1932

Abstract

Patterns of abundance, biomass, and species richness are reviewed for deep-sea ecosystems. Long-term monitoring studies have indicated that deep-sea ecosystems are sensitive to climatic variability through its influence on the quantity and quality of surface primary production. The potential impacts of climate change, through its effects on primary production and through changes in the temperature, pH, and oxygenation of the deep ocean are explored. It is concluded that deep-sea ecosystems are likely to be highly sensitive to changes in food supply and the physical environment driven by global climate change. As a result, ecosystem services will be negatively impacted with likely positive feedbacks to atmospheric CO levels. It is a matter of urgency that baselines are established for diversity, abundance, and biomass of deep-sea ecosystems, particularly for the pelagic realm and that a mechanistic understanding is developed of how food supply and physical parameters affect community structure and function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102014-021415
2015-11-04
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/energy/40/1/annurev-environ-102014-021415.html?itemId=/content/journals/10.1146/annurev-environ-102014-021415&mimeType=html&fmt=ahah

Literature Cited

  1. Danovaro R, Snelgrove PVR, Tyler PA. 1.  2014. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29:465–75 [Google Scholar]
  2. Costello MJ, Cheung A, De Hauwere N. 2.  2010. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world's seas, oceans, and countries. Environ. Sci. Technol. 44:8821–28 [Google Scholar]
  3. Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R. 3.  et al. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6:284–88 [Google Scholar]
  4. Taira A, Toczko S, Eguchi N, Kuramoto S, Kubo Y, Azuma W. 4.  2014. Recent scientific and operational achievements of D/V Chikyu. Geosci. Lett. 1:2 [Google Scholar]
  5. Paulmier A, Ruiz-Pino D. 5.  2009. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80:113–28 [Google Scholar]
  6. Connelly DP, Copley JT, Murton BJ, Stansfield K, Tyler PA. 6.  et al. 2012. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nat. Commun. 3:620 [Google Scholar]
  7. Van Dover C. 7.  2000. The Ecology of Hydrothermal Vents Princeton, NJ: Princeton Univ. Press [Google Scholar]
  8. Bruun A. 8.  1956. The abyssal fauna: its ecology, distribution and origin. Nature 177:1105–8 [Google Scholar]
  9. Gage JD, Tyler PA. 9.  1992. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  10. Rex MA, Etter RJ, Morris JS, Crouse J, McClain CR. 10.  et al. 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317:1–8 [Google Scholar]
  11. Wei C-L, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T. 11.  et al. 2010. Global patterns and predictions of seafloor biomass using random forests. PLOS ONE 5:12e15323 [Google Scholar]
  12. Angel MV, de Baker AC. 12.  1982. Vertical standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol. Oceanogr. 2:1–30 [Google Scholar]
  13. Sutton TT, Wiebe PH, Madin L, Bucklin A. 13.  2010. Diversity and community structure of pelagic fishes to 5000 m depth in the Sargasso Sea. Deep-Sea Res. II 57:2220–33 [Google Scholar]
  14. Sutton TT, Porteiro FM, Heino M, Byrkjedal I, Langhelle G. 14.  et al. 2008. Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system. Deep-Sea Res. II 55:161–84 [Google Scholar]
  15. Robison BH, Sherlock RE, Reisenbichler KR. 15.  2010. The bathypelagic community of Monterey Canyon. Deep-Sea ResII 57:1551–56 [Google Scholar]
  16. Gjøsæter J, Kawaguchi K. 16.  1980. A review of the world resources of mesopelagic fish. FAO Fisheries Tech. Pap. No. 193 FIRM/T193, UN Food Agric. Organ., Rome [Google Scholar]
  17. Kaartvedt S, Staby A, Aksnes D. 17.  2012. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar. Ecol. Prog. Ser. 456:1–6 [Google Scholar]
  18. Robison BH. 18.  2004. Deep pelagic biology. J. Exp. Mar. Biol. Ecol. 300:253–72 [Google Scholar]
  19. Webb TJ, Vanden Berghe E, O'Dor R. 19.  2010. Biodiversity's big wet secret: The global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLOS ONE 5:e10223 [Google Scholar]
  20. van der Grient J, Rogers AD. 20.  2015. Body size versus depth: regional and taxonomical variation in deep-sea meio- and macrofaunal organisms. Adv. Marine Biol.71 71–108 [Google Scholar]
  21. McClain CR, Rex MA, Jabbour R. 21.  2005. Deconstructing bathymetric body size patterns in deep-sea gastropods. Mar. Ecol. Prog. Ser. 297:181–87 [Google Scholar]
  22. Angel MV. 22.  1989. Does mesopelagic biology affect the vertical flux?. Productivity of the Oceans: Past and Present WH Berger, VS Smetacek, G Wefer 155–73 Chichester, UK: Wiley [Google Scholar]
  23. Beaugrand G. 23.  2015. Marine Biodiversity, Climatic Variability and Global Change Abingdon, Oxon., UK: Routledge [Google Scholar]
  24. Collins MA, Bailey DM, Ruxton GD, Priede IG. 24.  2005. Trends in body size across an environmental gradient: a differential response in scavenging and non-scavenging demersal deep-sea fish. Proc. R. Soc. B 272:2051–57 [Google Scholar]
  25. Grassle JF, Maciolek NJ. 25.  1992. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am. Nat. 139:313–41 [Google Scholar]
  26. Lambshead PJD, Boucher G. 26.  2003. Marine nematode deep-sea biodiversity—hyperdiversity or hype?. J. Biogeogr. 30:475–85 [Google Scholar]
  27. Rex MA, Etter RJ. 27.  2010. Deep-Sea Biodiversity: Pattern and Scale Cambridge, MA: Harvard Univ. Press [Google Scholar]
  28. Priede IG, Froese R. 28.  2013. Colonization of the deep sea by fishes. J. Fish. Biol. 83:1528–50 [Google Scholar]
  29. Baselga A. 29.  2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21:1223–32 [Google Scholar]
  30. Brault S, Stuart CT, Wagstaff MC, Rex MA. 30.  2013. Global evidence for source-sink dynamics in deep-sea neogastropods of the eastern North Atlantic: an approach using nested analysis. Glob. Ecol. Biogeogr. 22:433–39 [Google Scholar]
  31. Hardy SM, Smith CR, Thurnerr AM. 31.  2015. Can the source-sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test. Proc. R. Soc. B 282: In press. doi: 10.1098/rspb.2015.0193 [Google Scholar]
  32. Harris PT, Whiteway T. 32.  2011. Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Mar. Geol. 285:69–86 [Google Scholar]
  33. Allen SE, Durrieu de Madron X. 33.  2009. A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci. 5:607–20 [Google Scholar]
  34. De Leo FC, Smith CR, Rowden AA, Bowden DA, Clark MR. 34.  2010. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proc. R. Soc. B 277:2783–92 [Google Scholar]
  35. Moors-Murphy HB. 35.  2014. Submarine canyons as important habitat for cetaceans, with special reference to the Gully: a review. Deep-Sea Res. II 104:6–19 [Google Scholar]
  36. Kvile KO, Taranto GH, Pitcher TJ, Morato T. 36.  2014. A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework. Biol. Conserv. 173:108–20 [Google Scholar]
  37. Yesson C, Clark MR, Taylor ML, Rogers AD. 37.  2011. The global distribution of seamounts based on 30 arc seconds bathymetry data Deep Sea Res. Part I, Oceanogr. Res. Pap. 58:442–53, JPI Oceans, Brussels, Belg. [Google Scholar]
  38. Young JW, Hunt BPV, Cook TR, Llopiz JK, Hazen EL. 38.  et al. 2014. The trophodynamics of marine top predators: current knowledge, recent advances and challenges. Deep-Sea Res. II 113:170–87 [Google Scholar]
  39. Kaschner K. 39.  2007. Air-breathing visitors to seamounts, section A: marine mammals. Seamounts: Ecology, Fisheries & Conservation, Fisheries and Aquatic Resource Series TJ Pitcher, T Morato, PJB Hart, MR Clark, N Haggan, RS Santos 230–38 Oxford, UK: Blackwell [Google Scholar]
  40. Maxwell SM, Frank JJ, Breed GA, Robinson PW, Simmons SE. 40.  et al. 2012. Benthic foraging on seamounts: a specialized foraging behavior in a deep-diving pinniped. Mar. Mammal Sci. 28:E333–44 [Google Scholar]
  41. Koslow JA. 41.  1996. Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish. J. Fish. Biol. 49:54–74 [Google Scholar]
  42. Genin A. 42.  2004. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J. Mar. Syst. 50:3–20 [Google Scholar]
  43. Rowden AA, Schlacher TA, Williams A, Clark MR, Stewart R. 43.  et al. 2010. A test of the seamount oasis hypothesis: seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31:Suppl. 195–106 [Google Scholar]
  44. McClain CR, Lundsten L, Ream M, Barry J, DeVogelaere A. 44.  2009. Endemicity, biogeography, composition, and community structure on a Northeast Pacific seamount. PLOS ONE 4:1e4141 [Google Scholar]
  45. Jamieson AJ, Fujii T, Mayor DJ, Solan M, Priede IG. 45.  2010. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25:190–97 [Google Scholar]
  46. Belyaev GM. 46.  1989. Deep sea ocean trenches and their fauna. Scripps Inst. Oceanogr. Tech. Rep., Univ. Calif. San Diego. http://escholarship.org/uc/item/46n6148x#page-1 [Google Scholar]
  47. Raven JA. 47.  2009. Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat. Microb. Ecol. 56:177–92 [Google Scholar]
  48. Hügler M, Sievert SM. 48.  2011. Beyond the Calvin Cycle: autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3:261–89 [Google Scholar]
  49. Van Dover CL. 49.  2000. The Ecology of Deep-Sea Hydrothermal Vents Princeton, NJ: Princeton Univ. Press [Google Scholar]
  50. Libes SM. 50.  2009. Introduction to Marine Biogeochemistry Burlington, MA: Academic, 2nd ed.. [Google Scholar]
  51. Devey CW, Fisher CR, Scott SC. 51.  2007. Responsible science at hydrothermal vents. Oceanography 20:162–71 [Google Scholar]
  52. Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM. 52.  et al. 2005. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–34 [Google Scholar]
  53. Marsh L, Copley JT, Huvenne VAI, Linse K, Reid WDK. 53.  et al. 2012. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean. PLOS ONE 7:e48348 [Google Scholar]
  54. Gebruk AV, Chevaldonné P, Shank T, Lutz RA, Vrijenhoek RC. 54.  2000. Deep-sea hydrothermal vent communities of the Logatchev area (14°45′N, Mid-Atlantic Ridge): diverse biotopes and high biomass. J. Mar. Biol. Assoc. UK 80:383–93 [Google Scholar]
  55. Rogers AD, Tyler PA, Connelly DP, Copley JT, James R. 55.  et al. 2012. The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLOS Biol. 10:e1001234 [Google Scholar]
  56. Cole CS, James RH, Conelly DP, Hathorne EC. 56.  2014. Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system. Geochim. Cosmochim. Acta 140:20–38 [Google Scholar]
  57. Hannington M, Jamieson J, Monecke T, Petersen S, Beaulieu S. 57.  2011. The abundance of seafloor massive sulfide deposits. Geology 39:1155–58 [Google Scholar]
  58. Vrijenhoek RC. 58.  2010. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Mol. Ecol. 19:4391–411 [Google Scholar]
  59. Marbler H, Koschinsky A, Pape T, Seifert R, Weber S. 59.  et al. 2010. Geochemical and physical structure of the hydrothermal plume at the ultramafic-hosted Logatchev hydrothermal field at 14°45′N on the Mid-Atlantic Ridge. Mar. Geol. 271:187–97 [Google Scholar]
  60. Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A. 60.  et al. 2013. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. Geobiology 11:340–55 [Google Scholar]
  61. Hoagland P, Beaulieu S, Tivey MA, Eggert RG, German C. 61.  et al. 2010. Deep-sea mining of seafloor massive sulfides. Mar. Policy 34:728–32 [Google Scholar]
  62. Levin LA. 62.  2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr. Mar. Biol. Annu. Rev. 43:1–46 [Google Scholar]
  63. Boetius A, Wenzhöfer F. 63.  2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 6:725–34 [Google Scholar]
  64. Sibuet M, Olu K. 64.  1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res. II 45:517–67 [Google Scholar]
  65. Feng D, Roberts HH, Cheng H, Peckmann J, Bohrmann G. 65.  et al. 2010. U/Th dating of cold-seep carbonates: an initial comparison. Deep-Sea Res. II 57:2055–60 [Google Scholar]
  66. Smith CR, Baco A. 66.  2003. Ecology of whale falls at the deep-sea floor. Oceanogr. Mar. Biol. Annu. Rev. 41:311–54 [Google Scholar]
  67. Rouse GW, Goffredi SK, Vrijenhoek RC. 67.  2004. Osedax: bone-eating marine worms with dwarf males. Science 305:668–71 [Google Scholar]
  68. Clarke A, Crame JA. 68.  2010. Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philos. Trans. R. Soc. Lond. B 365:3655–66 [Google Scholar]
  69. Watling L, Guinotte J, Clark MR, Smith CR. 69.  2013. A proposed biogeography of the deep ocean floor. Prog. Oceanogr. 111:91–112 [Google Scholar]
  70. Vierros M, Cresswell I, Escobar Briones E, Rice J, Ardron J. 70.  2009. Global open oceans and deep seabed (GOODS): biogeographic classification. IOC Tech. Ser. 84, Intergov. Oceanogr. Comm. (IOC)/UN Educ. Sci. Cult. Organ. (UNESCO), Paris [Google Scholar]
  71. O'Hara TD, Rowden AA, Bax NJ. 71.  2011. A Southern Hemisphere bathyal fauna is distributed in latitudinal bands. Curr. Biol. 21:226–30 [Google Scholar]
  72. Billett DSM, Lampitt RS, Rice AL, Mantoura RFC. 72.  1983. Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302:520–22 [Google Scholar]
  73. Billett DSM, Bett BJ, Reid WDK, Boorman B, Priede IG. 73.  2010. Long-term change in the abyssal NE Atlantic: the ‘Amperima event’ revisited. Deep-Sea Res. II 57:1406–17 [Google Scholar]
  74. Kuhnz LA, Ruhl HA, Huffard CL, Smith KL Jr. 74.  2014. Rapid changes and long-term cycles in the benthic megafaunal community observed over 24 years in the abyssal northeast Pacific. Prog. Oceanogr. 124:1–11 [Google Scholar]
  75. Lebrato M, de Jesus Mendes P, Steinberg DK, Cartes JE, Jones BM. 75.  et al. 2013. Jelly biomass sinking speed reveals a fast carbon export mechanism. Limnol. Oceanogr. 58:1113–22 [Google Scholar]
  76. Soto EH, Patterson GLJ, Billett DSM, Hawkins LE, Galéron J. 76.  et al. 2010. Temporal variability in polychaete assemblages of the abyssal NE Atlantic Ocean. Deep-Sea Res. II 57:1936–405 [Google Scholar]
  77. Gooday AJ, Malzone MG, Bett BJ, Lamont PA. 77.  2010. Decadal scale changes in shallow-infaunal foraminiferal assemblages at the Porcupine Abyssal Plain, NE Atlantic. Deep-Sea Res. II 57:1362–82 [Google Scholar]
  78. Kalogeropoulou V, Bett BJ, Gooday AJ, Lampadariou N, Martinez Arbizu P, Vanreusel A. 78.  2010. Temporal changes (1989–1999) in deep-sea metazoan meiofaunal assemblages on the Porcupine Abyssal Plain, NE Atlantic. Deep-Sea Res. II 57:1383–95 [Google Scholar]
  79. Smith KL Jr, Ruhl HA, Bett BJ, Billett DSM, Lampitt RS, Kaufmann RS. 79.  2009. Climate, carbon cycling, and deep-ocean ecosystems. PNAS 106:19211–18 [Google Scholar]
  80. Smith KL Jr, Ruhl HA, Kahru M, Huffard CL, Sherman AD. 80.  2013. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. PNAS 110:19838–41 [Google Scholar]
  81. Rogers AD. 81.  2000. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Res. II 47:119–48 [Google Scholar]
  82. McClain CR, Hardy SM. 82.  2010. The dynamics of biogeographic ranges in the deep sea. Proc. R. Soc. B 277:3533–56 [Google Scholar]
  83. Gill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR. 83.  2011. Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature 469:80–83 [Google Scholar]
  84. Harper DAT, Hammarlund EU, Rasmussen CMØ. 84.  2014. End Ordovician extinctions: a coincidence of causes. Gondwana Res. 25:1294–1307 [Google Scholar]
  85. Brennecka GA, Herrmann AD, Algeo TJ, Anbar AD. 85.  2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. PNAS 108:17631–34 [Google Scholar]
  86. Ullman CV, Thibault N, Ruhl M, Hesselbo SP, Korte C. 86.  2014. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. PNAS 111:10073–76 [Google Scholar]
  87. Dickson AJ, Rees-Owen RL, März C, Coe AL, Cohen AS. 87.  et al. 2014. The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene thermal maximum. Paleoceanography 29:471–88 [Google Scholar]
  88. Winguth AME, Thomas E, Winguth C. 88.  2012. Global decline in ocean ventilation, oxygenation and productivity during the Paleocene-Eocene thermal maximum: implications for benthic extinction. Geology 40:263–66 [Google Scholar]
  89. Strugnell JM, Rogers AD, Prodöhl PA, Collins MA, Allcock AL. 89.  2008. The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24:1–8 [Google Scholar]
  90. Little CTS, Vrijenhoek RC. 90.  2003. Are hydrothermal vent animals living fossils?. Trends Ecol. Evol. 18:582–88 [Google Scholar]
  91. Roterman CN, Copley JT, Linse KT, Tyler PA, Rogers AD. 91.  2013. The biogeography of the yeti crabs (Kiwaidae) with notes on the phylogeny of the Chirostyloidea (Decapoda: Anomura). Proc. R. Soc. B 280:1764 [Google Scholar]
  92. Yang J-S, Lu B, Chen D-F, Yu Y-Q, Yang F. 92.  2014. When did decapods invade hydrothermal vents? Clues from the western Pacific and Indian oceans. Mol. Biol. Evol. 30:305–9 [Google Scholar]
  93. Thuy B, Kiel S, Dulai A, Gale AS, Kroh A. 93.  et al. 2014. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction. Proc. R. Soc. B 281:20132624 [Google Scholar]
  94. Henry L-A, Frank N, Hebbeln D, Wienberg C, Robinson L. 94.  2014. Global ocean conveyor lowers extinction risk in the deep sea. Deep-Sea Res. I 88:8–16 [Google Scholar]
  95. Glover AG, Smith CR. 95.  2003. The deep-seafloor ecosystem: current status and prospects of anthropogenic change by the year 2025. Environ. Conserv. 30:219–41 [Google Scholar]
  96. Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR. 96.  et al. 2011. Man and the last great wilderness: human impact on the deep sea. PLOS ONE 6:e22588 [Google Scholar]
  97. Norse EA, Brooke S, Cheung WWL, Clark MR, Ekeland I. 97.  et al. 2012. Sustainability of deep-sea fisheries. Mar. Policy. 36:307–20 [Google Scholar]
  98. Rogers AD. 98.  1994. The biology of seamounts. Adv. Mar. Biol. 30:305–50 [Google Scholar]
  99. Clark MR, Rowden AA, Schlacher T, Williams A, Consalvey M. 99.  2010. The ecology of seamounts: structure, function and human impacts. Annu. Rev. Mar. Sci. 2:253–78 [Google Scholar]
  100. Clark MR. 100.  2009. Deep-seamount fisheries: a review of global status and future prospects. Lat. Am. J. Aquat. Sci. 37:501–12 [Google Scholar]
  101. Devine JA, Baker KD, Haedrich RL. 101.  2006. Fisheries: deep-sea fishes qualify as endangered. Nature 439:29 [Google Scholar]
  102. Robinson LF, Adkins JF, Frank N, Gagnon AC, Prouty NC. 102.  et al. 2014. The geochemistry of deep-sea coral skeletons: a review of vital effects and applications to palaeoceanography. Deep-Sea Res. II 99:184–98 [Google Scholar]
  103. Althaus F, Williams A, Schlacher TA, Kloser RJ, Green MA. 103.  et al. 2009. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long lasting. Mar. Ecol. Prog. Ser. 397:279–94 [Google Scholar]
  104. Stone RP. 104.  2006. Coral habitats in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations and fisheries interactions. Coral Reefs 25:229–38 [Google Scholar]
  105. Pham CK, Vandeperre F, Menezes G, Porteiro F, Isidro E. 105.  et al. 2015. The importance of deep-sea vulnerable marine ecosystems for demersal fish in the Azores. Deep-Sea Res. I 96:80–88 [Google Scholar]
  106. Rogers AD, Gianni M. 106.  2010. The implementation of UNGA Resolutions 61/105 and 64/72 in the management of deep-sea fisheries on the high seas Rep. prepared for Deep-Sea Conserv. Coalit., Int. Program. State Ocean, London, UK [Google Scholar]
  107. Large PA, Agnew DJ, Pérez PAA, Froján CB, Cloete R. 107.  et al. 2013. Strengths and weaknesses of the management and monitoring of deep-water stocks, fisheries, and ecosystems in various areas of the world—a roadmap toward sustainable deep-water fisheries in the Northeast Atlantic?. Rev. Fish. Sci. 21:157–80 [Google Scholar]
  108. Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR. 108.  2013. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182:495–99 [Google Scholar]
  109. Woodall LC, Sanchez-Vidal A, Canals M, Patterson GLJ, Coppock R. 109.  et al. 2014. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1:140317 [Google Scholar]
  110. Woodall LC, Robinson LF, Rogers AD, Narayanaswamy BE, Paterson GLJ. 110.  2015. Deep-sea litter: a comparison of seamounts, banks and a ridge in the Atlantic and Indian oceans reveals both environmental and anthropogenic factors impact accumulation and composition. Front. Mar. Sci. 2:3 [Google Scholar]
  111. Caineng Z, Guangya Z, Shizhen T, Suyun H, Xiaodi L, Jianzhong L. 111.  2010. Geological features, major discoveries, and unconventional petroleum geology in the global petroleum exploration. Pet. Explor. Dev. 37:129–45 [Google Scholar]
  112. Hein JR, Mizell K, Koschinsky A, Conrad TA. 112.  2013. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol. Rev. 51:1–14 [Google Scholar]
  113. Nielsen SHH, McKenzie C, Miller A, Partington G, Payne C. 113.  et al. 2015. Chatham Rise nodular phosphate—modelling the prospectivity of a lag deposit (off-shore New Zealand): a critical tool for use in resource development and deep sea mining. Ore Geol. Rev. 71:Dec.545–57 In press [Google Scholar]
  114. 114. Int. Seabed Auth 2015. Deep Seabed Minerals Contractors Kingston, Jam.: Int. Seabed Auth https://www.isa.org.jm/deep-seabed-minerals-contractors?page=1&qt-contractors_tabs_alt=0%20Accessed%207/05/2015 [Google Scholar]
  115. 115. United Nations General Assem 2015. Advance and unedited outcome of the ad hoc open-ended informal working group to study issues relating to the conservation and sustainable use of marine biological diversity beyond national jurisdiction. Jan. 20–23, 2015. http://www.un.org/depts/los/biodiversityworkinggroup/documents/ahwg-9_report.pdf
  116. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D. 116.  et al. 2013. Observations: ocean. In Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK 255–316 Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  117. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D. 117.  et al. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–101 [Google Scholar]
  118. Hoegh-Guldberg O, Bruno J. 118.  2010. The impact of climate change on the world's marine ecosystems. Science 328:1523–28 [Google Scholar]
  119. Gregg WW, Conkright ME, Ginoux P, O'Reilly JE, Casey NW. 119.  2003. Ocean primary production and climate: global decadal changes. Geophys. Res. Lett 30:1809 [Google Scholar]
  120. Boyce DG, Lewis MR, Worm B. 120.  2010. Global phytoplankton decline over the past century. Nature 466:591–96 [Google Scholar]
  121. Behrenfeld M, O'Malley R, Siegel D, McClain CR, Sarmiento JR. 121.  et al. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:752–55 [Google Scholar]
  122. Chavez FP, Messié M, Pennington JP. 122.  2011. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci 3:227–60 [Google Scholar]
  123. Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY. 123.  2002. An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res. II 49:403–62 [Google Scholar]
  124. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC. 124.  et al. 2004. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cyles 18:GB3003 [Google Scholar]
  125. Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P. 125.  et al. 2010. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005 [Google Scholar]
  126. Jones DOB, Yool A, Wei C-L, Henson SA, Ruhl HA. 126.  et al. 2014. Global reductions in seafloor biomass in response to climate change. Glob. Change Biol 20:1861–72 [Google Scholar]
  127. Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P. 127.  et al. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–49 [Google Scholar]
  128. Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K. 128.  et al. 2009. Changes in biogenic carbon flow in response to sea surface warming. PNAS 106:7067–72 [Google Scholar]
  129. Taucher J, Schulz KG, Dittmar T, Sommer U, Oschlies A, Riebesell U. 129.  2012. Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment. Biogeosciences 9:3531–45 [Google Scholar]
  130. Regaudie-de-Gioux A, Duarte CM. 130.  2012. Temperature dependence of planktonic metabolism in the ocean. Glob. Biogeochem. Cyles 26:GB1015 [Google Scholar]
  131. Taucher J, Oschlies A. 131.  2011. Can we predict the direction of marine primary production change under global warming?. Geophys. Res. Lett 38:L02603 [Google Scholar]
  132. Nehring S. 132.  1998. Establishment of thermophilic phytoplankton species in the North Sea: biological indicators of climate change?. ICES J. Mar. Sci 55:818–23 [Google Scholar]
  133. Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK. 133.  et al. 2011. Climate change cascades: shifts in oceanography, species' ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol 400:17–32 [Google Scholar]
  134. Polovina JJ, Woodworth PA. 134.  2012. Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely-sensed temperature and chlorophyll, 1998–2007. Deep-Sea Res. II 77–80:82–88 [Google Scholar]
  135. Cheung W, Lam VWY, Sarmiento J, Kearney K, Watson R. 135.  et al. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–51 [Google Scholar]
  136. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS. 136.  et al. 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3:919–25 [Google Scholar]
  137. Yasuhara M, Danovaro R. 137.  2014. Temperature impacts on deep-sea biodiversity. Biol. Rev doi: 10.1111/brv.12169. [Google Scholar]
  138. McClain CR, Allen AP, Tittensor DP, Rex MA. 138.  2012. Energetics of life on the deep seafloor. PNAS 109:15366–71 [Google Scholar]
  139. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 139.  2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci 1:169–92 [Google Scholar]
  140. Cao L, Caldeira K. 140.  2008. Atmospheric CO2 stabilization and ocean acidification. Geophys. Res. Lett 35:L19609 [Google Scholar]
  141. 141. Eur. Sci. Found 2009. Impacts of ocean acidification Sci. Policy Brief. 37, Eur. Sci. Found., Brussels, Belg., http://www.esf.org/fileadmin/Public_documents/Publications/SPB37_OceanAcidification.pdf [Google Scholar]
  142. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC. 142.  et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–86 [Google Scholar]
  143. Caldeira K. 143.  2007. What corals are dying to tell us about CO2 and ocean acidification. Oceanography 20:188–95 [Google Scholar]
  144. Ridgwell A, Schmidt DN, Turley C, Brownlee C, Maldonado MT. 144.  et al. 2009. From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification. Biogeosciences 6:2611–23 [Google Scholar]
  145. Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E. 145.  et al. 2008. Phytoplankton calcification in a high-CO2 world. Science 320:336–40 [Google Scholar]
  146. Spero HJ, Bijma J, Lea DW, Bemis BE. 146.  1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500 [Google Scholar]
  147. Bijma J, Spero HJ, Lea DW. 147.  1999. Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). Use of Proxies in Paleoceanography: Examples from the South Atlantic G Fischer, G Wefer 489–512 Berlin: Springer-Verlag [Google Scholar]
  148. Comeau S, Gorsky G, Jeffree R, Teyssié J-L, Gattuso J-P. 148.  2009. Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–82 [Google Scholar]
  149. Comeau S, Alliouane S, Gattuso J-P. 149.  2012. Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicina. Mar. Ecol. Prog. Ser 456:279–84 [Google Scholar]
  150. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J. 150.  et al. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–66 [Google Scholar]
  151. Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Jones EM. 151.  et al. 2012. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci 5:881–85 [Google Scholar]
  152. Shi D, Xu Y, Hopkinson BM, Morel FMM. 152.  2010. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327:676–79 [Google Scholar]
  153. Sunda WG. 153.  2010. Iron and the carbon pump. Science 327:654–55 [Google Scholar]
  154. Flynn KJ, Blackford JC, Baird ME, Raven JA, Clark DR. 154.  et al. 2012. Changes in pH at the exterior surface of plankton with ocean acidification. Nat. Clim. Change 2:510–13 [Google Scholar]
  155. Milligan AJ. 155.  2012. Plankton in an acidified ocean. Nat. Clim. Change 2:489–90 [Google Scholar]
  156. Hutchins DA, Mulholland MR, Fu F. 156.  2009. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22:128–45 [Google Scholar]
  157. Beman JM, Chow C-E, King AL, Feng Y, Fuhrman JA. 157.  et al. 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. PNAS 108:208–13 [Google Scholar]
  158. Bignami S, Sponaugle S, Cowen RK. 158.  2013. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Glob. Change Biol 19:996–1006 [Google Scholar]
  159. Kawaguchi S, Ishida A, King R, Raymond B, Waller N. 159.  et al. 2013. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Change 3:843–47 [Google Scholar]
  160. Atkinson A, Siegel V, Pakhomov E, Rothery P. 160.  2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–3 [Google Scholar]
  161. Quetin LB, Ross RM. 161.  2009. Life under Antarctic pack ice: a krill perspective. Smithsonian at the Poles: Contributions to International Polar Year Science I Krupnik, MA Lang, SE Miller 285–98 Washington, DC: Smithson. Inst. Sch. Press [Google Scholar]
  162. Hofmann M, Schellnhuber H-J. 162.  2009. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. PNAS 106:3017–22 [Google Scholar]
  163. Rogers AD, Baco A, Griffiths H, Hart T, Hall-Spencer JM. 163.  2007. Corals on seamounts. Seamounts: Ecology, Fisheries and Conservation TJ Pitcher, T Morato, PJB Hart, MR Clark, N Haggan, RS Santos 141–69 Oxford, UK: Blackwell [Google Scholar]
  164. Tittensor DP, Baco AR, Brewin PE, Clark MR, Consalvey M. 164.  et al. 2009. Predicting global habitat suitability for stony corals on seamounts. J. Biogeogr 36:1111–28 [Google Scholar]
  165. Yesson C, Taylor M, Tittensor DP, Davies A, Guinotte J. 165.  et al. 2012. Global distribution and habitat preferences of deep-sea octocorals. J. Biogeogr 39:1278–92 [Google Scholar]
  166. Tittensor DP, Baco AR, Hall-Spencer JM, Orr JC, Rogers AD. 166.  2010. Seamounts as refugia from ocean acidification for cold-water stony corals. Mar. Ecol 31:Suppl. 1212–25 [Google Scholar]
  167. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS. 167.  et al. 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. PNAS 106:1848–52 [Google Scholar]
  168. Keeling RF, Körtzinger A, Gruber N. 168.  2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci 2:199–229 [Google Scholar]
  169. Karstensen J, Stramma L, Visbeck M. 169.  2008. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr 77:331–50 [Google Scholar]
  170. Levin LA. 170.  2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. Annu. Rev 41:1–45 [Google Scholar]
  171. Thierry V, Gilbert D, Kobayashi T, Schmid C. 171.  2013. Processing Argo oxygen data at the DAC level, Version 1.3. Inst. Fr. Rech. l'Exploit. Mer, Brest, Fr. http://www.argodatamgt.org/content/download/16300/106561/file/argo_oxygen_proposition_v1p3.pdf
  172. Gilly WF, Beman JM, Litvin SY, Robison BH. 172.  2013. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu. Rev. Mar. Sci 5:393–420 [Google Scholar]
  173. Vaquer-Sunyer R, Duarte CM. 173.  2008. Thresholds of hypoxia for marine biodiversity. PNAS 105:15452–57 [Google Scholar]
  174. Stramma L, Schmidtko S, Levin LA, Johnson GC. 174.  2010. Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res. I 57:587–95 [Google Scholar]
  175. Canfield DE, Glazer AN, Falkowski PG. 175.  2010. The evolution and future of Earth's nitrogen cycle. Science 330:192–96 [Google Scholar]
  176. Seibel BA. 176.  2011. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J. Exp. Biol 214:326–36 [Google Scholar]
  177. Brill RW. 177.  1994. A review of temperature and oxygen tolerance studies of tunas, pertinent to fisheries oceanography, movement models and stock assessments. Fish. Oceanogr 3:204–16 [Google Scholar]
  178. Rosa R, Seibel BA. 178.  2008. Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. PNAS 105:20776–80 [Google Scholar]
  179. Song H, Wignall PB, Chu D, Tong J, Sun Y. 179.  et al. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Sci. Rep 4:4132 [Google Scholar]
  180. Stramma L, Prince ED, Schmidtko S, Luo J, Hoolihan JP. 180.  et al. 2011. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2:33–37 [Google Scholar]
  181. Bijma J, Pörtner H-O, Yesson C, Rogers AD. 181.  2013. Climate change and the oceans—What does the future hold?. Mar. Pollut. Bull 74:495–505 [Google Scholar]
  182. Brown A, Thatje S. 182.  2015. The effects of changing climate on faunal depth distributions determines winners and losers. Glob. Change Biol 21:173–80 [Google Scholar]
  183. Armstrong CW, Foley NS, Tinch R, Van Den Hive S. 183.  2012. Services from the deep: steps towards valuation of deep-sea goods and services. Ecosyst. Serv 2:2–13 [Google Scholar]
/content/journals/10.1146/annurev-environ-102014-021415
Loading
/content/journals/10.1146/annurev-environ-102014-021415
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error