1932

Abstract

Urban heat island (UHI) manifests as the temperature rise in built-up urban areas relative to the surrounding rural countryside, largely because of the relatively greater proportion of incident solar energy that is absorbed and stored by man-made materials. The direct impact of UHI can be significant on both daytime and night-time temperatures, and the indirect impacts include increased air conditioning loads, deteriorated air and water quality, reduced pavement lifetimes, and exacerbated heat waves. Modifying the thermal properties and emissivity of roofs and paved surfaces and increasing the vegetated area within the city are potential mitigation strategies. A quantitative comparison of their efficacies and costs suggests that so-called cool roofs are likely the most cost-effective UHI mitigation strategy. However, additional research is needed on how to modify surface emissivities and dynamically control surface and material properties, as well as on the health and socioeconomic impacts of UHI.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102014-021155
2015-11-04
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/energy/40/1/annurev-environ-102014-021155.html?itemId=/content/journals/10.1146/annurev-environ-102014-021155&mimeType=html&fmt=ahah

Literature Cited

  1. Fragkias M, Güneralp B, Seto K, Goodness J. 1.  2013. Urbanization, biodiversity and ecosystem services: challenges and opportunities. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment T Elmqvist, M Fragkias, J Goodness, B Güneralp, P Marcotullio, R McDonald, C Wilkinson 409–35 Dordrecht, Netherlands: Springer [Google Scholar]
  2. Clinton N, Gong P. 2.  2013. MODIS detected surface urban heat islands and sinks: global locations and controls. Remote Sensing Environ. 134:294–304 [Google Scholar]
  3. Tran H, Uchihama D, Ochi S, Yasuoka Y. 3.  2006. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Observation Geoinf. 8:134–48 [Google Scholar]
  4. Mohan M, Kikegawa Y, Gurjar B, Bhati S, Kolli N. 4.  2012. Assessment of urban heat island effect for different land use–land cover from micrometeorological measurements and remote sensing data for megacity Delhi. Theor. Appl. Climatol. 112:3–4647–58 [Google Scholar]
  5. Gaffin S, Rosenzweig C, Khanbilvardi R, Parshall L, Mahani S. 5.  et al. 2008. Variations in New York City's urban heat island strength over time and space. Theor. Appl. Climatol. 94:1–21–11 [Google Scholar]
  6. Kolokotroni M, Giridharan R. 6.  2008. Urban heat island intensity in London: an investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy 82:11986–98 [Google Scholar]
  7. Kolokotsa D, Santamouris M, Zerefos S. 7.  2013. Green and cool roofs' urban heat island mitigation potential in European climates for office buildings under free floating conditions. Solar Energy 95:118–30 [Google Scholar]
  8. Gallo K, Xian G. 8.  2014. Application of spatially gridded temperature and land cover data sets for urban heat island analysis. Urban Climate 8:1–10 [Google Scholar]
  9. Kardinal Jusuf S, Wong N, Hagen E, Anggoro R, Hong Y. 9.  2007. The influence of land use on the urban heat island in Singapore. Habitat Int. 31:2232–42 [Google Scholar]
  10. Sharifi E, Lehmann S. 10.  2014. Comparative analysis of surface urban heat island effect in central Sydney. J. Sustainable Dev. 7:323–34 [Google Scholar]
  11. Weng Q, Fu P. 11.  2014. Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery. ISPRS J. Photogrammetry Remote Sensing 97:78–88 [Google Scholar]
  12. Sarkar A, De Ridder K. 12.  2010. The urban heat island intensity of Paris: a case study based on a simple urban surface parametrization. Boundary-Layer Meteorol. 138:3511–20 [Google Scholar]
  13. Otanicar T, Carlson J, Golden J, Kaloush K, Phelan P. 13.  2010. Impact of the urban heat island on light duty vehicle emissions for the Phoenix, AZ area. Int. J. Sustain. Transport. 4:11–13 [Google Scholar]
  14. Giannaros T, Melas D, Daglis I, Keramitsoglou I, Kourtidis K. 14.  2013. Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmos. Environ. 73:103–11 [Google Scholar]
  15. Scott C, Halper E, Yool S, Comrie A. 15.  2009. The evolution of urban heat island and water demand. Proc. Am. Meteorol. Soc. Symp. Urban Environ., 8th Phoenix, AZ [Google Scholar]
  16. Memon R, Leung D, Chunho L. 16.  2008. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 20:1120–28 [Google Scholar]
  17. Schwarz N, Schlink U, Franck U, Großmann K. 17.  2012. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—an application for the city of Leipzig (Germany). Ecol. Indicators 18:693–704 [Google Scholar]
  18. Zhang H, Qi Z, Ye X, Cai Y, Ma W, Chen M. 18.  2013. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 44:121–33 [Google Scholar]
  19. Tan J, Zheng Y, Tang X, Guo C, Li L. 19.  et al. 2010. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 54:175–84 [Google Scholar]
  20. Adamowski J, Prokoph A. 20.  2013. Assessing the impacts of the urban heat island effect on streamflow patterns in Ottawa, Canada. J. Hydrol. 496:225–37 [Google Scholar]
  21. Radhi H, Fikry F, Sharples S. 21.  2013. Impacts of urbanisation on the thermal behaviour of new built up environments: a scoping study of the urban heat island in Bahrain. Landscape Urban Plan. 113:47–61 [Google Scholar]
  22. Kang H-Q, Zhu B, Zhu T, Sun J-L, Ou J-J. 22.  2014. Impact of megacity Shanghai on the urban heat-island effects over the downstream city Kunshan. Boundary-Layer Meteorol. 152:3411–26 [Google Scholar]
  23. Santamouris M, Cartalis C, Synnefa A, Kolokotsa D. 23.  2015. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—a review. Energy Build. 98:119–24 [Google Scholar]
  24. Solecki W, Rosenzweig C, Parshall L, Pope G, Clark M. 24.  et al. 2005. Mitigation of the heat island effect in urban New Jersey. Environ. Hazards 6:139–49 [Google Scholar]
  25. Silva H, Phelan P, Golden J. 25.  2010. Modeling effects of urban heat island mitigation strategies on heat-related morbidity: a case study for Phoenix, Arizona, USA. Int. J. Biometeorol. 54:113–22 [Google Scholar]
  26. Gago E, Roldan J, Pacheco-Torres R, Ordóñez J. 26.  2013. The city and urban heat islands: a review of strategies to mitigate adverse effects. Renewable Sustainable Energy Rev. 25:749–58 [Google Scholar]
  27. Santamouris M. 27.  2013. Using cool pavements as a mitigation strategy to fight urban heat island—a review of the actual developments. Renewable Sustain. Energy Rev. 26:224–40 [Google Scholar]
  28. Alchapar N, Correa E, Cantón M. 28.  2014. Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones. Energy Build. 69:22–32 [Google Scholar]
  29. Yang J, Wang Z, Kaloush K. 29.  2014. Unintended consequences: a research synthesis examining the use of reflective pavements to mitigate the urban heat island effect White Pap., Natl. Cent. Excell. Smart Innov., Arizona State Univ. https://ncesmart.asu.edu/docs/smart/unintended-consequences-1013.pdf [Google Scholar]
  30. Oke T. 30.  1988. The urban energy balance. Prog. Phys. Geogr. 12:4471–508 [Google Scholar]
  31. Mirzaei P, Haghighat F. 31.  2010. Approaches to study urban heat island—abilities and limitations. Build. Environ. 45:2192–201 [Google Scholar]
  32. Silva H, Bhardwaj R, Phelan P, Golden J, Grossman-Clarke S. 32.  2009. Development of a zero-dimensional mesoscale thermal model for urban climate. J. Appl. Meteorol. Climatol. 48:657–68 [Google Scholar]
  33. Sailor D, Lu L. 33.  2004. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ. 38:2737–48 [Google Scholar]
  34. Hinkel K, Nelson F, Klene A, Bell J. 34.  2003. The urban heat island in winter at Barrow, Alaska. Int. J. Climatol. 23:1889–905 [Google Scholar]
  35. Silva H, Golden J. 35.  2012. Spatial superposition method via model coupling for urban heat island albedo mitigation strategies. J. Appl. Meteorol. Climatol. 51:1971–79 [Google Scholar]
  36. Lee T-W, Choi H, Lee J. 36.  2014. Generalized scaling of urban heat island effect and its applications for energy consumption and renewable energy. Adv. Meteorol. 2014:948306 [Google Scholar]
  37. Hu Z, Yu B, Chen Z, Li T, Liu M. 37.  2012. Numerical investigation on the urban heat island in an entire city with an urban porous media model. Atmos. Environ. 47:509–18 [Google Scholar]
  38. Hoffmann P, Krueger O, Heinke Schlunzen K. 38.  2012. A statistical model for the urban heat island and its application to a climate change scenario. Int. J. Climatol. 32:1238–48 [Google Scholar]
  39. Sailor D, Dietsch N. 39.  2007. The urban heat island Mitigation Impact Screening Tool (MIST). Environ. Model. Softw. 22:1529–41 [Google Scholar]
  40. Chen F, Yang X, Zhu W. 40.  2014. WRF simulations of urban heat island under hot-weather synoptic conditions: the case study of Hangzhou City, China. Atmospheric Res. 138:364–377 [Google Scholar]
  41. Kaloush KE, Wang Z, Yang J. 41.  2015. Examining the use of reflective pavements to mitigate the urban heat island effect. Asphalt Pavement Magazine http://www.nxtbook.com/naylor/NAPS/NAPS0115/index.php?startid=44 [Google Scholar]
  42. 42. Energy Information Administration 2014. Annual Energy Outlook 2014 with Projections to 2040 Washington, DC: US Dep. Energy http://www.eia.gov/forecasts/aeo/er/index.cfm [Google Scholar]
  43. Werner S. 43.  2006. Ecoheatcool work package 1: the European heat market Final Rep., Eur. Heat Water, Eur. Union, Bruss., Belg. [Google Scholar]
  44. Howard L. 44.  1833. Climate of London, Deduced from Meteorological Observations, Made in the Metropolis and at Various Places Around It. London: Int. Assoc. Urban Climate [Google Scholar]
  45. Wouters H, De Ridder K, Demuzere M, Lauwaet D, van Lipzig N. 45.  2006. The diurnal evolution of the urban heat island of Paris: a model-based case study during summer 2006. Atmospheric Chem. Phys. 13:178525–41 [Google Scholar]
  46. Stathopoulou M, Caralis C, Andritsos A. 46.  2005. Assessing the thermal environment of major cities in Greece Presented at Int. Conf. Passive Low Energy Cooling Built Environ., 1st, Santorini, Greece [Google Scholar]
  47. Yang P, Ren G, Liu W. 47.  2013. Spatial and temporal characteristics of Beijing urban heat island intensity. J. Appl. Meteorol. Climatol. 52:81803–16 [Google Scholar]
  48. Brazel A, Selover N, Vose R, Heiser G. 48.  2000. The tale of two climates—Baltimore and Phoenix urban LTER sites. Climate Res. 15:123–35 [Google Scholar]
  49. Gedzelman S, Austin S, Cermak R, Stefano N, Partridge S, Quesenberry S. 49.  2003. Mesoscale aspects of the urban heat island around New York City. Theor. Appl. Climatol. 75:1–229–42 [Google Scholar]
  50. Rosenthal J, Sastre Pena M, Rosenzweig C, Knowlton K, Goldberg R, Kinney P. 50.  2003. One hundred years of New York City's “urban heat island”: temperature trends and public health impacts Abstract #U32A-0030, Am Geophys. Union [Google Scholar]
  51. Rong F. 51.  2006. Impact of urban sprawl on U.S. residential energy use. PhD Thesis, Univ. Md. http://drum.lib.umd.edu/bitstream/1903/3848/1/umi-umd-3694.pdf [Google Scholar]
  52. Giridharan R, Kolokotroni M. 52.  2009. Urban heat island characteristics in London during winter. Solar Energy 83:1668–82 [Google Scholar]
  53. Kolokotroni M, Ren X, Davies M, Mavrogianni A. 53.  2012. London's urban heat island: impact on current and future energy consumption in office buildings. Energy Build. 47:302–11 [Google Scholar]
  54. Golden J, Brazel A, Salmond J, Laws D. 54.  2006. Energy and water sustainability: the role of urban climate change from metropolitan infrastructure. J. Green Build. 1:3124–38 [Google Scholar]
  55. Yaghoobian N, Kleissl J, Krayenhoff E. 55.  2010. Modeling the thermal effects of artificial turf on the urban environment. J. Appl. Meteor. Climatol. 49:3332–45 [Google Scholar]
  56. Yaghoobian N, Kleissl J. 56.  2012. Effect of reflective pavements on building energy use. Urban Climate 2:25–42 [Google Scholar]
  57. 57. United Nations 2014. Coping with Water Scarcity: Challenge of the Twenty-First Century: 22 March 2007 New York: United Nations http://www.unwater.org/downloads/escarcity.pdf [Google Scholar]
  58. Erickson A, Weiss P, Gulliver J. 58.  2013. Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance New York: Springer [Google Scholar]
  59. Solimini AG, Cardoso AC, Heiskanen A-S. 59.  2007. Indicators and Methods for the Ecological Status Assessment Under the Water Framework Directive: Linkages Between Chemical and Biological Quality of Surface Waters Bruss., Belg.: Eur. Comm. Eur. Union [Google Scholar]
  60. Butterwick C, Heaney S, Talling J. 60.  2005. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biol. 50:291–300 [Google Scholar]
  61. Van Buren M, Watt W, Marsalek J, Anderson B. 61.  2000. Thermal enrichment stormwater runoff by paved surfaces. Water Res. 34:41359–137 [Google Scholar]
  62. Winston R, Hunt W, Lord W. 62.  2011. Thermal mitigation of urban storm water by level spreader-vegetative filter strips. J. Environ. Eng. 137:707–16 [Google Scholar]
  63. Muller N, Kuttler W, Barlag A. 63.  2014. Analysis of the subsurface urban heat islands in Oberhausen, Germany. Climate Res. 58:247–56 [Google Scholar]
  64. Santamouris M. 64.  2014. On the energy impact of urban heat island and global warming on buildings. Energy Build. 82:100–13 [Google Scholar]
  65. Torcellini P, Long N, Judkoff R. 65.  2003. Consumptive water use for US power production. Tech. Rep. NREL/TP-550-33905, Nat. Renew. Energy Lab., Golden, Colo. [Google Scholar]
  66. 66. US Geological Survey (USGS) 2014. Thermoelectric Power Water Use: Water Use in the United States. Washington, DC: USGS http://water.usgs.gov/watuse/wupt.html [Google Scholar]
  67. Spellman F. 67.  2014. Handbook of Water and Wastewater Treatment Plant Operations Boca Raton, FL: CRC Press [Google Scholar]
  68. Guhathakurta S, Gober P. 68.  2007. The impact of the Phoenix urban heat island on residential water use. J. Am. Plann. Assoc. 73:3317–29 [Google Scholar]
  69. Aggarwal R, Guhathakurta S, Grossman-Clarke S, Lathey V. 69.  2012. How do variations in the urban heat islands in space and time influence household water use? The case of Phoenix, Arizona. Water Resour. Res. 48:W06518 [Google Scholar]
  70. Kambezidis H, Peppes A, Melas D. 70.  1995. An environmental experiment over Athens urban area under sea breeze conditions. Atmos. Res. 36:139–56 [Google Scholar]
  71. Menut L, Vautard R, Flamant C. 71.  2000. Measurements and modeling of atmospheric pollution over the Paris area: an overview of the ESQUIF project. Ann. Geophys. 18:111467–81 [Google Scholar]
  72. Cros B, Durand P, Cachier H. 72.  2004. An overview of the ESCOMPTE campaign. Atmos. Res. 69:3–4241–79 [Google Scholar]
  73. Lai L, Cheng W. 73.  2009. Air quality influenced by urban heat island coupled with synoptic weather patterns. Sci. Total Environ. 407:82724–33 [Google Scholar]
  74. Akbari H. 74.  2005. Energy saving potentials and air quality benefits of urban heat island mitigation Rep. LBNL–58285, US. Dep. Energy. http://www.osti.gov/scitech/servlets/purl/860475 [Google Scholar]
  75. Wilby R. 75.  2008. Constructing climate change scenarios of urban heat island intensity and air quality. Environ. Plan. B 35:902–19 [Google Scholar]
  76. Bornstein R, Lin Q. 76.  2000. Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos. Environ. 34:507–16 [Google Scholar]
  77. Bornstein R, LeRoy M. 77.  1990. Urban barrier effects on convective and frontal thunderstorms. Fourth AMS Conference on Mesoscale Processes AMS 25–29 Boulder, CO: AMS [Google Scholar]
  78. Parker D. 78.  2010. Urban heat island effects on estimates of observed climate change. WIREs Clim. Change 1:123–33 [Google Scholar]
  79. Trenberth K, Jones P, Ambenje P, Bojariu R, Easterling D. 79.  2007. Observations: surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt 235–36 Cambridge, MA: Cambridge Univ. Press [Google Scholar]
  80. Bowler D, Buyung-Ali L, Knight T, Pullin A. 80.  2010. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landscape Urban Plan. 97:147–55 [Google Scholar]
  81. Shashua-Bar L, Pearlmutter D, Erell E. 81.  2009. The cooling efficiency of urban landscape strategies in a hot dry climate. Landscape Urban Plan. 92:179–86 [Google Scholar]
  82. Cooney CM. 82.  2011. Preparing a people: climate change and public health. Environ. Health Perspect. 119:166–71 [Google Scholar]
  83. Jessup C, Balbus J, Christian C, Haque E, Howe S. 83.  et al. 2013. Climate change, human health, and biomedical research: analysis of the national institutes of health research portfolio: commentary. Environ. Health Perspect.399–404 [Google Scholar]
  84. Chuang W-C, Gober P, Chow W, Golden J. 84.  2013. Sensitivity to heat: a comparative study of Phoenix, Arizona and Chicago, Illinois: 2003–2006. Urban Climate 5:1–18 [Google Scholar]
  85. Changnon S, Kunkel K, Reinke B. 85.  1996. Impacts and responses to the 1995 heat wave: a call to action. Bull. Am. Meteorol. Soc. 77:1497–506 [Google Scholar]
  86. D'Amato G, Baena-Cagnani C, Cecchi L, Annesi-Maesano I, Nunes C. 86.  et al. 2013. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidiscip. Respir. Med. 8:12 [Google Scholar]
  87. Nigel Bark M. 87.  1998. Deaths of psychiatric patients during heat waves. Psychiatr. Serv.1088–90 [Google Scholar]
  88. Chand P, Murthy P. 88.  2008. Climate change and mental health. Reg. Health Forum 12:43–48 [Google Scholar]
  89. Lin S, Hsu W-H, Van Zutphen A, Saha S, Luber G, Hwang S-A. 89.  2012. Excessive heat and respiratory hospitalizations in New York State: estimating current and future public health burden related to climate change. Environ. Health Perspect. 120:1571–77 [Google Scholar]
  90. Uejio C, Wilhelmi O, Golden J, Mills D, Gulino S. 90.  2011. Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place. 17:498–507 [Google Scholar]
  91. Golden J, Hartz D, Brazel A, Luber G, Phelan P. 91.  2008. A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006. Int. J. Biometeorol. 52:471–80 [Google Scholar]
  92. Silva H, Phelan P, Golden J. 92.  2010. Modeling effects of urban heat island mitigation strategies: a case study for Phoenix, Arizona, USA. Int. J. Biometeorol. 54:13–22 [Google Scholar]
  93. Anenberg S, Schwartz J, Shindell D, Amann M, Faluvegi G. 93.  et al. 2012. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ. Health Perspect. 120:831–39 [Google Scholar]
  94. Lwasa S, Mugagga F, Wahab B, Simon D. 94.  2013. Urban and peri-urban agriculture and forestry: transcending poverty alleviation to climate change mitigation and adaptation. Urban Climate 7:92–106 [Google Scholar]
  95. McMichael C, Barnett J, McMichael A. 95.  2012. An Ill wind? Climate change, migration, and health. Environ. Health Perspect. 120:646–54 [Google Scholar]
  96. Juhola S, Driscoll P, de Suarez J, Suarez P. 96.  2013. Social strategy games in communicating trade-offs. Urban Climate 4:102–16 [Google Scholar]
  97. Boumans R, Phillips D, Victery W, Fontaine T. 97.  2014. Developing a model for effects of climate change on human health and health–environment interactions: heat stress in Austin, Texas. Urban Climate 8:78–99 [Google Scholar]
  98. Akbari H, Konopacki S. 98.  2005. Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy 33:721–56 [Google Scholar]
  99. 99. US Energy Information Administration 2015. Annual Energy Outlook 2015 Washington, DC: US Dep. Energy http://www.eia.gov/forecasts/aeo/ [Google Scholar]
  100. Rosenfeld A, Akbari H, Bretz S, Fishman B, Kurn D. 100.  et al. 1995. Mitigation of urban heat islands: materials, utility programs, updates. Energy Build. 22:255–65 [Google Scholar]
  101. Rosenzweig C, Solecki W, Parshall L, Gaffin S, Lynn B. 101.  et al. 2006. Mitigating New York City's heat island with urban forestry, living roofs, and light surfaces Rep. 06-06, N.Y. State Energy Res. Dev. Authority. http://www.giss.nasa.gov/research/news/20060130/103341.pdf [Google Scholar]
  102. Taha H. 102.  1997. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build. 25:99–103 [Google Scholar]
  103. Akbari H, Matthews H. 103.  2012. Global cooling updates: reflective roofs and pavements. Energy Build. 55:2–6 [Google Scholar]
  104. Pompeii II W, Hawkins T. 104.  2011. Assessing the impact of green roofs on urban heat island mitigation: a hardware scale modeling approach. Geogr. Bull. 52:52–61 [Google Scholar]
  105. Lee J, Kim J, Lee M. 105.  2014. Mitigation of urban heat island effect and green roofs. Indoor Built. Environ. 23:162–69 [Google Scholar]
  106. Takebayashi H, Moriyama M. 106.  2007. Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build. Environ. 42:2971–79 [Google Scholar]
  107. Karlessi T, Santamouris M, Apostolakis K, Synnefa A, Livada I. 107.  2009. Development and testing of thermochromic coatings for buildings and urban structures. Solar Energy 83:538–51 [Google Scholar]
  108. Balling RJ, Brazel S. 108.  1987. Time and space characteristics of the Phoenix urban heat island. J. Ariz. Nev. Acad. Sci. 21:275–81 [Google Scholar]
  109. Gui J, Phelan P, Kaloush K, Golden J. 109.  2007. Impact of pavement thermophysical properties on surface temperatures. J. Mater. Civ. Eng. 19:8683–90 [Google Scholar]
  110. Rephaeli E, Raman A, Fan S. 110.  2013. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13:1457–61 [Google Scholar]
  111. Golden J, Carlson J, Kaloush K, Phelan P. 111.  2007. A comparative study of the thermal and radiative impacts of photovoltaic canopies on pavement surface temperatures. Solar Energy 81:872–83 [Google Scholar]
  112. Steeneveld G, Koopmans S, Heusinkveld B, Theeuwes N. 112.  2014. Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landscape Urban Plan. 121:92–96 [Google Scholar]
  113. Rossi F, Pisello A, Nicolini A, Filipponi M, Palombo M. 113.  2014. Analysis of retro-reflective surfaces for urban heat island mitigation: a new analytical model. Appl. Energy 114:621–31 [Google Scholar]
  114. Golden JS. 114.  2014. The urban heat island—a sustainable systems complexity. White Pap., Center Sustain. Comm., Duke Univ. http://center.sustainability.duke.edu/reports [Google Scholar]
  115. Nowak D, Dwyer J. 115.  2007. Understanding the benefits and costs of urban forest ecosystems. Urban and Community Forestry in the Northeast JE Kuser 25–46 Dordrecht: Springer, 2nd ed.. [Google Scholar]
/content/journals/10.1146/annurev-environ-102014-021155
Loading
/content/journals/10.1146/annurev-environ-102014-021155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error