The Anthropocene is characterized by a widespread biodiversity crisis that is rivaling prehistoric mass extinctions. Amphibians are the most threatened class of vertebrates. In addition to traditional threats such as land-use conversion and pollution, climate change and introduced diseases are expected to further reduce amphibian biodiversity. The fungal disease chytridiomycosis has caused the rapid extirpation of tens to possibly hundreds of amphibian species. Recent advances have revealed a deep evolutionary history and considerable variation in the virulence of strains of the fungal pathogen, patterns that need to be reconciled with the rapid spread of disease and demise of host populations. A conservation priority is surveillance of a newly discovered species of chytrid fungus that is killing European salamanders. The accelerated discovery of new amphibian species challenges existing conservation resources, but it is an opportunity to fill geographical gaps and to enhance programs aimed at preserving amphibian biodiversity.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. AmphibiaWeb 2015. AmphibiaWeb. Berkeley, CA: Univ. Calif. Berkeley http://amphibiaweb.org/ [Google Scholar]
  2. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL. 2.  et al. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–86 [Google Scholar]
  3. 3. Int. Union Conserv. Nat. Natural Resour. (IUCN) 2014. The IUCN Red List of Threatened Species. Version 2014.3 Cambridge, UK: IUCN http://www.iucnredlist.org/ [Google Scholar]
  4. Wake DB, Vredenburg VT. 4.  2008. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. USA 105:11466–73 [Google Scholar]
  5. Steffen W, Grinevald J, Crutzen P, McNeill J. 5.  2011. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. A 369:842–67 [Google Scholar]
  6. McCallum ML. 6.  2007. Amphibian decline or extinction? Current declines dwarf background extinction rate. J. Herpetol. 41:483–91 [Google Scholar]
  7. Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju SD. 7.  et al. 2007. Global patterns of diversification in the history of modern amphibians. Proc. Natl. Acad. Sci. USA 104:887–92 [Google Scholar]
  8. Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW. 8.  et al. 2010. Scenarios for global biodiversity in the 21st century. Science 330:1496–501 [Google Scholar]
  9. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 9.  1997. Human domination of Earth's ecosystems. Science 277:494–99 [Google Scholar]
  10. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM. 10.  et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–36 [Google Scholar]
  11. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA. 11.  et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–50 [Google Scholar]
  12. 12. Millennium Ecosystem Assessment 2005. Ecosystems and Human Well-Being: Current State and Trends 1 The Millennium Ecosystem Assessment Series Washington, DC: Island Press [Google Scholar]
  13. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC. 13.  et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94 [Google Scholar]
  14. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ. 14.  et al. 2004. Extinction risk from climate change. Nature 427:145–48 [Google Scholar]
  15. Frost DR, Grant T, Faivovich J, Bain RH, Haas A. 15.  et al. 2006. The amphibian tree of life. Bull. Am. Museum Nat. Hist. 297:8–370 [Google Scholar]
  16. Pyron RA, Wiens JJ. 16.  2011. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61:543–83 [Google Scholar]
  17. Padial JM, Miralles A, De la Riva I, Vences M. 17.  2010. The integrative future of taxonomy. Front. Zool. 7:16 [Google Scholar]
  18. Fouquet A, Gilles A, Vences M, Marty C, Blanc M, Gemmell NJ. 18.  2007. Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS ONE 2:e1109 [Google Scholar]
  19. Meegaskumbura M, Bossuyt F, Pethiyagoda R, Manamendra-Arachchi K, Bahir M. 19.  et al. 2002. Sri Lanka: an amphibian hot spot. Science 298:379 [Google Scholar]
  20. Köhler J, Vieites DR, Bonett RM, Garcia FH, Glaw F. 20.  et al. 2005. New amphibians and global conservation: a boost in species discoveries in a highly endangered vertebrate group. Bioscience 55:693–96 [Google Scholar]
  21. Funk WC, Caminer M, Ron SR. 21.  2012. High levels of cryptic species diversity uncovered in Amazonian frogs. Proc. R. Soc. B. 279:1806–14 [Google Scholar]
  22. Gehara M, Crawford AJ, Orrico VGD, Rodriguez A, Lotters S. 22.  et al. 2014. High levels of diversity uncovered in a widespread nominal taxon: continental phylogeography of the Neotropical tree frog Dendropsophus minutus. PLoS ONE 9:e103958 [Google Scholar]
  23. Biju SD, van Bocxlaer I, Mahony S, Dinesh KP, Radhakrishnan C. 23.  et al. 2011. A taxonomic review of the Night Frog genus Nyctibatrachus Boulenger, 1882 in the Western Ghats, India (Anura: Nyctibatrachidae) with description of twelve new species. Zootaxa 3029:1–96 [Google Scholar]
  24. Padial JM, De la Riva I. 24.  2006. Taxonomic inflation and the stability of species lists: the perils of ostrich's behavior. Syst. Biol. 55:859–67 [Google Scholar]
  25. Bell KE, Donnelly MA. 25.  2006. Influence of forest fragmentation on community structure of frogs and lizards in northeastern Costa Rica. Conserv. Biol. 20:1750–60 [Google Scholar]
  26. Catenazzi A, von May R. 26.  2014. Conservation status of amphibians in Peru. Herpetol. Monogr. 28:1–23 [Google Scholar]
  27. Swenson JJ, Young BE, Beck S, Comer P, Cordova JH. 27.  et al. 2012. Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol. 12:1 [Google Scholar]
  28. 28. Frost DR, Am. Mus. Nat. Hist 2014. Amphibian Species of the World 6.0: An Online Reference. New York: Am. Mus. Nat. Hist http://research.amnh.org/vz/herpetology/amphibia/ [Google Scholar]
  29. Gascon C, Collins JP, Moore RD, Church DR, McKay JE, Mendelson JR III. 29.  2007. Amphibian Conservation Action Plan Gland, Switz: IUCN [Google Scholar]
  30. Bishop PJ, Angulo A, Lewis JP, Moore RD, Rabb GB, Garcia Moreno J. 30.  2012. The Amphibian Extinction Crisis—What will it take to put the action into the Amphibian Conservation Action Plan?. S.A.P.I.EN.S 5:5.2 http://sapiens.revues.org/1406 [Google Scholar]
  31. Kamei RG, San Mauro D, Gower DJ, Van Bocxlaer I, Sherratt E. 31.  et al. 2012. Discovery of a new family of amphibians from northeast India with ancient links to Africa. Proc. R. Soc. B 279:2396–401 [Google Scholar]
  32. Che J, Zhou WW, Hu JS, Yan F, Papenfuss TJ. 32.  et al. 2010. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc. Natl. Acad. Sci. USA 107:13765–70 [Google Scholar]
  33. Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. 33.  2009. Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol. 7:e1000056 [Google Scholar]
  34. Iskandar DT, Evans BJ, McGuire JA. 34.  2014. A novel reproductive mode in frogs: a new species of fanged frog with internal fertilization and birth of tadpoles. PLoS ONE 9:e115884 [Google Scholar]
  35. Haddad CFB, Prado CPA. 35.  2005. Reproductive modes in frogs and their unexpected diversity in the Atlantic forest of Brazil. Bioscience 55:207–17 [Google Scholar]
  36. Toledo LF, Garey MV, Costa TRN, Lourenço-de-Moraes R, Hartmann MT, Haddad CFB. 36.  2012. Alternative reproductive modes of Atlantic forest frogs. J. Ethol. 30:331–36 [Google Scholar]
  37. da Silva FR, Almeida-Neto M, do Prado VHM, Haddad CFB, Rossa-Feres DD. 37.  2012. Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest. J. Biogeogr. 39:1720–32 [Google Scholar]
  38. Gomez-Mestre I, Pyron RA, Wiens JJ. 38.  2012. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66:3687–700 [Google Scholar]
  39. Jenkins CN, Pimm SL, Joppa LN. 39.  2013. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. USA 110:E2602–E10 [Google Scholar]
  40. Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC. 40.  et al. 2013. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501:539–42 [Google Scholar]
  41. Ospina OE, Villanueva-Rivera LJ, Corrada-Bravo CJ, Aide TM. 41.  2013. Variable response of anuran calling activity to daily precipitation and temperature: implications for climate change. Ecosphere 4:art47 [Google Scholar]
  42. Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M. 42.  et al. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21:2565–73 [Google Scholar]
  43. Yu DW, Ji YQ, Emerson BC, Wang XY, Ye CX. 43.  et al. 2012. Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3:613–23 [Google Scholar]
  44. Pyron RA, Wiens JJ. 44.  2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. B 280. doi: 10.1098/rspb.2013.1622. http://rspb.royalsocietypublishing.org/content/280/1770/20131622 [Google Scholar]
  45. Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P. 45.  2014. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39:125–59 [Google Scholar]
  46. Chanson J, Hoffmann M, Cox N, Stuart S. 46.  2008. The state of the world's amphibians. Threatened Amphibians of the World SN Stuart, M Hoffmann, J Chanson, N Cox, R Berridge 33–52 Barcelona, Sp: Lynx Ed. [Google Scholar]
  47. La Marca E, Lips KR, Lotters S, Puschendorf R, Ibanez R. 47.  et al. 2005. Catastrophic population declines and extinctions in Neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica 37:190–201 [Google Scholar]
  48. Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL. 48.  et al. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–67 [Google Scholar]
  49. Rohr JR, Raffel TR. 49.  2010. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl. Acad. Sci. USA 107:8269–74 [Google Scholar]
  50. Berger L, Speare R, Daszak P, Green DE, Cunningham AA. 50.  et al. 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rainforests of Australia and Central America. Proc. Natl. Acad. Sci. USA 95:9031–36 [Google Scholar]
  51. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA. 51.  et al. 2006. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc. Natl. Acad. Sci. USA 103:3165–70 [Google Scholar]
  52. Crawford AJ, Lips KR, Bermingham E. 52.  2010. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc. Natl. Acad. Sci. USA 107:13777–82 [Google Scholar]
  53. Catenazzi A, Lehr E, Rodriguez LO, Vredenburg VT. 53.  2011. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the upper Manu National Park, southeastern Peru. Conserv. Biol. 25:382–91 [Google Scholar]
  54. Gilpin ME, Soulé ME. 54.  1986. Minimum viable populations: processes of species extinction. Conservation Biology: The Science of Scarcity and Diversity ME Soulé 19–34 Sunderland, MA: Sinauer Assoc. [Google Scholar]
  55. Fagan WF, Holmes EE. 55.  2006. Quantifying the extinction vortex. Ecol. Lett. 9:51–60 [Google Scholar]
  56. Biton R, Geffen E, Vences M, Cohen O, Bailon S. 56.  et al. 2013. The rediscovered Hula painted frog is a living fossil. Nat. Commun. 4:1959 [Google Scholar]
  57. Smith MA, Green DM. 57.  2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations?. Ecography 28:110–28 [Google Scholar]
  58. Rowe G, Beebee TJC. 58.  2004. Reconciling genetic and demographic estimators of effective population size in the anuran amphibian Bufo calamita. Conserv. Genet. 5:287–98 [Google Scholar]
  59. Schmeller DS, Merila J. 59.  2007. Demographic and genetic estimates of effective population and breeding size in the amphibian Rana temporaria. Conserv. Biol. 21:142–51 [Google Scholar]
  60. Andersen LW, Fog K, Damgaard C. 60.  2004. Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc. R. Soc. B 271:1293–302 [Google Scholar]
  61. Rothermel BB, Semlitsch RD. 61.  2002. An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conserv. Biol. 16:1324–32 [Google Scholar]
  62. Nowakowski AJ, DeWoody JA, Fagan ME, Willoughby JR, Donnelly MA. 62.  2015. Mechanistic insights into landscape genetic structure of two tropical amphibians using field-derived resistance surfaces. Mol. Ecol. 24:580–95 [Google Scholar]
  63. Goldberg CS, Waits LP. 63.  2010. Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol. Ecol. 19:3650–63 [Google Scholar]
  64. Almeida-Gomes M, Rocha CFD. 64.  2015. Habitat loss reduces the diversity of frog reproductive modes in an Atlantic forest fragmented landscape. Biotropica 47:113–18 [Google Scholar]
  65. Whiles MR, Hall RO Jr., Dodds WK, Verburg P, Huryn AD. 65.  et al. 2013. Disease-driven amphibian declines alter ecosystem processes in a tropical stream. Ecosystems 16:146–57 [Google Scholar]
  66. Rugenski AT, Murria C, Whiles MR. 66.  2012. Tadpoles enhance microbial activity and leaf decomposition in a neotropical headwater stream. Freshw. Biology 57:1904–13 [Google Scholar]
  67. Vorosmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A. 67.  et al. 2010. Global threats to human water security and river biodiversity. Nature 467:555–61 [Google Scholar]
  68. Price SJ, Garner TWJ, Nichols RA, Balloux F, Ayres C. 68.  et al. 2014. Collapse of amphibian communities due to an introduced Ranavirus. Curr. Biol. 24:2586–91 [Google Scholar]
  69. Fey SB, Siepelski AM, Nussle S, Cervantes-Yoshida K, Hwan JL. 69.  et al. 2015. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. USA 112:1083–88 [Google Scholar]
  70. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR. 70.  et al. 2007. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth 4:125–34 [Google Scholar]
  71. Kilpatrick AM, Briggs CJ, Daszak P. 71.  2010. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol. Evol. 25:109–18 [Google Scholar]
  72. Voyles J, Young S, Berger L, Campbell C, Voyles WF. 72.  et al. 2009. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–85 [Google Scholar]
  73. Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA. 73.  2007. Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim. Conserv. 10:409–17 [Google Scholar]
  74. Dobson AP, May RM. 74.  1986. Disease and conservation. Conservation Biology: The Science of Scarcity and Diversity ME Soulé 345–65 Sunderland, MA: Sinauer Assoc. [Google Scholar]
  75. Rosenblum EB, James TY, Zamudio KR, Poorten TJ, Ilut D. 75.  et al. 2013. Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc. Natl. Acad. Sci. USA 110:9385–90 [Google Scholar]
  76. Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF. 76.  et al. 2013. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8:e56802 [Google Scholar]
  77. Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ. 77.  2010. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc. Natl. Acad. Sci. USA 107:9689–94 [Google Scholar]
  78. Reeder NMM, Pessier AP, Vredenburg VT. 78.  2012. A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS ONE 7:e33567 [Google Scholar]
  79. Cheng TL, Rovito SM, Wake DB, Vredenburg VT. 79.  2011. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. USA 108:9502–7 [Google Scholar]
  80. Velo-Anton G, Rodriguez D, Savage AE, Parra-Olea G, Lips KR, Zamudio KR. 80.  2012. Amphibian-killing fungus loses genetic diversity as it spreads across the New World. Biol. Conserv. 146:213–18 [Google Scholar]
  81. Retallick RWR, McCallum H, Speare R. 81.  2004. Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biol. 2:1965–71 [Google Scholar]
  82. Longcore JE, Pessier AP, Nichols DK. 82.  1999. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–27 [Google Scholar]
  83. Rodriguez D, Becker CG, Pupin NC, Haddad CFB, Zamudio KR. 83.  2014. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23:774–87 [Google Scholar]
  84. Zhu W, Bai CM, Wang SP, Soto-Azat C, Li XP. 84.  et al. 2014. Retrospective survey of museum specimens reveals historically widespread presence of Batrachochytrium dendrobatidis in China. Ecohealth 11:241–50 [Google Scholar]
  85. 85. Piovia-Scott J, Pope KL, Worth J, Rosenblum EB, Poorten T, et al. 2014. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline. ISME J. 2014:1–9
  86. Morgan JAT, Vredenburg VT, Rachowicz LJ, Knapp RA, Stice MJ. 86.  et al. 2007. Population genetics of the frog-killing fungus Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. USA 104:13845–50 [Google Scholar]
  87. Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F. 87.  et al. 2011. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc. Natl. Acad. Sci. USA 108:18732–36 [Google Scholar]
  88. Voyles J, Johnson LR, Briggs CJ, Cashins SD, Alford RA. 88.  et al. 2014. Experimental evolution alters the rate and temporal pattern of population growth in Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians. Ecol. Evol. 4:3633–41 [Google Scholar]
  89. Retallick RWR, Miera V. 89.  2007. Strain differences in the amphibian chytrid Batrachochytrium dendrobatidis and non-permanent, sub-lethal effects of infection. Dis. Aquatic Organ. 75:201–7 [Google Scholar]
  90. Phillips BL, Puschendorf R. 90.  2013. Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America. Proc. R. Soc. B 280:20131290 [Google Scholar]
  91. Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC. 91.  2011. Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr. Comp. Biol. 51:552–62 [Google Scholar]
  92. Woodhams DC, Bosch J, Briggs CJ, Cashins S, Davis LR. 92.  et al. 2011. Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front. Zool. 8:8 [Google Scholar]
  93. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR. 93.  et al. 2009. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3:818–24 [Google Scholar]
  94. Ellison AR, Savage AE, DiRenzo GV, Langhammer P, Lips KR, Zamudio KR. 94.  2014. Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog. Atelopus zeteki G3:1275–89 [Google Scholar]
  95. Fites JS, Ramsey JP, Holden WM, Collier SP, Sutherland DM. 95.  et al. 2013. The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science 342:366–69 [Google Scholar]
  96. Savage AE, Zamudio KR. 96.  2011. MHC genotypes associate with resistance to a frog-killing fungus. Proc. Natl. Acad. Sci. USA 108:16705–10 [Google Scholar]
  97. Flechas SV, Sarmiento C, Cardenas ME, Medina EM, Restrepo S, Amezquita A. 97.  2012. Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of Atelopus. PLoS ONE 7:e44832 [Google Scholar]
  98. Gervasi SS, Hunt EG, Lowry M, Blaustein AR. 98.  2014. Temporal patterns in immunity, infection load and disease susceptibility: understanding the drivers of host responses in the amphibian-chytrid fungus system. Funct. Ecol. 28:569–78 [Google Scholar]
  99. Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Kupfer E. 99.  et al. 2014. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE 9:e104590 [Google Scholar]
  100. Rollins-Smith LA, Carey C, Longcore J, Doersam JK, Boutte A. 100.  et al. 2002. Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev. Comp. Immunol. 26:471–79 [Google Scholar]
  101. Rollins-Smith LA. 101.  2009. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim. Biophys. Acta-Biomembranes 1788:1593–99 [Google Scholar]
  102. Jani AJ, Briggs CJ. 102.  2014. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA 111:E5049–E58 [Google Scholar]
  103. McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM. 103.  et al. 2014. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature 511:224–27 [Google Scholar]
  104. Piotrowski JS, Annis SL, Longcore JE. 104.  2004. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15 [Google Scholar]
  105. Bustamante HM, Livo LJ, Carey C. 105.  2010. Effects of temperature and hydric environment on survival of the Panamanian golden frog infected with a pathogenic chytrid fungus. Integr. Zool. 5:143–53 [Google Scholar]
  106. Stevenson LA, Alford RA, Bell SC, Roznik EA, Berger L, Pike DA. 106.  2013. Variation in thermal performance of a widespread pathogen, the amphibian chytrid fungus Batrachochytrium dendrobatidis. PLoS ONE 8:e73830 [Google Scholar]
  107. Catenazzi A, Lehr E, Vredenburg VT. 107.  2014. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes. Conserv. Biol. 28:509–17 [Google Scholar]
  108. Kriger KM, Pereoglou F, Hero J-M. 108.  2007. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in Eastern Australia. Conserv. Biol. 21:1280–90 [Google Scholar]
  109. Whitfield SM, Kerby J, Gentry LR, Donnelly MA. 109.  2012. Temporal variation in infection prevalence by the amphibian chytrid fungus in three species of frogs at La Selva, Costa Rica. Biotropica 44:779–84 [Google Scholar]
  110. Kriger KM, Hero JM. 110.  2007. Large-scale seasonal variation in the prevalence and severity of chytridiomycosis. J. Zool. 271:352–59 [Google Scholar]
  111. Knapp RA, Briggs CJ, Smith TC, Maurer JR. 111.  2011. Nowhere to hide: impact of a temperature-sensitive amphibian pathogen along an elevation gradient in the temperate zone. Ecosphere 2:art93 [Google Scholar]
  112. Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM. 112.  et al. 2007. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob. Change Biol. 13:288–99 [Google Scholar]
  113. Richards-Zawacki CL. 113.  2010. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc. R. Soc. B 277:519–28 [Google Scholar]
  114. Rowley JJL, Alford RA. 114.  2013. Hot bodies protect amphibians against chytrid infection in nature. Sci. Rep. 3:1515 [Google Scholar]
  115. 115. Nat. Ocean. Atmos. Admin. (NOAA) Nat. Climatic Data Cent 2014. State of the Climate: Global Analysis for Annual 2014. Washington, DC: NOAA http://www.ncdc.noaa.gov/sotc/global/ [Google Scholar]
  116. Raffel TR, Halstead NT, McMahon TA, Davis AK, Rohr JR. 116.  2015. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. R. Soc. B 282:20142039 [Google Scholar]
  117. Lips KR, Diffendorfer J, Mendelson JR III, Sears MW. 117.  2008. Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol 6:3e72 [Google Scholar]
  118. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R. 118.  et al. 2013. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians Proc. Natl. Acad. Sci. USA 110:15325–29 [Google Scholar]
  119. Spitzen-van der Sluijs A, Spikmans F, Bosman W, de Zeeuw M, van der Meij T. 119.  et al. 2013. Rapid enigmatic decline drives the fire salamander (Salamandra salamandra) to the edge of extinction in the Netherlands. Amphibia-Reptilia 34:233–39 [Google Scholar]
  120. Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W. 120.  et al. 2014. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–31 [Google Scholar]
  121. Blooi M, Martel A, Haesebrouck F, Vercammen F, Bonte D, Pasmans F. 121.  2015. Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans. Sci. Rep. 5:8037 [Google Scholar]
  122. Kolby JE, Smith KM, Berger L, Karesh WB, Preston A. 122.  et al. 2014. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and Ranavirus in Hong Kong amphibian trade. PLoS ONE 9:e90750 [Google Scholar]
  123. Walther G-R, Post E, Convey P, Menzel A, Parmesan C. 123.  et al. 2002. Ecological responses to recent climate change. Nature 416:389–95 [Google Scholar]
  124. Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W. 124.  2011. Impacts of climate change on the world's most exceptional ecoregions. Proc. Natl. Acad. Sci. USA 108:2306–11 [Google Scholar]
  125. Somero GN. 125.  2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. J. Exp. Biol. 213:912–20 [Google Scholar]
  126. Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB. 126.  et al. 2008. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14:1703–20 [Google Scholar]
  127. Whitfield SM, Bell KE, Philippi T, Sasa M, Bolanos F. 127.  et al. 2007. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc. Natl. Acad. Sci. USA 104:8352–56 [Google Scholar]
  128. While GM, Uller T. 128.  2014. Quo vadis amphibia? Global warming and breeding phenology in frogs, toads and salamanders. Ecography 37:921–29 [Google Scholar]
  129. Huey RB, Stevenson DJ. 129.  1979. Integrating thermal physiology and ecology of ectotherms: discussion of approaches. Am. Zool. 19:357–66 [Google Scholar]
  130. Bernardo J, Spotila JR. 130.  2006. Physiological constraints on organismal response to global warming: mechanistic insights from clinally varying populations and implications for assessing endangerment. Biol. Lett. 2:135–39 [Google Scholar]
  131. Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT. 131.  2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–61 [Google Scholar]
  132. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK. 132.  et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105:6668–72 [Google Scholar]
  133. Feder ME. 133.  1982. Environmental variability and thermal acclimation of metabolism in tropical anurans. J. Therm. Biol. 7:23–28 [Google Scholar]
  134. Navas CA, Carvajalino-Fernandez JM, Saboya-Acosta LP, Rueda-Solano LA, Carvajalino-Fernandez MA. 134.  2013. The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Funct. Ecol. 27:1145–54 [Google Scholar]
  135. Ruiz-Aravena M, Gonzalez-Mendez A, Estay SA, Gaitan-Espitia JD, Barria-Oyarzo I. 135.  et al. 2014. Impact of global warming at the range margins: phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian. Ecol. Evol. 4:4467–75 [Google Scholar]
  136. Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R. 136.  2011. Declining body size: a third universal response to warming?. Trends Ecol. Evol. 26:285–91 [Google Scholar]
  137. Caruso NM, Sears MW, Adams DC, Lips KR. 137.  2014. Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob. Change Biol. 20:1751–59 [Google Scholar]
  138. Narins PA, Meenderink SWF. 138.  2014. Climate change and frog calls: long-term correlations along a tropical altitudinal gradient. Proc. R. Soc. B 281:20140401 [Google Scholar]
  139. Dickinson MG, Orme CDL, Suttle KB, Mace GM. 139.  2014. Separating sensitivity from exposure in assessing extinction risk from climate change. Sci. Rep. 4:6898 [Google Scholar]
  140. Gerick AA, Munshaw RG, Palen WJ, Combes SA, O'Regan SM. 140.  2014. Thermal physiology and species distribution models reveal climate vulnerability of temperate amphibians. J. Biogeogr. 41:713–23 [Google Scholar]
  141. Peterman WE, Semlitsch RD. 141.  2014. Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics. Oecologia 176:357–69 [Google Scholar]
  142. Pechmann JHK, Wilbur HM. 142.  1994. Putting declining amphibian populations in perspective—natural fluctuations and human impacts. Herpetologica 50:65–84 [Google Scholar]
  143. Griffiths RA, Pavajeau L. 143.  2008. Captive breeding, reintroduction, and the conservation of amphibians. Conserv. Biol. 22:852–61 [Google Scholar]
  144. Crawford AJ, Cruz C, Griffith E, Ross H, Ibanez R. 144.  et al. 2013. DNA barcoding applied to ex situ tropical amphibian conservation programme reveals cryptic diversity in captive populations. Mol. Ecol. Resour. 13:1005–18 [Google Scholar]
  145. Pessier AP, Baitchman EJ, Crump P, Wilson B, Griffith E, Ross H. 145.  2014. Causes of mortality in anuran amphibians from an ex situ survival assurance colony in Panama. Zoo Biol. 33:516–26 [Google Scholar]
  146. Gascon C, Collins JP, Church DR, Moore RD, Andreone F. 146.  et al. 2012. Scaling a global plan into regional strategies for amphibian conservation. Alytes (Paris) 29:15–27 [Google Scholar]
  147. Hanken J. 147.  1999. Why are there so many new amphibian species when amphibians are declining?. Trends Ecol. Evol. 14:7–8 [Google Scholar]
  148. Groombridge B. 148.  1988. World Checklist of Threatened Amphibians and Reptiles London: Nature Conserv. Counc. [Google Scholar]
  149. Cayuela L, Golicher DJ, Newton AC, Kolb M, de Alburquerque FS. 149.  et al. 2009. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2:319–52 [Google Scholar]
  150. Keith DA, Burgman MA. 150.  2004. The Lazarus effect: can the dynamics of extinct species lists tell us anything about the status of biodiversity?. Biol. Conserv. 117:41–48 [Google Scholar]
  151. Wickramasinghe LJM, Vidanapathirana DR, Airyarathne S, Rajeev G, Chanaka A. 151.  et al. 2013. Lost and found: one of the world's most elusive amphibians, Pseudophilautus stellatus (Kelaart 1853) rediscovered. Zootaxa 3620:112–28 [Google Scholar]
  152. Scheffers BR, Yong DL, Harris JBC, Giam XL, Sodhi NS. 152.  2011. The world's rediscovered species: Back from the brink?. PLoS ONE 6:e22531 [Google Scholar]
  153. Puschendorf R, Hoskin CJ, Cashins SD, McDonald K, Skerratt LF. 153.  et al. 2011. Environmental refuge from disease-driven amphibian extinction. Conserv. Biol. 25:956–64 [Google Scholar]
  154. Garcia-Rodriguez A, Chaves G, Benavides-Varela C, Puschendorf R. 154.  2012. Where are the survivors? Tracking relictual populations of endangered frogs in Costa Rica. Divers. Distrib. 18:204–12 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error