Approximately 40% of the global population relies on traditional bioenergy, accounting for 9% of global energy use and 55% of global wood harvest. However, knowledge about the environmental impacts of traditional bioenergy is fragmented. This review addresses several persistent questions and summarizes recent research on land cover change (LCC) and pollution emissions resulting from traditional bioenergy use. We also review recent studies analyzing transitions from traditional bioenergy to cleaner stoves and fuels.

Between 27 and 34% of the wood fuel harvest in 2009 was unsustainable, with large geographical variations. Almost 300 million rural people live in wood fuel “hotspots,” concentrated in South Asia and East Africa, creating risks of wood-fuel-driven degradation. Different fuels and stoves show variation in climate-forcing emissions. Many, but not all, nontraditional stoves result in lower emissions than traditional models. Traditional bioenergy makes substantial contributions to anthropogenic black carbon (BC) emissions (18–30%) and small contributions to total anthropogenic climate impacts (2–8%). Transitions from traditional fuels and devices have proven difficult. Stacking, i.e., the use of multiple devices and fuels to satisfy household energy needs, is common, showing the need to shift stove interventions from the common approach that promotes one fuel and one device to integrated approaches that incorporate deep understanding of local needs and practices, and multiple fuels and devices, while monitoring residual use of traditional technologies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Legros G, Havet I, Bruce N, Bonjour S. 1.  2009. The Energy Access Situation in Developing Countries: A Review Focusing on the Least Developed Countries and Sub-Saharan Africa. New York: UNDP/WHO [Google Scholar]
  2. Riahi K, Dentener F, Gielen D, Grubler A, Jewell J. 2.  et al. 2012. Energy pathways for sustainable development. See Ref. 152 1203–306
  3. Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S. 3.  et al. 2013. Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environ. Health Perspect. 121:784–90 [Google Scholar]
  4. 4. Food Agric. Organ. U.N. (FAOSTAT) 2013. Forestry Production and Trade Rome: U.N. http://faostat3.fao.org/download/F/*/E [Google Scholar]
  5. Grubler A, Johansson TB, Mundaca L, Nakicenovic N, Pachauri S. 5.  et al. 2012. Energy primer. See Ref. 152 99–150
  6. Smith P, Bustamante M, Ahammad H, Clark H, Dong H. 6.  et al. 2014. Agriculture, forestry and other land use (AFOLU). Working Group III: Mitigation of Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona 811–922 Bonn: IPCC [Google Scholar]
  7. Bailis R, Drigo R, Ghilardi A, Masera O. 7.  2015. The carbon footprint of traditional woodfuels. Nat. Clim. Change 5:266–72 [Google Scholar]
  8. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P. 8.  et al. 2011. Bioenergy. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation O Edenhofer, R Pichs-Madruga, Y Sokona, K Seyboth, P Matschoss, et al. 209–332 Bonn, Ger.: IPCC [Google Scholar]
  9. Singh P, Gundimeda H. 9.  2014. Life cycle energy analysis (LCEA) of cooking fuel sources used in India households. Energy Environ. Eng. 2:20–30 [Google Scholar]
  10. Smith K, Uma R, Kishore VVN, Zhang J, Joshi V, Khalil MAK. 10.  2000. Greenhouse implications of household stoves: an analysis from India. Annu. Rev. Energy Environ. 25:741–63 [Google Scholar]
  11. Jetter J, Zhao Y, Smith KR, Khan B, Yelverton T. 11.  et al. 2012. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol. 46:10827–34 [Google Scholar]
  12. Smith KR, Bruce N, Balakrishnan K, Adair-Rohani H, Balmes J. 12.  et al. 2014. Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu. Rev. Public Health 35:185–206 [Google Scholar]
  13. Masera O, Navia J. 13.  1997. Fuel switching or multiple cooking fuels? Understanding inter-fuel substitution patterns in rural Mexican households. Biomass Bioenergy 12:347–61 [Google Scholar]
  14. 14. World Health Organization (WHO) 2006. Fuel for Life: Household Energy and Health Geneva, Switz.: WHO [Google Scholar]
  15. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T. 15.  et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118:5380–552 [Google Scholar]
  16. Unger N, Bond TC, Wang JS, Koch DM, Menon S. 16.  et al. 2010. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci. 107:3382–87 [Google Scholar]
  17. Bailis R. 17.  2004. Wood in household energy use. Encyclopedia of Energy CJ Cleveland 509–26 New York: Elsevier Sci. [Google Scholar]
  18. Masera O, Diaz R, Berrueta V. 18.  2005. From cookstoves to cooking systems: the integrated program on sustainable household energy use in Mexico. Energy Sustain. Dev. 9:25–36 [Google Scholar]
  19. Masera O, Saatkamp B, Kammen D. 19.  2000. From linear fuel switching to multiple cooking strategies: a critique and alternative to the energy ladder model. World Dev. 28:2083–103 [Google Scholar]
  20. Ruiz-Mercado I, Masera O. 20.  2015. Patterns of stove use in the context of fuel–device stacking: rationale and implications. EcoHealth 12:42–56 [Google Scholar]
  21. Mehta S, Shin H, Burnett R, North T, Cohen AJ. 21.  2013. Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease. Air Q. Atmos. Health 6:69–83 [Google Scholar]
  22. Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, Bruce N. 22.  2008. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull. World Health Organ. 86:390–98C [Google Scholar]
  23. Kurmi OP, Semple S, Simkhada P, Smith WCS, Ayres JG. 23.  2010. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax 65:221–28 [Google Scholar]
  24. Simon GL, Bailis R, Baumgartner J, Hyman J, Laurent A. 24.  2014. Current debates and future research needs in the clean cookstove sector. Energy Sustain. Dev. 20:49–57 [Google Scholar]
  25. Anenberg SC, Balakrishnan K, Jetter J, Masera O, Mehta S. 25.  et al. 2013. Cleaner cooking solutions to achieve health, climate, and economic cobenefits. Environ. Sci. Technol. 47:3944–52 [Google Scholar]
  26. Drigo R, Salbitano F. 26.  2008. WISDOM for cities: analysis of wood energy and urbanization using WISDOM methodology Rep., For. Dep., FAO, Rome, Italy [Google Scholar]
  27. Hosonuma N, Herold M, Sy VD, Fries RSD, Brockhaus M. 27.  et al. 2012. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7:044009 [Google Scholar]
  28. Eckholm E. 28.  1975. The Other Energy Crisis: Firewood Washington, DC: Worldwatch [Google Scholar]
  29. de Montalembert MR, Clement J. 29.  1983. Fuelwood supplies in the developing countries Rep. 42, FAO, Rome, Italy [Google Scholar]
  30. 30. FAO 1978. Forestry for local community development Rep. 07, FAO, Rome, Italy [Google Scholar]
  31. 31. FAO 1983. Simple technologies for charcoal making Rep. 41, FAO, Rome, Italy [Google Scholar]
  32. Arnold JEM, Dewees P. 32.  1997. Farms, Trees and Farmers: Responses to Agricultural Intensification London: Earthscan [Google Scholar]
  33. Arnold M, Kohlin G, Persson R, Shepherd G. 33.  2003. Fuelwood Revisited: What Has Changed in the Last Decade? Rep. 39, Cent. Int. For. Res., Bogor, Indonesia [Google Scholar]
  34. Leach G, Mearns R. 34.  1988. Beyond the Woodfuel Crisis: People, Land, and Trees in Africa London: Earthscan [Google Scholar]
  35. 35. FAO 2012. FRA 2015: terms and definitions Forest Res. Assess. Work. Pap. 180, Forestry Dep., FAO, Rome, Italy. http://www.fao.org/docrep/017/ap862e/ap862e00.pdf [Google Scholar]
  36. Hansfort S, Mertz O. 36.  2011. Challenging the woodfuel crisis in West African woodlands. Hum. Ecol. 39:583–95 [Google Scholar]
  37. Singh G, Rawat GS, Verma D. 37.  2010. Comparative study of fuelwood consumption by villagers and seasonal “Dhaba owners” in the tourist affected regions of Garhwal Himalaya, India. Energy Policy 38:1895–99 [Google Scholar]
  38. Ahrends A, Burgess ND, Milledge SAH, Bulling MT, Fisher B. 38.  et al. 2010. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc. Natl. Acad. Sci. 107:14556–61 [Google Scholar]
  39. Hiemstra-van der Horst G, Hovorka AJ. 39.  2009. Fuelwood: the “other” renewable energy source for Africa?. Biomass Bioenergy 33:1605–16 [Google Scholar]
  40. Namaalwa J, Sankhayan PL, Hofstad O. 40.  2007. A dynamic bio-economic model for analyzing deforestation and degradation: an application to woodlands in Uganda. Forest Policy Econ. 9:479–95 [Google Scholar]
  41. Sankhayan PL, Hofstad O. 41.  2001. A village-level economic model of land clearing, grazing, and wood harvesting for sub-Saharan Africa: with a case study in southern Senegal. Ecol. Econ. 38:423–40 [Google Scholar]
  42. Hartter J, Boston K. 42.  2007. An integrated approach to modeling resource utilization for rural communities in developing countries. J. Environ. Manag. 85:78–92 [Google Scholar]
  43. Sankhayan PL, Gurung N, Sitaula BK, Hofstad O. 43.  2003. Bio-economic modeling of land use and forest degradation at watershed level in Nepal. Agric. Ecosyst. Environ. 94:105–16 [Google Scholar]
  44. Hofstad O. 44.  1997. Woodland deforestation by charcoal supply to Dar es Salaam. J. Environ. Econ. Manag. 33:17–32 [Google Scholar]
  45. Namaalwa J, Hofstad O, Sankhayan PL. 45.  2009. Achieving sustainable charcoal supply from woodlands to urban consumers in Kampala, Uganda. Int. For. Rev. 11:64–78 [Google Scholar]
  46. Alam MS, Islam KK, Huq AMZ. 46.  1999. Simulation of rural household fuel consumption in Bangladesh. Energy 24:743–52 [Google Scholar]
  47. Rüger N, Williams-Linera G, Kissling W, Huth A. 47.  2008. Long-term impacts of fuelwood extraction on a tropical montane cloud forest. Ecosystems 11:868–81 [Google Scholar]
  48. Masera O, Ghilardi A, Drigo R, Trossero MA. 48.  2006. WISDOM: A GIS-based supply demand mapping tool for woodfuel management. Biomass Bioenergy 30:618–37 [Google Scholar]
  49. Top N, Mizoue N, Ito S, Kai S, Nakao T, Ty S. 49.  2006. Re-assessment of woodfuel supply and demand relationships in Kampong Thom Province, Cambodia. Biomass Bioenergy 30:134–43 [Google Scholar]
  50. Bolstad PV, Gragson TL. 50.  2008. Resource abundance constraints on the early post-contact Cherokee population. J. Archaeol. Sci. 35:563–76 [Google Scholar]
  51. Top N, Mizoue N, Ito S, Kai S. 51.  2004. Spatial analysis of woodfuel supply and demand in Kampong Thom Province, Cambodia. Forest Ecol. Manag. 194:369–78 [Google Scholar]
  52. Pokharel S, Kharal D, Ozdamar L. 52.  2004. Spatial model for wood energy analysis. Int. J. Glob. Energy Issues 21:79–98 [Google Scholar]
  53. Shackleton CM. 53.  1993. Fuelwood harvesting and sustainable utilisation in a communal grazing land and protected area of the eastern Transvaal Lowveld. Biol. Conserv. 63:247–54 [Google Scholar]
  54. Merle C, Gautier D. 54.  2003. Modelling fuel wood felling in the villages of southern Maroua (Cameroon). Mappe Monde 69:13–19 [Google Scholar]
  55. van Heist M, Kooiman A. 55.  1992. Modelling fuelwood availability with GIS: a case study in Botswana. ITC J. 3:277–84 [Google Scholar]
  56. Ghilardi A, Guerrero G, Masera O. 56.  2007. Spatial analysis of residential fuelwood supply and demand patterns in Mexico using the WISDOM approach. Biomass Bioenergy 31:475–91 [Google Scholar]
  57. Ghilardi A, Guerrero G, Masera O. 57.  2009. A GIS-based methodology for highlighting fuelwood supply/demand imbalances at the local level: a case study for Central Mexico. Biomass Bioenergy 33:957–72 [Google Scholar]
  58. Drigo R, Masera O, Trossero M. 58.  2002. Woodfuel Integrated Supply/Demand Overview Mapping—WISDOM: a geographical representation of woodfuel priority areas. Unasylva (English Ed.) 53:36–40 [Google Scholar]
  59. An L, He G, Liang Z, Liu J. 59.  2006. Impacts of demographic and socioeconomic factors on spatio-temporal dynamics of panda habitat. Human Exploitation and Biodiversity Conservation D Hawksworth, A Bull 3–23 Amsterdam: Springer [Google Scholar]
  60. An L, Linderman M, Qi J, Shortridge A, Liu J. 60.  2005. Exploring complexity in a human–environment system: an agent-based spatial model for multidisciplinary and multiscale integration. Ann. Assoc. Am. Geogr. 95:54–79 [Google Scholar]
  61. An L, Liu J. 61.  2010. Long-term effects of family planning and other determinants of fertility on population and environment: agent-based modeling evidence from Wolong Nature Reserve, China. Popul. Environ. 31:427–59 [Google Scholar]
  62. Chen X, Viña A, Shortridge A, An L, Liu J. 62.  2014. Assessing the effectiveness of payments for ecosystem services: an agent-based modeling approach. Ecol. Soc. 19:7 [Google Scholar]
  63. Linderman MA, An L, Bearer S, He G, Ouyang Z, Liu J. 63.  2006. Interactive effects of natural and human disturbances on vegetation dynamics across landscapes. Ecol. Appl. 16:452–63 [Google Scholar]
  64. Cantarello E, Lovegrove A, Orozumbekov A, Birch J, Brouwers N, Newton AC. 64.  2014. Human impacts on forest biodiversity in protected walnut-fruit forests in Kyrgyzstan. J. Sustain. For. 33:454–81 [Google Scholar]
  65. Christensen M, Rayamajhi S, Meilby H. 65.  2009. Balancing fuelwood and biodiversity concerns in rural Nepal. Ecol. Model. 220:522–32 [Google Scholar]
  66. Ghilardi A, Bailis R, Mas JF, Skutsch M, Elvir JA. 66.  et al. 2015. Spatiotemporal modeling of fuelwood environmental impacts: towards an improved accounting of non-renewable biomass. Environ. Model. Softw. Rev. In press [Google Scholar]
  67. Hughes A, Matsika R, Prasad G, Twine W. 67.  2009. A model methodology representing woodfuel supply and demand dynamics Presented at Conf. Domestic Use Energy, 7th, Cape Town, S. Afr. [Google Scholar]
  68. Ghilardi A, Mas J-F. 68.  2011. Spatial modeling of fuelwood extraction dynamics: a case study for Honduras Presented at Reunión Nacional de la Sociedad de Especialistas Latinoamericanos en Percepción Remota y Sistemas de Información Espaciales (SELPER), 19th, Morelia, Mexico [Google Scholar]
  69. Salerno F, Viviano G, Thakuri S, Flury B, Maskey RK. 69.  et al. 2010. Energy, forest, and indoor air pollution models for Sagarmatha National Park and Buffer Zone, Nepal: implementation of a participatory modeling framework. Mt. Res. Dev. 30:113–26 [Google Scholar]
  70. Drigo R, Bailis R, Ghilardi A, Masera O. 70.  2014. Pan-tropical analysis of woodfuel supply, demand and sustainability. Tier I Final Rep., Yale-UNAM Proj., Glob. Alliance Clean Cookstoves Washington, DC: http://www.wisdomprojects.net/global/csdetail.asp?id=31# [Google Scholar]
  71. Bensel T. 71.  2008. Fuelwood, deforestation, and land degradation: 10 years of evidence from Cebu Province, the Philippines. Land Degrad. Dev. 19:587–605 [Google Scholar]
  72. 72. World Rainforest Movement (WRM) 2001. Cameroon: research questions myths about fuelwood use and deforestation. WRM Bull. 43:3–4 [Google Scholar]
  73. Wunder S. 73.  1996. Deforestation and the uses of wood in the Ecuadorian Andes. Mt. Res. Dev. 16:367–81 [Google Scholar]
  74. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA. 74.  et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850–53 [Google Scholar]
  75. 75. FAO. 2010. Global Forest Resources Assessment 2010 Rome: U.N. [Google Scholar]
  76. Smith KR, Khalil MAK, Rasmussen RA, Thorneloe SA, Manegdeg F, Apte M. 76.  1993. Greenhouse gases from biomass and fossil fuel stoves in developing countries: a Manilla pilot study. Chemosphere 26:479–505 [Google Scholar]
  77. Smith KR, Haigler E. 77.  2008. Co-benefits of climate mitigation and health protection in energy systems: scoping methods. Annu. Rev. Public Health 29:11–25 [Google Scholar]
  78. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT. 78.  2001. Measurement of emissions from air pollution sources. 3. C1−C29 organic compounds from fireplace combustion of wood. Environ. Sci. Technol. 35:1716–28 [Google Scholar]
  79. Shen G, Xue M, Wei S, Chen Y, Wang B. 79.  et al. 2013. Influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning. J. Environ. Sci. (China) 25:511–19 [Google Scholar]
  80. Shen G, Wei S, Zhang Y, Wang B, Wang R. 80.  et al. 2013. Emission and size distribution of particle-bound polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Biomass Bioenergy 55:141–47 [Google Scholar]
  81. Shen G, Wei S, Wei W, Zhang Y, Min Y. 81.  et al. 2012. Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China. Environ. Sci. Technol. 46:4207–14 [Google Scholar]
  82. Huangfu Y, Li H, Chen X, Xue C, Chen C, Liu G. 82.  2014. Effects of moisture content in fuel on thermal performance and emission of biomass semi-gasified cookstove. Energy Sustain. Dev. 21:60–65 [Google Scholar]
  83. Jetter J, Zhao Y, Smith KR, Khan B, Yelverton T. 83.  et al. 2012. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol. 46:10827–34 [Google Scholar]
  84. Jetter JJ, Kariher P. 84.  2009. Solid-fuel household cook stoves: characterization of performance and emissions. Biomass Bioenergy 33:294–305 [Google Scholar]
  85. MacCarty N, Still D, Ogle D. 85.  2010. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain. Dev. 14:161–71 [Google Scholar]
  86. Li X, Wang S, Duan L, Hao J, Nie Y. 86.  2009. Carbonaceous aerosol emissions from household biofuel combustion in China. Environ. Sci. Technol. 43:6076–81 [Google Scholar]
  87. Shen G, Tao S, Wei S, Chen Y, Zhang Y. 87.  et al. 2013. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China. Environ. Sci. Technol. 47:2998–3005 [Google Scholar]
  88. Shen G, Tao S, Wei S, Zhang Y, Wang R. 88.  et al. 2012. Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning. Environ. Sci. Technol. 46:6409–16 [Google Scholar]
  89. Wei W, Zhang W, Hu D, Ou L, Tong Y. 89.  et al. 2012. Emissions of carbon monoxide and carbon dioxide from uncompressed and pelletized biomass fuel burning in typical household stoves in China. Atmos. Environ. 56:136–42 [Google Scholar]
  90. Zhang W, Tong Y, Wang H, Chen L, Ou L. 90.  et al. 2014. Emission of metals from pelletized and uncompressed biomass fuels combustion in rural household stoves in China. Sci. Rep. 4:5611 [Google Scholar]
  91. Roden CA, Bond TC, Conway S, Osorto Pinel AB, MacCarty N, Still D. 91.  2009. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos. Environ. 43:1170–81 [Google Scholar]
  92. Johnson M, Edwards R, Masera O. 92.  2010. Improved stove programs need robust methods to estimate carbon offsets. Climatic Change 102:641–49 [Google Scholar]
  93. Preble CV, Hadley OL, Gadgil AJ, Kirchstetter TW. 93.  2014. Emissions and climate-relevant optical properties of pollutants emitted from a three-stone fire and the Berkeley-Darfur stove tested under laboratory conditions. Environ. Sci. Technol. 48:6484–91 [Google Scholar]
  94. Saud T, Saxena M, Singh DP, Saraswati, Dahiya M. 94.  et al. 2013. Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India. Atmos. Environ. 71:158–69 [Google Scholar]
  95. Shen G, Xue M, Chen Y, Yang C, Li W. 95.  et al. 2014. Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves. Atmos. Environ. 89:337–45 [Google Scholar]
  96. Arora P, Jain S, Sachdeva K. 96.  2013. Physical characterization of particulate matter emitted from wood combustion in improved and traditional cookstoves. Energy Sustain. Dev. 17:497–503 [Google Scholar]
  97. Johnson M, Edwards R, Alatorre Frenk C, Masera O. 97.  2008. In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmos. Environ. 42:1206–22 [Google Scholar]
  98. Ludwig J, Marufu LT, Huber B, Andreae MO, Helas G. 98.  2003. Domestic combustion of biomass fuels in developing countries: a major source of atmospheric pollutants. J. Atmos. Chem. 44:23–37 [Google Scholar]
  99. Roden CA, Bond TC, Conway S, Pinel ABO. 99.  2006. Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ. Sci. Technol. 40:6750–57 [Google Scholar]
  100. Shen G, Chen Y, Wei S, Fu X, Zhu Y, Tao S. 100.  2013. Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions. Atmos. Environ. 79:79–84 [Google Scholar]
  101. Wang S, Wei W, Du L, Li G, Hao J. 101.  2009. Characteristics of gaseous pollutants from biofuel-stoves in rural China. Atmos. Environ. 43:4148–54 [Google Scholar]
  102. Zhang H, Wang S, Hao J, Wan L, Jiang J. 102.  et al. 2012. Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China. Atmos. Environ. 51:94–99 [Google Scholar]
  103. Shen G, Yang Y, Wang W, Tao S, Zhu C. 103.  et al. 2010. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environ. Sci. Technol. 44:7157–62 [Google Scholar]
  104. Shen G, Wang W, Yang Y, Ding J, Xue M. 104.  et al. 2011. Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas–particle partitioning. Environ. Sci. Technol. 45:1206–12 [Google Scholar]
  105. Shen G, Wei S, Zhang Y, Wang R, Wang B. 105.  et al. 2012. Emission of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China. Atmos. Environ. 60:234–37 [Google Scholar]
  106. Carter EM, Shan M, Yang X, Li J, Baumgartner J. 106.  2014. Pollutant emissions and energy efficiency of Chinese gasifier cooking stoves and implications for future intervention studies. Environ. Sci. Technol. 48:6461–67 [Google Scholar]
  107. Irfan M, Riaz M, Arif MS, Shahzad SM, Saleem F. 107.  et al. 2014. Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan. Atmos. Environ. 84:189–97 [Google Scholar]
  108. Bertschi IT, Yokelson RJ, Ward DE, Christian TJ, Hao WM. 108.  2003. Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy. J. Geophys. Res. Atmos. 108:8469 [Google Scholar]
  109. Brocard D, Lacaux C, Lacaux JP, Kouadio G, Yoboue V. 109.  1996. Emissions from the combustion of biofuels in Western Africa. Biomass Burning and Global Change JS Levine 350–60 Cambridge, MA: MIT Press [Google Scholar]
  110. Pennise D, Smith KR, Kithinji JP, Rezende ME, Raad TJ. 110.  et al. 2001. Emissions of greenhouse gases and other airborne pollutants from charcoal-making in Kenya and Brazil. J. Geophys. Res. Atmos. 106:24143–55 [Google Scholar]
  111. Smith KR, McCracken JP, Weber MW, Hubbard A, Jenny A. 111.  et al. 2011. Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): a randomised controlled trial. Lancet 378:1717–26 [Google Scholar]
  112. McCracken JP, Schwartz J, Diaz A, Bruce N, Smith KR. 112.  2013. Longitudinal relationship between personal CO and personal PM2.5 among women cooking with woodfired cookstoves in Guatemala. PLoS ONE 8:e55670 [Google Scholar]
  113. Olivier JGJ, Van Aardenne JA, Dentener FJ, Pagliari V, Ganzeveld LN, Peters JAHW. 113.  2005. Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distribution of key sources in 2000. Environ. Sci. 2:81–99 [Google Scholar]
  114. Cofala J, Amann M, Klimont Z, Kupiainen K, Höglund-Isaksson L. 114.  2007. Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos. Environ. 41:8486–99 [Google Scholar]
  115. 115. GACC 2014. Our Mission Washington, DC: U.N. Found http://cleancookstoves.org/about/our-mission/index.html [Google Scholar]
  116. Foell W, Pachauri S, Spreng D, Zerriffi H. 116.  2011. Household cooking fuels and technologies in developing economies. Energy Policy 39:7487–96 [Google Scholar]
  117. 117. Red Latinoamericana de Cocinas/Estufas Limpias 2014. Informe del Primer Seminario Taller Latinonamericano de Cocinas/Estufas Limpias “Promoviendo la adopción y uso sostenible en gran escala.”. Lima, Peru: Cocinas Mejoradas http://www.cocinasmejoradasperu.org.pe/documentacion/Intervenciones/Informe_01_copia.pdf [Google Scholar]
  118. 118. GACC 2013. Partner Directory. Washington DC: United Nations Foundation http://cleancookstoves.org/partners/ [Google Scholar]
  119. Barnes BR. 119.  2014. Behavioural change, indoor air pollution and child respiratory health in developing countries: a review. Int. J. Environ. Res. Public Health 11:4607–18 [Google Scholar]
  120. Elias RJ, Victor DG. 120.  2005. Energy transitions in developing countries: a review of concepts and literature Work. Pap., Program Energy Sustain. Dev., Stanford Univ., Stanford, CA [Google Scholar]
  121. Kowsari R, Zerriffi H. 121.  2011. Three dimensional energy profile: a conceptual framework for assessing household energy use. Energy Policy 39:7505–17 [Google Scholar]
  122. Hosier R, Dowd J. 122.  1987. Household fuel choice in Zimbabwe: an empirical test of the energy ladder hypothesis. Resour. Energy 9:347–61 [Google Scholar]
  123. Smith KR. 123.  1987. Biofuels, Air Pollution, and Health: A Global Review New York: Plenum Press [Google Scholar]
  124. Trac CJ. 124.  2011. Climbing without the energy ladder: limitations of rural energy development for forest conservation. Rural Soc. 20:308–20 [Google Scholar]
  125. Madubansi M, Shackleton CM. 125.  2006. Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa. Energy Policy 34:4081–92 [Google Scholar]
  126. Andadari RK, Mulder P, Rietveld P. 126.  2014. Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia. Energy Policy 66:436–49 [Google Scholar]
  127. Ruiz-Mercado I, Masera O, Zamora H, Smith KR. 127.  2011. Adoption and sustained use of improved cookstoves. Energy Policy 39:7557–66 [Google Scholar]
  128. Zamora H. 128.  2010. Impactos Socio-Ecologicos del uso Sostenido de Estufas Eficientes de leña en Comunidades de Michoacán Master's Thesis, Univ. Nac. Auton. de Mex., Morelia, Michoac. [Google Scholar]
  129. Redman A. 129.  2010. Transitioning towards sustainable cooking systems: with a case study of improved cookstoves in rural El Salvador. Master's Thesis, Ariz. State Univ., Tempe [Google Scholar]
  130. Johnson NG, Bryden KM. 130.  2012. Energy supply and use in a rural West African village. Energy 43:283–92 [Google Scholar]
  131. Mukhopadhyay R, Sambandam S, Pillarisetti A, Jack D, Mukhopadhyay K. 131.  et al. 2012. Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions. Global Health Action 5:19016 [Google Scholar]
  132. Singh S. 132.  2014. The Kaleidoscope of Cooking: Understanding Cooking Behaviour and Stove Preferences in Rural India Deutsche Gesellschaft für International Zusammenarbeit (GIZ) GmbH, Indo-German Energy Programme—Renewable Energy Component (IGEN-RE), New Delhi, India. http://www.giz.de/en/downloads/giz2014-en-kaleidoscope-of-cooking-india.pdf [Google Scholar]
  133. Thurber MC, Phadke H, Nagavarapu S, Shrimali G, Zerriffi H. 133.  2014. “Oorja” in India: assessing a large-scale commercial distribution of advanced biomass stoves to households. Energy Sustain. Dev. 19:138–50 [Google Scholar]
  134. Berrueta VM, Edwards RD, Masera OR. 134.  2008. Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy 33:859–70 [Google Scholar]
  135. Serrano-Medrano M, Arias-Chalico T, Ghilardi A, Masera O. 135.  2014. Spatial and temporal projection of fuelwood and charcoal consumption in Mexico. Energy Sustain. Dev. 19:39–46 [Google Scholar]
  136. Nansaior A, Patanothai A, Rambo AT, Simaraks S. 136.  2011. Climbing the energy ladder or diversifying energy sources? The continuing importance of household use of biomass energy in urbanizing communities in Northeast Thailand. Biomass Bioenergy 35:4180–88 [Google Scholar]
  137. Armendáriz-Arnez C, Edwards RD, Johnson M, Rosas IA, Espinosa F, Masera OR. 137.  2010. Indoor particle size distributions in homes with open fires and improved Patsari cook stoves. Atmos. Environ. 44:2881–86 [Google Scholar]
  138. Sambandam S, Balakrishnan K, Ghosh S, Sadasivam A, Madhav S. 138.  et al. 2014. Can currently available advanced combustion biomass cook-stoves provide health relevant exposure reductions? Results from initial assessment of select commercial models in India. EcoHealth 12:25–41 [Google Scholar]
  139. Schilmann A, Catalan-Vazquez M, Riojas Rodriguez H. 139.  2014. A follow up study after eight years of an efficient biomass stove intervention in Mexico. The 5th Biennial Conference of the International Association for Ecology and Health Université du Québec à Montréal: EcoHealth http://ecohealth2014.uqam.ca/upload/files/Abstract_Book_EcoHealth2014.pdf [Google Scholar]
  140. Armendáriz Arnez C, Edwards RD, Johnson M, Zuk M, Rojas L. 140.  et al. 2008. Reduction in personal exposures to particulate matter and carbon monoxide as a result of the installation of a Patsari improved cook stove in Michoacan Mexico. Indoor Air 18:93–105 [Google Scholar]
  141. Soares BS, Cerqueira GC, Pennachin CL. 141.  2002. DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Model. 154:217–35 [Google Scholar]
  142. Bryan BA, Crossman ND, King D, Meyer WS. 142.  2011. Landscape futures analysis: assessing the impacts of environmental targets under alternative spatial policy options and future scenarios. Environ. Model. Softw. 26:83–91 [Google Scholar]
  143. Paegelow M, Camacho MT. 143.  2008. Modelling Environmental Dynamics. Berlin/Heidelb., Ger.: Springer-Verlag [Google Scholar]
  144. Openshaw K. 144.  2009. Energy Strategy Approach Paper: Sustainable Development Network Washington, DC: World Bank [Google Scholar]
  145. Shindell D. 145.  2011. Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decision Makers Paris: U.N. [Google Scholar]
  146. Zhang R, Wei T, Glomsrød S, Shi Q. 146.  2014. Bioenergy consumption in rural China: evidence from a survey in three provinces. Energy Policy 75:136–45 [Google Scholar]
  147. Heltberg R. 147.  2005. Factors determining household fuel choice in Guatemala. Environ. Dev. Econ. 10:337–61 [Google Scholar]
  148. Martínez-Negrete M, Martínez R, Joaquín R, Sheinbaum C, Masera OR. 148.  2013. Is modernization making villages more energy efficient? A long-term comparative end-use analysis for Cheranatzicurin village, Mexico. Energy Sustain. Dev. 17:463–70 [Google Scholar]
  149. Alberts H, Moreira C, Pérez RM. 149.  1997. Firewood substitution by kerosene stoves in rural and urban areas of Nicaragua, social acceptance, energy policies, greenhouse effect and financial implications. Energy Sustain. Dev 3:26–39 [Google Scholar]
  150. Paredes JL, Rosero RS. 150.  2007. Consumo de leña en el area rural del Canton Cotacachi y propuesta de plantaciones energéticas Undergrad. Thesis, Univ. Técnica Norte, Ibarra, Ecuad. [Google Scholar]
  151. Suárez CS. 151.  2008. Consumo de leña y propuesta de plantaciones energéticas en el area rural del Canton Antonio Ante Provincia de Imbabura Undergrad. Thesis, Univ. Técnica Norte, Ibarra, Ecuad. [Google Scholar]
  152. Johannson TB, Nakicenovic N, Patwardhan A, Gomez-Echeverri L. 152.  2012. Global Energy Assessment: Toward a Sustainable Future Cambridge, UK: Cambridge Univ. Press [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error