 
    Naish TR. 2017. What does the United Nations Paris Climate Agreement mean for Antarctica? Implications for New Zealand's future research priorities. Antarctic 35:46–51
    [Google Scholar]
  173. 173. 
    Steffen W, Rockstrom J, Richardson K, Lenton TM, Folke C et al. 2018. Trajectories of the Earth System in the Anthropocene. PNAS 115:8252–59
    [Google Scholar]
  174. 174. 
    Young OR. 2018. Research strategies to assess the effectiveness of international environmental regimes. Nat. Sustainability 1:461–65
    [Google Scholar]
  175. 175. 
    Butchart SHM, Di Marco M, Watson JEM 2016. Formulating smart commitments on biodiversity: lessons from the Aichi Targets. Conserv. Lett. 9:457–68
    [Google Scholar]
  176. 176. 
    Mastrandrea MD, Field CB, Stocker TF, Edenhofer O, Ebi KL et al. 2010. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Geneva: Intergov. Panel Clim. Change http://www.ipcc.ch
  177. 177. 
    Cooke SJ, Johansson S, Andersson K, Livoreil B, Post G et al. 2017. Better evidence, better decisions, better environment: emergent themes from the first environmental evidence conference. Environ. Evidence 6:15
    [Google Scholar]
  178. 178. 
    Sterner T, Barbier EB, Bateman I, van den Bijgaart I, Crépin A-S et al. 2019. Policy design for the Anthropocene. Nat. Sustainability 2:14–21
    [Google Scholar]
  179. 179. 
    Hughes KA, Constable A, Frenot Y, López-Martínez J, McIvor E et al. 2018. Antarctic environmental protection: strengthening the links between science and governance. Environ. Sci. Policy 83:86–95
    [Google Scholar]
  180. 180. 
    Nichols T. 2017. The Death of Expertise. The Campaign Against Established Knowledge and Why It Matters Oxford: Oxford Univ. Press
  181. 181. 
    Klein N. 2017. No is Not Enough. Defeating the New Shock Politics London: Allen Lane
  182. 182. 
    Levitsky S, Ziblatt D. 2018. How Democracies Die New York: Crown Publ.
  183. 183. 
    Oberthür S, Stokke OS. 2011. Managing Institutional Complexity: Regime Interplay and Global Environmental Change Cambridge, MA: MIT Press
  184. 184. 
    Hamilton C. 2017. Defiant Earth. The Fate of Humans in the Anthropocene. Cambridge, UK: Polity Press
  185. 185. 
    Wilson EO. 2016. Half-Earth. Our Planet's Fight for Life New York: Liveright Publ.

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error