1932

Abstract

The global demand for water and energy is projected to grow, but there likely will be significant constraints in our ability to keep meeting it. These constraints will be imposed partly by the interdependence between water, energy, and climate change. If left unchecked, these connections can exacerbate water and energy shortages and aggravate climate change impacts: Energy is used to supply and treat water; moreover, emissions from energy generation contribute to climate change, which affects water supplies and increases the demand for energy to sustain Earth's growing population and economy. The linkage between water and energy can offer opportunities for better meeting expected demand while minimizing damage from shortages of either. This article focuses on the technological and engineering aspects of various connections in the water-energy nexus where advancements can enable greater supply of one or both. It also outlines the benefits and challenges associated with each connection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102016-060959
2017-10-17
2024-05-26
Loading full text...

Full text loading...

/deliver/fulltext/energy/42/1/annurev-environ-102016-060959.html?itemId=/content/journals/10.1146/annurev-environ-102016-060959&mimeType=html&fmt=ahah

Literature Cited

  1. 1. World Economic Forum. 2016. The Global Risks Report 2016 Geneva: World Econ. Forum
  2. Steffen W, Richardson K, Rockström J, Cornell S, Fetzer I. 2.  et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 348:62401217 [Google Scholar]
  3. Carpenter SR, Stanley EH, Vander Zanden MJ. 3.  2011. State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36:75–99 [Google Scholar]
  4. 4. Organisation for Economic Co-operation and Development (OECD). 2012. OECD Environmental Outlook to 2050: The Consequences of Inaction Paris: OECD
  5. Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M. 5.  et al. 2014. Global water resources affected by human interventions and climate change. PNAS 111:93251–56 [Google Scholar]
  6. Hagemann S, Chen C, Clark DB, Folwell S, Gosling SN. 6.  et al. 2013. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn. 4:1129–44 [Google Scholar]
  7. Kiparsky M, Milman A, Vicuña S. 7.  2012. Climate and water: knowledge of impacts to action on adaptation. Annu. Rev. Environ. Resour. 37:163–94 [Google Scholar]
  8. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW. 8.  et al. 2014. Multimodel assessment of water scarcity under climate change. PNAS 111:93245–50 [Google Scholar]
  9. Garrick D, Hall JW. 9.  2014. Water security and society: risks, metrics, and pathways. Annu. Rev. Environ. Resour. 39:611–39 [Google Scholar]
  10. 10. International Energy Agency (IEA). 2016. World Energy Outlook 2016 Paris: IEA
  11. Bakker K. 11.  2014. The business of water: market environmentalism in the water sector. Annu. Rev. Environ. Resour. 39:469–94 [Google Scholar]
  12. Stern N. 12.  2007. The Economics of Climate Change: The Stern Review Cambridge, UK/New York: Cambridge Univ. Press
  13. Nordhaus W. 13.  2014. Estimates of the social cost of carbon: concepts and results from the DICE-2013R model and alternative approaches. J. Assoc. Environ. Resour. Econ. 1:1/2273–312 [Google Scholar]
  14. 14. U.S. Department of Energy (DOE). 2014. The energy-water nexus. DOE, Washington, DC
  15. Pabi SA. 15.  2013. Electricity Use and Management in the Municipal Water Supply and Wastewater Industries Palo Alto, CA: EPRI
  16. Sanders KT. 16.  2015. Critical review: uncharted waters? The future of the electricity-water nexus. Environ. Res. Lett. 49:51–66 [Google Scholar]
  17. Maupin MA, Kenny JF, Hutson SS, Lovelace JK, Barber NL, Linsey KS. 17.  2010. Estimated Use of Water in the United States in 2010 Circular 1405 Reston, VA: US Geolog. Survey
  18. Walker ME, Lv Z, Masanet E. 18.  2013. Industrial steam systems and the energy-water nexus. Environ. Sci. Technol. 47:2213060–67 [Google Scholar]
  19. 19. CH2M Hill Engineers, Energy Water Initiative. 2015. U.S. Onshore Unconventional Exploration and Production Water Management Case Studies. Houston: CH2M Hill
  20. Rozell DJ, Reaven SJ. 20.  2012. Water pollution risk associated with natural gas extraction from the Marcellus Shale. Risk Anal 32:81382–93 [Google Scholar]
  21. Thiel GP, Tow EW, Banchik LD, Chung HW, Lienhard V JH. 21.  2015. Energy consumption in desalinating produced water from shale oil and gas extraction. Desalination 366:94–112 [Google Scholar]
  22. Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD. 22.  et al. 2013. Impact of shale gas development on regional water quality. Science 340:May1235009 [Google Scholar]
  23. Jackson RB, Vengosh A, Carey JW, Davies RJ, Darrah TH. 23.  et al. 2014. The environmental costs and benefits of fracking. Annu. Rev. Environ. Resour. 39:327–62 [Google Scholar]
  24. Allan T, Keulertz M, Woertz E. 24.  2015. The water-food-energy nexus: an introduction to nexus concepts and some conceptual and operational problems. Int. J. Water Resour. Dev. 31:3301–11 [Google Scholar]
  25. Bazilian M, Rogner H, Howells M, Hermann S, Arent D. 25.  et al. 2011. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39:127896–906 [Google Scholar]
  26. Endo A, Tsurita I, Burnett K, Orencio PM. 26.  2017. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 11:20–30 [Google Scholar]
  27. Hibbard K, Wilson T, Averyt K, Harriss R, Newmark R. 27.  et al. 2014. Ch. 10: Energy, water, and land use. Climate change impacts in the United States. The Third National Climate Assessment JM Mello, T Richmond, GW Yohe 257–81 Washington, DC: US Geolog. Change Res. Progr. [Google Scholar]
  28. Smajgl A, Ward J, Pluschke L. 28.  2016. The water-food-energy nexus—realising a new paradigm. J. Hydrol. 533:533–40 [Google Scholar]
  29. Scott CA, Pierce SA, Pasqualetti MJ, Jones AL, Montz BE, Hoover JH. 29.  2011. Policy and institutional dimensions of the water-energy nexus. Energy Policy 39:106622–30 [Google Scholar]
  30. Liu Y, Hejazi M, Kyle P, Kim SH, Davies E. 30.  et al. 2016. Global and regional evaluation of energy for water. Environ. Sci. Technol 2016:9736–45 [Google Scholar]
  31. Spang ES, Moomaw WR, Gallagher KS, Kirshen PH, Marks DH. 31.  2014. The water consumption of energy production: an international comparison. Environ. Res. Lett. 9:10105002 [Google Scholar]
  32. Fang AJ, Newell JP, Cousins JJ. 32.  2016. The energy and emissions footprint of water supply for Southern California. Environ. Res. Lett. 11:119501 [Google Scholar]
  33. Davis M. 33.  1998. Stepping outside the box: water in California: speech by Martha Davis, UCLA environment Symposium, March 3, 1998 Accessed August 10, 2017. http://www.monolake.org/mlc/outsidebox
  34. Bittner R, Clements J, Dale L, Lee S, Missimer T, Kavanaugh M. 34.  2015. Phase II report: feasibility of subsurface intakes designs for the proposed Poseidon water desalination facility at Huntington Beach Rep., CA Coast. Comm. Poseidon Res.
  35. 35. Organisation for Economic Co-operation and Development (OECD). 2013. Environment at a Glance 2013: OECD Indicators Paris: OECD
  36. McMahon JE, Price SK. 36.  2011. Water and energy interactions. Annu. Rev. Environ. Resour. 36:163–91 [Google Scholar]
  37. Averyt K, Fisher J, Huber-Lee A, Lewis A, Macknick J. 37.  et al. 2011. Freshwater Use by U.S. Power Plants: Electricity's Thirst for a Precious Resource. A Report of the Energy and Water in a Warming World Initiative Cambridge, MA: Union Concern. Sci.
  38. O'Connor PA, Cleveland CJ. 38.  2014. U.S. energy transitions 1780–2010. Energies 7:127955–93 [Google Scholar]
  39. Stratton H, Fuchs H, Chen Y, Dunham C, Williams A. 39.  2016. Water and Wastewater Rate Hikes Outpace CPI Berkeley, CA: Lawrence Berkeley Nat. Lab.
  40. Mielke E, Diaz Anadon L, Narayanamurti V. 40.  2010. Water consumption of energy resource extraction, processing, and conversion Discuss. Pap. 2010-15 Belfer Cent. Sci. Int. Aff., Harvard Kennedy Sch. Cambridge, MA:
  41. Siddiqi A, Anadon LD. 41.  2011. The water–energy nexus in Middle East and North Africa. Energy Policy 39:84529–40 [Google Scholar]
  42. 42. U.S. Energy Information Administration. 2016. Average utilization for natural gas combined-cycle plants exceeded coal plants in 2015. Today in Energy Apr. 4. Accessed August 10, 2017. https://www.eia.gov/todayinenergy/detail.php?id=25652
  43. 43. U.S. Energy Information Administration. 2016. Natural gas expected to surpass coal in mix of fuel used for U.S. power generation in 2016. Today in Energy Mar. 16. Accessed August 10, 2017. https://www.eia.gov/todayinenergy/detail.php?id=25392
  44. 44. Electric Power Research Institute. 2012. Economic evaluation of alternative cooling technologies. 1024805
  45. 45. U.S. Energy Information Administration. 2014. Many newer power plants having cooling systems that reuse water. Today in Energy Febr. 11. Accessed August 10, 2017. https://www.eia.gov/todayinenergy/detail.php?id=14971
  46. DeNooyer TA, Peschel JM, Zhang Z, Stillwell AS. 46.  2016. Integrating water resources and power generation: the energy-water nexus in Illinois. Appl. Energy. 162:363–71 [Google Scholar]
  47. Scanlon BR, Duncan I, Reedy RC, Venkatesh A, Jaramillo P. 47.  et al. Marginal costs of water savings from cooling system retro fits: a case study for Texas power plants. Eng. Res. Lett 1:10 [Google Scholar]
  48. Madden N, Lewis A, Davis M. 48.  2013. Thermal effluent from the power sector: an analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8:335006 [Google Scholar]
  49. Scanlon BR, Duncan I, Reedy RC. 49.  2013. Drought and the water-energy nexus in Texas. Environ. Res. Lett. 8:4 [Google Scholar]
  50. 50. Electric Power Research Institute (EPRI). 2012. Thermosyphon Cooler Hybrid System for Water Savings in Power Plants Palo Alto, CA: EPRI
  51. Carter T, Liu Z, Sickinger D, Regimbal K, Martinez D. 51.  2017. Thermosyphon cooler hybrid system for water savings in an energy-efficient HPC data center: modeling and installation preprint Presented at ASHRAE Winter Conf. Las Vegas: Jan. 28–Febr. 1
  52. Martin CL, Pavlish J. 52.  2013. Testing of advanced dry cooling technology for power plants Rep., Nat. Energy Environ. Res. Cent., Univ. ND
  53. Bushart S, Shi J. 53.  2014. Advanced cooling and water treatment technology concepts for power plants. Power April
  54. Walker ME, Theregowda RB, Safari I, Abbasian J, Arastoopour H. 54.  et al. 2013. Utilization of municipal wastewater for cooling in thermoelectric power plants: evaluation of the combined cost of makeup water treatment and increased condenser fouling. Energy 60:139–47 [Google Scholar]
  55. 55. San Diego County Water Authority. 2016. Seawater Desalination: The Claude “Bud” Lewis Desalination Plant and Related Facilities San Diego: SD Count. Water Auth.
  56. Virgil F, Pankratz T. 56.  2016. IDA Desalination Yearbook 2015–2016 Oxford, UK: Media Analytics Ltd.
  57. Voutchkov N. 57.  2013. Desalination Engineering Planning and Design New York: McGraw Hill
  58. Isaka M. 58.  2012. Water desalination using renewable energy Rep., IEA-ETSAP, IRENA
  59. 59. Global Clean Water Desalination Alliance. 2015. H20 minus CO2 Concept Pap., Glob. Clean Water Desal. Alliance Accessed August 10, 2017. http://www.diplomatie.gouv.fr/IMG/pdf/global_water_desalination_alliance_1dec2015_cle8d61cb.pdf
  60. Cooley H, Phurisamban R. 60.  2016. The Cost of Alternative Water Supply and Efficiency Options in California Oakland, CA: Pac. Inst.
  61. Rao P, Aghajanzadeh A, Sheaffer P, Morrow WR III, Brueske S. 61.  et al. 2016. Volume 1: survey of available information in support of the energy-water bandwidth study of desalination systems Rep. LBNL-1006424 LBNL (Lawrence Berkeley National Laboratory) Berkeley, CA:
  62. Al-Karaghouli A, Kazmerski LL. 62.  2013. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 24:343–56 [Google Scholar]
  63. Imbrogno J, Belfort G. 63.  2016. Membrane desalination: Where are we, and what can we learn from fundamentals?. Annu. Rev. Chem. Biomol. Eng. 7:29–64 [Google Scholar]
  64. Ghaffour N, Missimer TM, Amy GL. 64.  2013. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207 [Google Scholar]
  65. Dundorf AS, MacHarg J, Seacord TF. 65.  2009. Optimizing lower energy seawater desalination: the affordable desalination collaboration. Presented at Int. Desalination Assoc. World Congr., Dubai, Nov. 7–12
  66. Ng KC, Thu K, Oh SJ, Ang L, Shahzad MW, Ismail A Bin. 66.  2015. Recent developments in thermally-driven seawater desalination: energy efficiency improvement by hybridization of the med and ad cycles. Desalination 356:255–70 [Google Scholar]
  67. 67. National Research Council. 2008. Desalination: A National Perspective Washington, DC: Nat. Acad. Press
  68. Ghaffour N. 68.  2015. Comparative assessment of membrane distillation configurations and modules Presented at Int. Conf. Emerg. Water Desal. Technol. Munic. Ind. Appl. San Diego, CA: Aug. 28–29. Accessed August 10, 2017. http://www.desaltech2015.com/assets/presenters/Ghaffour_Norredine.pdf
  69. Gude VG, Nirmalakhandan N, Deng S. 69.  2010. Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 14:92641–54 [Google Scholar]
  70. Plappally AK, Lienhard V JH. 70.  2013. Costs for water supply, treatment, end-use and reclamation. Desalin. Water Treat. 51:1–3200–32 [Google Scholar]
  71. Gal Z, Efraty A. 71.  2016. CCD series no. 18: record low energy in closed-circuit desalination of ocean seawater with nanoH2O elements without ERD. Desalin. Water Treat. 57:9180–89 [Google Scholar]
  72. Fritzmann C, Löwenberg J, Wintgens T, Melin T. 72.  2007. State-of-the-art of reverse osmosis desalination. Desalination 216:1–31–76 [Google Scholar]
  73. Elimelech M, Phillip WA. 73.  2011. The future of seawater desalination: energy, technology, and the environment. Science 333:6043712–17 [Google Scholar]
  74. Veerapaneni S, Klayman B, Wang S, Bond R. 74.  2011. Desalination Facility Design and Operation for Maximum Efficiency Denver: Water Res. Found.
  75. Henthorne L, Boysen B. 75.  2015. State-of-the-art of reverse osmosis desalination pretreatment. Desalination 356:129–39 [Google Scholar]
  76. Mistry KH, McGovern RK, Thiel GP, Summers EK, Zubair SM, Lienhard V JH. 76.  2011. Entropy generation analysis of desalination technologies. Entropy 13:101829–64 [Google Scholar]
  77. Tow EW, McGovern RK, Lienhard V JH. 77.  2015. Raising forward osmosis brine concentration efficiency through flow rate optimization. Desalination 366:71–79 [Google Scholar]
  78. Zhu A, Christofides PD, Cohen Y. 78.  2009. On RO membrane and energy costs and associated incentives for future enhancements of membrane permeability. J. Memb. Sci. 344:1–21–5 [Google Scholar]
  79. Werber JR, Deshmukh A, Elimelech M. 79.  2017. Can batch or semi-batch processes save energy in reverse-osmosis desalination?. Desalination 402:109–22 [Google Scholar]
  80. Shrivastava A, Rosenberg S, Peery M. 80.  2014. Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination. Desalination 368:181–92 [Google Scholar]
  81. Werber JR, Deshmukh A, Elimelech M. 81.  2016. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3:4112–20 [Google Scholar]
  82. Altaee A, Zaragoza G, van Tonningen HR. 82.  2014. Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination 336:150–57 [Google Scholar]
  83. McGovern RK, Lienhard V JH. 83.  2014. On the potential of forward osmosis to energetically outperform reverse osmosis desalination. J. Memb. Sci. 469:245–50 [Google Scholar]
  84. Hand MM, Baldwin S, DeMeo E, Reilly JM, Mai T. 84.  et al., eds. 2012. Renewable Electricity Futures Study Vols 1–4 Golden, CO: Natl. Renew. Energy Lab.
  85. Evans A, Strezov V, Evans TJ. 85.  2012. Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sustain. Energy Rev. 16:64141–47 [Google Scholar]
  86. Macknick J, Sattler S, Averyt K, Clemmer S, Rogers J. 86.  2012. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environ. Res. Lett. 7:445803 [Google Scholar]
  87. Arent D, Pless J, Mai T, Wiser R, Hand M. 87.  et al. 2014. Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply. Appl. Energy. 123:368–77 [Google Scholar]
  88. Voivontas D, Misirlis K, Manoli E, Arampatzis G, Assimacopoulos D. 88.  2001. A tool for the design of desalination plants powered by renewable energies. Desalination 133:2175–98 [Google Scholar]
  89. Raluy RG, Serra L, Uche J. 89.  2005. Life cycle assessment of desalination technologies integrated with renewable energies. Desalination 183:1–381–93 [Google Scholar]
  90. Eltawil MA, Zhengming Z, Yuan L. 90.  2009. A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 13:92245–62 [Google Scholar]
  91. Subramani A, Badruzzaman M, Oppenheimer J, Jacangelo JG. 91.  2011. Energy minimization strategies and renewable energy utilization for desalination: a review. Water Res 45:51907–20 [Google Scholar]
  92. 92. National Academy of Sciences. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments Washington, DC: Nat. Acad. Press
  93. Schäfer AI, Broeckmann A, Richards BS. 93.  2007. Renewable energy powered membrane technology. 1. Development and characterization of a photovoltaic hybrid membrane system. Environ. Sci. Technol. 41:3998–1003 [Google Scholar]
  94. Qiblawey HM, Banat F. 94.  2008. Solar thermal desalination technologies. Desalination 220:1–3633–44 [Google Scholar]
  95. 95. Saltworks Technol. 2010. Thermo-ionic Energy Conversion Richmond, BC, Can: Saltworks
  96. García-Rodríguez L. 96.  2002. Seawater desalination driven by renewable energies: a review. Desalination 143:2103–13 [Google Scholar]
  97. Mathioulakis E, Belessiotis V, Delyannis E. 97.  2007. Desalination by using alternative energy: review and state-of-the-art. Desalination 203:1–3346–65 [Google Scholar]
  98. Thomson M, Infield D. 98.  2003. A photovoltaic-powered seawater reverse-osmosis system without batteries. Desalination 153:1–31–8 [Google Scholar]
  99. Ackermann T, Söder L. 99.  2002. An overview of wind energy-status 2002. Renew. Sustain. Energy Rev. 6:1–267–128 [Google Scholar]
  100. Gilau AM, Small MJ. 100.  2008. Designing cost-effective seawater reverse osmosis system under optimal energy options. Renew. Energy. 33:4617–30 [Google Scholar]
  101. Kalogirou SA. 101.  2005. Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 31:3242–81 [Google Scholar]
  102. Barbier E. 102.  2002. Geothermal energy technology and current status: an overview. Renew. Sustain. Energy Rev. 6:1–23–65 [Google Scholar]
  103. Awerbuch L, Lindemuth TE, May SC, Rogers AN. 103.  1976. Geothermal energy recovery process. Desalination 19:1–3325–36 [Google Scholar]
  104. Ingram E. 104.  2009. Pumped storage development activity snapshots. Hydro Rev. Dec. 1 12–25 [Google Scholar]
  105. Fujihara T, Imano H, Oshima K. 105.  1998. Development of pump turbine for seawater pumped-storage power plant. Hitachi Rev 47:5199–202 [Google Scholar]
  106. 106. U.S. Army Corps of Engineers. 1982. An Assessment of Hydro-Electric Pumped Storage Fort Belvoir, VA: US Army Eng. Inst. Water Res.
  107. Rehman S, Al-Hadhrami LM, Alam MM. 107.  2015. Pumped hydro energy storage system: a technological review. Renew. Sustain. Energy Rev. 44:586–98 [Google Scholar]
  108. Yang CJ, Jackson RB. 108.  2011. Opportunities and barriers to pumped-hydro energy storage in the United States. Renew. Sustain. Energy Rev. 15:1839–44 [Google Scholar]
  109. Boyles D. 109.  2014. Helms at 30: hydroelectric plant delivers safe, clean affordable energy. PG&E CURRENTS Aug. 1. Accessed August 10, 2017. http://www.pgecurrents.com/2014/08/01/helms-at-30-hydroelectric-plant-delivers-safe-clean-affordable-energy/
  110. Elías-Maxil JA, Van Der Hoek JP, Hofman J, Rietveld L. 110.  2014. Energy in the urban water cycle: actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water. Renew. Sustain. Energy Rev. 30:808–20 [Google Scholar]
  111. 111. UC Davis Center for Water-Energy Efficiency. 2017. California H2Open Accessed August 10, 2017. https://cwee.shinyapps.io/greengov
  112. 112. Navigant Consultants. 2006. Refining estimates of water-related energy use in California Rep. CEC-500-2006-118 Public Interest Energy Res., Calif. Energy Comm. Sacramento, CA:
  113. Young R. 113.  2013. Savings water and energy together: helping utilities build better programs Res. Rep. E13H Am. Counc. Energy-Effic. Economy Washington, DC:
  114. Nair S, George B, Malano HM, Arora M, Nawarathna B. 114.  2014. Water-energy-greenhouse gas nexus of urban water systems: review of concepts, state-of-art and methods. Resour. Conserv. Recycl. 89:1–10 [Google Scholar]
  115. Plappally AK, Lienhard V JH. 115.  2012. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 16:74818–48 [Google Scholar]
  116. Amon R, Maulhardt M, Wong T, Kazama D. 116.  2013. Industrial water energy nexus assessment: Campbell Soup California tomato processing facility Rep., CA Energy Comm. Davis, CA:
  117. 117. US DOE. 2017. Harbec Showcase Project: Water Retention Pond Accessed August 10, 2017. https://betterbuildingsinitiative.energy.gov/showcase-projects/water-retention-pond
  118. 118. Kennedy/Jenk Consultants, Brown & Caldwell. 2015. Water use efficiency report for California league of food processors Rep., CA League Food Proc. Sacramento, CA.:
  119. 119. ECONorthwest. 2011. Embedded energy in water pilot programs impact evaluation Rep., CA Public Util. Comm. Rep. San Francisco:
  120. Hering JG, Waite TD, Luthy RG, Drewes JE, Sedlak DL. 120.  2013. A changing framework for urban water systems. Environ. Sci. Technol. 47:1910721–26 [Google Scholar]
  121. Grant SB, Saphores J-D, Feldman DL, Hamilton AJ, Fletcher TD. 121.  et al. 2012. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337:6095681–86 [Google Scholar]
  122. 122. American Water Works Association. 2015. 2015 Validated water audit data Accessed August 10, 2017. https://www.awwa.org/resources-tools/water-knowledge/water-loss-control.aspx
  123. Hendrickson TP, Horvath A. 123.  2014. A perspective on cost-effectiveness of greenhouse gas reduction solutions in water distribution systems. Environ. Res. Lett. 9:124017 [Google Scholar]
  124. Stokes JR, Horvath A, Sturm R. 124.  2013. Water loss control using pressure management: life-cycle energy and air emission effects. Environ. Sci. Technol. 47:10771–80 [Google Scholar]
  125. 125. United Nations Children's Fund (UNICEF), World Health Org. (WHO). 2015. Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment Geneva: WHO/UNICEF
  126. Hutton G. 126.  2012. Global costs and benefits of drinking-water supply and sanitation interventions to reach the MDG target and universal coverage Rep. WHO/HSE/WSH/12.01 World Health Org. Geneva:
  127. McCarty PL, Bae J, Kim J. 127.  2011. Domestic wastewater treatment as a net energy producer—can this be achieved?. Environ. Sci. Technol. 45:177100–7106 [Google Scholar]
  128. 128. Malcolm Pirnie Inc. 2008. Statewide assessment of energy use by the municipal water and wastewater sector Rep., NY State Energy Res. Dev. Auth. Albany, NY:
  129. Daw J, Hallett K, DeWolfe J, Venner I. 129.  2012. Energy efficiency strategies for municipal wastewater treatment facilities Tech. Rep. NREL/TP-7A30-53341 Nat. Renew. Energy Lab. Golden, CO:
  130. 130. National Science Foundation (NSF), U.S. Environmental Protection Agency (EPA), U.S. Department of Energy (DOE). 2015. Energy-positive water resource recovery workshop report Rep., Interagency Energy Group, NSF, EPA, DOE Arlington, VA:
  131. Batstone DJ, Hulsen T, Mehta CM, Keller J. 131.  2015. Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere 140:2–11 [Google Scholar]
  132. Cordell D, White S. 132.  2014. Life's bottleneck: sustaining the world's phosphorous for a food secure future. Annu. Rev. Environ. Resour. 39:161–88 [Google Scholar]
  133. Cordell D, Drangert JO, White S. 133.  2009. The story of phosphorus: global food security and food for thought. Glob. Environ. Chang. 19:2292–305 [Google Scholar]
  134. Heidrich ES, Curtis TP, Dolfing J. 134.  2011. Determination of the internal chemical energy of wastewater. Environ. Sci. Technol. 45:2827–32 [Google Scholar]
  135. 135. Eastern Research Group Inc., Resource Dynamics Corporation. 2011. Opportunities for combined heat and power at wastewater treatment facilities: market analysis and lessons from the field combined heat and power partnership Rep., US Environ. Protect. Agency Washington, DC:
  136. Nowak O, Enderle P, Varbanov P. 136.  2015. Ways to optimize the energy balance of municipal wastewater systems: lessons learned from Austrian applications. J. Clean. Prod. 88:125–31 [Google Scholar]
  137. Logan BE, Rabaey K. 137.  2012. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:6095686–90 [Google Scholar]
  138. Mo W, Zhang Q. 138.  2013. Energy-nutrients-water nexus: integrated resource recovery in municipal wastewater treatment plants. J. Environ. Manag. 127:255–67 [Google Scholar]
  139. Logan BE, Elimelech M. 139.  2012. Membrane-based processes for sustainable power generation using water. Nature 488:7411313–19 [Google Scholar]
  140. Chisti Y. 140.  2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:3126–31 [Google Scholar]
  141. Pittman JK, Dean AP, Osundeko O. 141.  2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102:117–25 [Google Scholar]
  142. Cai T, Park SY, Li Y. 142.  2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sustain. Energy Res. 19:360–69 [Google Scholar]
  143. Bae J, Shin C, Lee E, Kim J, McCarty PL. 143.  2014. Anaerobic treatment of low-strength wastewater: a comparison between single and staged anaerobic fluidized bed membrane bioreactors. Bioresour. Technol. 165:C75–80 [Google Scholar]
  144. Batstone DJ, Virdis B. 144.  2014. The role of anaerobic digestion in the emerging energy economy. Curr. Opin. Biotechnol. 27:142–49 [Google Scholar]
  145. 145. National Research Council. 2012. Water reuse: potential for expanding the nation's water supply through reuse of municipal wastewater Cons. Stud. Rep., Nat. Acad. Press Washington, DC:
  146. 146. National Resources Defense Council, Pacific Institute. 2014. Water reuse potential in California Rep. Oakland, CA:
  147. Li H, Chien S-H, Hsieh M-K, Dzombak DA, Vidic RD. 147.  2011. Escalating water demand for energy production and the potential for use of treated municipal wastewater. Environ. Sci. Technol. 45:4195–200 [Google Scholar]
  148. Schroeder E, Tchobanoglous G, Leverenz HL, Asano T. 148.  2012. Direct potable reuse: supplies, agriculture, the environment, and energy conservation White Pap. NWRI-2012-01 Nat. Water Res. Inst. Fountain Valley, CA:
/content/journals/10.1146/annurev-environ-102016-060959
Loading
/content/journals/10.1146/annurev-environ-102016-060959
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error