Synthetic organic polymers—or plastics—did not enter widespread use until the 1950s. By 2015, global production had increased to 322 million metric tons (Mt) year−1, which approaches the total weight of the human population produced in plastic every year. Approximately half is used for packaging and other disposables, 40% of plastic waste is not accounted for in managed landfills or recycling facilities, and 4.8–12.7 Mt year−1 enter the ocean as macroscopic litter and microplastic particles. Here, we argue that such mismanaged plastic waste is similar to other persistent pollutants, such as dichlorodiphenyltrichloroethane (DDT) or polychlorinated biphenyls (PCBs), which once threatened a “silent spring” on land. Such a scenario seems now possible in the ocean, where plastic cannot be easily removed, accumulates in organisms and sediments, and persists much longer than on land. New evidence indicates a complex toxicology of plastic micro- and nanoparticles on marine life, and transfer up the food chain, including to people. We detail solutions to the current crisis of accumulating plastic pollution, suggesting a Global Convention on Plastic Pollution that incentivizes collaboration between governments, producers, scientists, and citizens.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Baekeland LH. 1.  1909. The synthesis, constitution, and uses of Bakelite. Ind. Eng. Chem. 1:149–61 [Google Scholar]
  2. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M. 2.  et al. 2015. Plastic waste inputs from land into the ocean. Science 347:768–71Presents the most comprehensive assessment to date of the total volume and regional sources of plastic that pollute marine waters. [Google Scholar]
  3. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C. 3.  et al. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:137 [Google Scholar]
  4. Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E. 4.  et al. 2013. Classify plastic waste as hazardous. Nature 494:169–71Makes a comprehensive case for reclassifying plastics as hazardous pollutants, rather than debris. [Google Scholar]
  5. 5. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP), ed. 2016. Sources, Fate and Effects of Microplastics in the Marine Environment: Part Two of a Global Assessment London: Int. Mar. Org.
  6. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ. 6.  et al. 2004. Lost at sea: Where is all the plastic?. Science 304:838 [Google Scholar]
  7. Derraik JG. 7.  2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44:842–52 [Google Scholar]
  8. Wilcox C, van Sebille E, Hardesty BD. 8.  2015. Threat of plastic pollution to seabirds is global, pervasive and increasing. PNAS 38:11899–904A global meta-analysis that shows rapidly increasing incidence of plastic ingestion in seabirds. [Google Scholar]
  9. 9. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP), ed. 2015. Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment London: Int. Mar. Org.Very comprehensive review on the state of science on microplastic pollution.
  10. Kaiser J. 10.  2010. The dirt on ocean garbage patches. Science 328:1506 [Google Scholar]
  11. 11. United Nations Environ. Progr. 2001. The Stockholm Convention on Persistent Organic Pollutants Châtelaine, Switz.: Secr. Stockh. Conv http://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx
  12. Carson R. 12.  1962. Silent Spring Boston, MA: Houghton Mifflin Harcourt
  13. Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C. 13.  et al. 2016. Oyster reproduction is affected by exposure to polystyrene microplastics. PNAS 113:2430–35 [Google Scholar]
  14. Lönnstedt OM, Eklöv P. 14.  2016. Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 352:1213–16Shows biologically relevant effects of microplastics at concentrations that are close to those now found in natural environments; paper retracted in May 2017 due to ethical concerns. [Google Scholar]
  15. Galloway TS, Lewis CN. 15.  2016. Marine microplastics spell big problems for future generations. PNAS 113:2331–33 [Google Scholar]
  16. Woodall LC, Sanchez-Vidal A, Canals M, Paterson GL, Coppock R. 16.  et al. 2014. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1:140317 [Google Scholar]
  17. Farrell P, Nelson K. 17.  2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 177:1–3 [Google Scholar]
  18. 18. Plastics Europe. 2016. Plastics—The Facts 2016. An Analysis of European Plastics Production, Demand and Waste Data. Brussels, Belg.: Plast. Eur http://www.plasticseurope.org/documents/document/20161014113313-plastics_the_facts_2016_final_version.pdf
  19. 19. American Chemistry Society (ACS). 1993. The Bakelizer Washington, DC: ACS https://www.acs.org/content/dam/acsorg/education/whatischemistry/landmarks/bakelite/the-bakelizer-commemorative-booklet.pdf
  20. 20. Plastics Europe. 2012. Plastics—the Facts 2012. An Analysis of European Plastics Production, Demand and Waste Data for 2011. Brussels: Plastic Eur http://www.plasticseurope.org/Document/plastics-the-facts-2012.aspx
  21. Wilson DC. 21.  2015. Global Waste Management Outlook Nairobi, Kenya: Intl. Solid Waste Assoc., UN Environ. Progr http://www.unep.org/ourplanet/september-2015/unep-publications/global-waste-management-outlook
  22. Mazzanti M, Zoboli R. 22.  2008. Waste generation, waste disposal and policy effectiveness: evidence on decoupling from the European Union. Resour. Conserv. Recycl. 52:1221–34 [Google Scholar]
  23. 23. International Maritime Organization (IMO). 1988. International Convention for the Prevention of Pollution from Ships (MARPOL): Annex V, Prevention of Pollution by Garbage from Ships London: IMO http://www.imo.org/en/OurWork/environment/pollutionprevention/garbage/Pages/Default.aspx [Google Scholar]
  24. 24. United Nations (UN) Newscentre. 2017. UN declares war on ocean plastic. UN Environment Febr. 23. http://web.unep.org/newscentre/un-declares-war-ocean-plastic
  25. 25. United Nations Food and Agriculture Organization (FAO). 2016. The State of World Fisheries and Aquaculture 2016 Rome, Italy: FAO
  26. Lithner D, Larsson Å, Dave G. 26.  2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 409:3309–24 [Google Scholar]
  27. Deanin RD. 27.  1975. Additives in plastics. Environ. Health Perspect. 11:35 [Google Scholar]
  28. Rochman CM. 28.  2015. The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment. See Ref. 109 117–40
  29. Koch HM, Calafat AM. 29.  2009. Human body burdens of chemicals used in plastic manufacture. Philos. Trans. R. Soc. B: Biol. Sci. 364:2063–78 [Google Scholar]
  30. da Costa JP, Santos PSM, Duarte AC, Rocha-Santos T. 30.  2016. (Nano)plastics in the environment—sources, fates and effects. Sci. Total Environ. 566–567:15–26 [Google Scholar]
  31. Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ. 31.  et al. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLOS ONE 9:e111913 [Google Scholar]
  32. Cole M, Galloway TS. 32.  2015. Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environ. Sci. Technol. 49:14625–32 [Google Scholar]
  33. Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD. 33.  et al. 2015. A global inventory of small floating plastic debris. Environ. Res. Lett. 10:124006 [Google Scholar]
  34. Mathalon A, Hill P. 34.  2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 81:69–79 [Google Scholar]
  35. Jamieson AJ, Malkocs T, Piertney SB, Fujii T, Zhang Z. 35.  2017. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat. Ecol. Evol. 1:0051 [Google Scholar]
  36. Shanks AL, Trent JD. 36.  1980. Marine snow: sinking rates and potential role in vertical flux. Deep Sea Res. Part A 27:137–43 [Google Scholar]
  37. Besseling E, Foekema E, Van Franeker J, Leopold M, Kühn S. 37.  et al. 2015. Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar. Pollut. Bull. 95:248–52 [Google Scholar]
  38. Fossi MC, Coppola D, Baini M, Giannetti M, Guerranti C. 38.  et al. 2014. Large filter feeding marine organisms as indicators of microplastic in the pelagic environment: the case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus). Mar. Environ. Res. 100:17–24 [Google Scholar]
  39. Albertsson AC, Karlsson S. 39.  1988. The three stages in degradation of polymers—polyethylene as a model substance. J. Appl. Polym. Sci. 35:1289–302 [Google Scholar]
  40. Ohtake Y, Kobayashi T, Asabe H, Murakami N. 40.  1998. Studies on biodegradation of LDPE—observation of LDPE films scattered in agricultural fields or in garden soil. Polym. Degrad. Stab. 60:79–84 [Google Scholar]
  41. Barnes DKA, Galgani F, Thompson RC, Barlaz M. 41.  2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B: Biol. Sci. 364:1985–98 [Google Scholar]
  42. Keshavarz T, Roy I. 42.  2010. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13:321–26 [Google Scholar]
  43. Zettler ER, Mincer TJ, Amaral-Zettler LA. 43.  2013. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47:7137–46 [Google Scholar]
  44. Shah AA, Hasan F, Hameed A, Ahmed S. 44.  2008. Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26:246–65 [Google Scholar]
  45. Albertsson A-C. 45.  1980. The shape of the biodegradation curve for low and high density polyethenes in prolonged series of experiments. Eur. Polym. J. 16:623–30 [Google Scholar]
  46. Kawai F, Watanabe M, Shibata M, Yokoyama S, Sudate Y, Hayashi S. 46.  2004. Comparative study on biodegradability of polyethylene wax by bacteria and fungi. Polym. Degrad. Stab. 86:105–14 [Google Scholar]
  47. Lee B, Pometto AL, Fratzke A, Bailey TB. 47.  1991. Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl. Environ. Microbiol. 57:678–85 [Google Scholar]
  48. Orhan Y, Büyükgüngör H. 48.  2000. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Biodeterior. Biodegrad. 45:49–55 [Google Scholar]
  49. Bombelli P, Howe CJ, Bertocchini F. 49.  2017. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. . Curr. Biol. 27:R292–93 [Google Scholar]
  50. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H. 50.  et al. 2017. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–99 [Google Scholar]
  51. O'Brine T, Thompson RC. 51.  2010. Degradation of plastic carrier bags in the marine environment. Mar. Pollut. Bull. 60:2279–83 [Google Scholar]
  52. 52. Convention on Biological Diversity (CBD). 2016. Marine debris: understanding, preventing and mitigating the significant adverse impacts on marine and coastal biodiversity CBD Tech. Ser. 83, Secr. CBD, Montreal, QC, Can. https://www.cbd.int/doc/publications/cbd-ts-83-en.pdf
  53. Gall S, Thompson R. 53.  2015. The impact of debris on marine life. Mar. Pollut. Bull. 92:170–79 [Google Scholar]
  54. Wilcox C, Heathcote G, Goldberg J, Gunn R, Peel D, Hardesty BD. 54.  2015. Understanding the sources and effects of abandoned, lost, and discarded fishing gear on marine turtles in northern Australia. Conserv. Biol. 29:198–206 [Google Scholar]
  55. Gilardi KV, Carlson-Bremer D, June JA, Antonelis K, Broadhurst G, Cowan T. 55.  2010. Marine species mortality in derelict fishing nets in Puget Sound, WA and the cost/benefits of derelict net removal. Mar. Pollut. Bull. 60:376–82 [Google Scholar]
  56. Schuyler Q, Hardesty BD, Wilcox C, Townsend K. 56.  2014. Global analysis of anthropogenic debris ingestion by sea turtles. Conserv. Biol. 28:129–39 [Google Scholar]
  57. Schuyler Q, Townsend K, Wilcox C, Hardesty BD, Marshall J. 57.  2014. Mistaken identity? Visual similarities of marine debris to natural prey items of sea turtles. BMC Ecol http://www.biomedcentral.com/1472-6785/14/14
  58. Plot V, Georges J-Y. 58.  2010. Plastic debris in a nesting Leatherback Turtle in French Guiana. Chelonian Conserv. Biol. 9:267–70 [Google Scholar]
  59. Savoca MS, Wohlfeil ME, Ebeler SE, Nevitt GA. 59.  2016. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Sci. Adv. 2:e1600395 [Google Scholar]
  60. Kühn S, Rebolledo ELB, van Franeker JA. 60.  2015. Deleterious effects of litter on marine life. See Ref. 109 75–116
  61. Rochman CM, Hoh E, Kurobe T, Teh SJ. 61.  2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 3:3263 [Google Scholar]
  62. Hamlin HJ, Marciano K, Downs CA. 62.  2015. Migration of nonylphenol from food-grade plastic is toxic to the coral reef fish species Pseudochromis fridmani. . Chemosphere 139:223–28 [Google Scholar]
  63. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T. 63.  2001. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 35:318–24 [Google Scholar]
  64. Rochman CM. 64.  2016. The role of plastic debris as another source of hazardous chemicals in lower-trophic level organisms. The Handbook of Environmental Chemistry D Barceló, AG Kostianoy 1–15 New York: Springer [Google Scholar]
  65. Bakir A, Rowland SJ, Thompson RC. 65.  2014. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ. Pollut. 185:16–23 [Google Scholar]
  66. Nobre C, Santana M, Maluf A, Cortez F, Cesar A. 66.  et al. 2015. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Mar. Pollut. Bull. 92:99–104 [Google Scholar]
  67. Wright SL, Rowe D, Reid MJ, Thomas KV, Galloway TS. 67.  2015. Bioaccumulation and biological effects of cigarette litter in marine worms. Sci. Rep. 5:14119 [Google Scholar]
  68. Bejgarn S, MacLeod M, Bogdal C, Breitholtz M. 68.  2015. Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. . Chemosphere 132:114–19 [Google Scholar]
  69. Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS. 69.  2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. . Environ. Sci. Technol. 49:1130–37 [Google Scholar]
  70. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D. 70.  et al. 2015. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 198:211–22 [Google Scholar]
  71. Watts AJ, Urbina MA, Corr S, Lewis C, Galloway TS. 71.  2015. Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environ. Sci. Technol. 49:14597–604 [Google Scholar]
  72. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. 72.  2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42:5026–31 [Google Scholar]
  73. Canesi L, Ciacci C, Fabbri R, Balbi T, Salis A. 73.  et al. 2016. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: role of soluble hemolymph proteins. Environ. Res. 150:73–81 [Google Scholar]
  74. Canesi L, Ciacci C, Balbi T. 74.  2015. Interactive effects of nanoparticles with other contaminants in aquatic organisms: Friend or foe?. Mar. Environ. Res. 111:128–34 [Google Scholar]
  75. Luís LG, Ferreira P, Fonte E, Oliveira M, Guilhermino L. 75.  2015. Does the presence of microplastics influence the acute toxicity of chromium (VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations. Aquatic Toxicol 164:163–74 [Google Scholar]
  76. Lusher AL, Hernandez-Milian G, O'Brien J, Berrow S, O'Connor I, Officer R. 76.  2015. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: the True's beaked whale Mesoplodon mirus. . Environ. Pollut. 199:185–91 [Google Scholar]
  77. Eriksson C, Burton H. 77.  2003. Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. AMBIO: A J. Hum. Environ. 32:380–84 [Google Scholar]
  78. Tanaka K, Takada H, Yamashita R, Mizukawa K, Fukuwaka M-A, Watanuki Y. 78.  2013. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar. Pollut. Bull. 69:219–22 [Google Scholar]
  79. Jang M, Shim WJ, Han GM, Rani M, Song YK, Hong SH. 79.  2016. Styrofoam debris as a source of hazardous additives for marine organisms. Environ. Sci. Technol. 50:4951–60 [Google Scholar]
  80. Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R. 80.  et al. 2015. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5:14340 [Google Scholar]
  81. 81. World Economic Forum, Ellen MacArthur Foundation. 2016. The New Plastics Economy: Rethinking the Future of Plastics Geneva, Switz.: World Econ. Forum http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf
  82. Anastas PT, Zimmerman JB. 82.  2003. Design through the 12 principles of green engineering. Environ. Sci. Technol. 37:94A–101A [Google Scholar]
  83. 83. Ellen MacArthur Foundation. 2017. The New Plastics Economy: Catalysing Action https://www.ellenmacarthurfoundation.org/assets/downloads/New-Plastics-Economy_Catalysing-Action_13-1-17.pdf
  84. Cressey D. 84.  2016. Bottles, bags, ropes and toothbrushes: the struggle to track ocean plastics. Nature 536:263–65 [Google Scholar]
  85. Thevenon F, Carroll C, Sousa J. 85.  2014. Plastic Debris in the Ocean: The Characterization of Marine Plastics and Their Environmental Impacts, Situation Analysis Report Gland, Switz.: Int. Union Conserv. Nat. [Google Scholar]
  86. Astrup TF, Tonini D, Turconi R, Boldrin A. 86.  2015. Life cycle assessment of thermal Waste-to-Energy technologies: review and recommendations. Waste Manag 37:104–15 [Google Scholar]
  87. Miranda ML, Hale B. 87.  1997. Waste not, want not: the private and social costs of waste-to-energy production. Energy Policy 25:587–600 [Google Scholar]
  88. Ryan PG, Moore CJ, Franeker JA, Moloney CL. 88.  2009. Monitoring the abundance of plastic debris in the marine environment. Philos. Trans. R. Soc. Lond. B 364:1526 [Google Scholar]
  89. Hardesty B, Wilcox C. 89.  2017. A risk framework for tackling marine debris. Anal. Methods 9:1429–36 [Google Scholar]
  90. Pahl S, Wyles K. 90.  2017. The human dimension: how social and behavioural research methods can help address microplastics in the environment. Anal. Methods 9:1404–11 [Google Scholar]
  91. Zettler ER, Takada H, Monteleone B, Mallos N, Eriksen M, Amaral-Zettler LA. 91.  2017. Incorporating citizen science to study plastics in the environment. Anal. Methods 9:1392–1403 [Google Scholar]
  92. Jambeck JR, Johnsen K. 92.  2015. Marine debris tracker: citizen-based litter and marine debris data collection and mapping. Comput. Sci. Eng. 17:20–26 [Google Scholar]
  93. Worm B. 93.  2015. Silent spring in the ocean. PNAS 112:11752–53 [Google Scholar]
  94. Readman JW, DeLuna F, Ebinghaus R, Guzman AN, Price ARG. 94.  et al. 2013. Contaminants, pollution and potential anthropogenic impacts in Chagos/British Indian Ocean Territories. Coral Reefs of the United Kingdom Overseas Territories CRC Sheppard 283–98 Amsterdam, Neth.: Springer [Google Scholar]
  95. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A. 95.  et al. 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ. Sci. Technol. 45:9175–79 [Google Scholar]
  96. Carpenter EJ, Smith K. 96.  1972. Plastics on the Sargasso Sea surface. Science 175:1240–41 [Google Scholar]
  97. Moore CJ, Moore SL, Leecaster MK, Weisberg SB. 97.  2001. A comparison of plastic and plankton in the North Pacific central gyre. Mar. Pollut. Bull. 42:1297–300 [Google Scholar]
  98. Moore CJ, Moore SL, Weisberg SB, Lattin GL, Zellers AF. 98.  2002. A comparison of neustonic plastic and zooplankton abundance in southern California's coastal waters. Mar. Pollut. Bull. 44:1035–38 [Google Scholar]
  99. Doyle MJ, Watson W, Bowlin NM, Sheavly SB. 99.  2011. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res. 71:41–52 [Google Scholar]
  100. Collignon A, Hecq J-H, Glagani F, Voisin P, Collard F, Goffart A. 100.  2012. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 64:861–64 [Google Scholar]
  101. Pierce KE, Harris RJ, Larned LS, Pokras MA. 101.  2004. Obstruction and starvation associated with plastic ingestion in a Northern Gannet Morus bassanus and a Greater Shearwater Puffinus gravis. Mar. Ornithol. 32:187–89 [Google Scholar]
  102. Brandão ML, Braga KM, Luque JL. 102.  2011. Marine debris ingestion by Magellanic penguins, Spheniscus magellanicus (Aves: Sphenisciformes), from the Brazilian coastal zone. Mar. Pollut. Bull. 62:2246–49 [Google Scholar]
  103. Özdilek HG, Yalçin-Özdilek S, Ozaner FS, Sönmez B. 103.  2006. Impact of accumulated beach litter on Chelonia mydas L.1758 (Green turtle) hatchlings of the Samandag coast, Hatay, Turkey. Fresenius Environ. Bull. 15:95–103 [Google Scholar]
  104. Stamper MA, Spicer CW, Neiffer DL, Mathews KS, Fleming GJ. 104.  2009. Morbidity in a juvenile green sea turtle (Chelonia mydas) due to ocean-borne plastic. J. Zoo Wildlife Med. 40:196–98 [Google Scholar]
  105. Choy CA, Drazen JC. 105.  2013. Plastic for dinner? Observations of frequent debris ingestion by pelagic predatory fishes from the central North Pacific. Mar. Eecol. Prog. Ser. 485:155–63 [Google Scholar]
  106. Jacobsen JK, Massey L, Gulland F. 106.  2010. Fatal ingestion of floating net debris by two sperm whales (Physeter macrocephalus). Mar. Pollut. Bull. 60:765–67 [Google Scholar]
  107. Page B, McKenzie J, McIntosh R, Baylis A, Morrissey A. 107.  et al. 2004. Entanglement of Australian sea lions and New Zealand fur seals in lost fishing gear and other marine debris before and after Government and industry attempts to reduce the problem. Mar. Pollut. Bull. 49:33–42 [Google Scholar]
  108. Murray F, Cowie PR. 108.  2011. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758).. Mar. Pollut. Bull. 62:1207–17 [Google Scholar]
  109. Bergmann M, Gutow L, Klages M. 109.  2015. Marine Anthropogenic Litter New York: Springer
  110. Geyer R, Jambeck JR, Law KL. 110.  2017. Production, use, and fate of all plastics ever made.. Sci. Adv. 3:7e1700782 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error