1932

Abstract

We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed, along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102016-061138
2017-10-17
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/energy/42/1/annurev-environ-102016-061138.html?itemId=/content/journals/10.1146/annurev-environ-102016-061138&mimeType=html&fmt=ahah

Literature Cited

  1. 1. International Energy Agency (IEA). 2015. World Energy Outlook 2015 Rep. WEA-2015, IEA. http://www.worldenergyoutlook.org/weo2015/ [Google Scholar]
  2. 2. International Energy Agency (IEA). 2013. World Energy Outlook 2013 Rep. WEA-2013, IEA. https://www.iea.org/publications/freepublications/publication/WEO2013.pdf [Google Scholar]
  3. 3. International Energy Agency (IEA). 2016. World Energy Outlook 2016: Executive Summary Rep. WEA-2016, IEA. https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlook2016ExecutiveSummaryEnglish.pdf [Google Scholar]
  4. Van Heddeghem W, Lambert S, Lannoo B, Colle D, Pickavet M, Demeester P. 4.  2014. Trends in worldwide ICT electricity consumption from 2007 to 2012. Comput. Commun. 50:64–76 [Google Scholar]
  5. Shehabi A, Smith SJ, Sartor DA, Brown RE, Herrlin M. 5.  et al. 2016. United States Data Center Energy Usage Report Rep. LBNL-1005775, Lawrence Berkeley Natl. Lab., June. https://eta.lbl.gov/sites/all/files/publications/lbnl-1005775_v2.pdf [Google Scholar]
  6. 6. United Nations Framework Convention on Climate Change (UNFCCC). 2015. Adoption of the Paris Agreement Paris: Twenty-first session of the Conference of the Parties FCCC/CP/2015/L.9, Dec. 12. https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf [Google Scholar]
  7. Ellabban O, Abu-Rub H, Blaabjerg F. 7.  2014. Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39:748–64 [Google Scholar]
  8. Dye ST. 8.  2012. Geoneutrinos and the radioactive power of the Earth. Rev. Geophys. 50:RG3007 [Google Scholar]
  9. 9. US Department of Energy (DOE). 2016. 2015 Wind technologies market report Rep., Off. Energy Effic. Renew. Energy, DOE, Aug. http://energy.gov/eere/wind/downloads/2015-wind-technologies-market-report [Google Scholar]
  10. Barbose G, Darghouth N, Millstein D, Cates S, DiSanti N, Widiss R. 10.  2016. Tracking the sun IX: the installed price of residential and non-residential photovoltaic systems in the United States Rep. LBNL-1006036, Lawrence Berkeley Natl. Lab., Aug. https://emp.lbl.gov/sites/all/files/tracking_the_sun_ix_report_0.pdf [Google Scholar]
  11. 11. Global Wind Energy Council (GWEC). 2016. Global Wind Report 2015: annual market update Rep., GWEC, April. http://www.gwec.net/publications/global-wind-report-2/global-wind-report-2015-annual-market-update/ [Google Scholar]
  12. Garfield L. 12.  2016. America's first offshore wind farm just launched with GE turbines twice as tall as the Statue of Liberty. Business Insider Dec. 12. http://www.businessinsider.com/ge-wind-farm-block-island-2016-12 [Google Scholar]
  13. Smith S, Stehly T, Musial W. 13.  2015. 2014–2015 Offshore wind technologies market report Tech. Rep. NREL/TP-5000–64283, Natl. Renew. Energy Lab., Sept. http://www.nrel.gov/docs/fy15osti/64283.pdf [Google Scholar]
  14. Wiser R, Jenni K, Seel J, Baker E, Hand M. 14.  et al. 2016. Expert elicitation survey on future wind energy costs. Nat. Energy 1:1–8 [Google Scholar]
  15. 15. Renewable Energy Policy Network for the 21st Century (REN21). 2016. Renewables 2016 Global Status Report Rep. GSR-2016, Paris, REN21. http://www.ren21.net/wp-content/uploads/2016/10/REN21_GSR2016_FullReport_en_11.pdf [Google Scholar]
  16. Bolinger M, Seel J. 16.  2016. Utility-Scale Solar 2015: an empirical analysis of project cost, performance and pricing trends in the United States Rep. LBNL-1006037, Lawrence Berkeley Natl. Lab., Aug. https://emp.lbl.gov/sites/all/files/lbnl-1006037_report.pdf [Google Scholar]
  17. 17. Massachusetts Institute of Technology (MIT). 2015. The future of solar energy: an interdisciplinary MIT study Rep., Energy Initiat., MIT, Apr. https://energy.mit.edu/wp-content/uploads/2015/05/MITEI-The-Future-of-Solar-Energy.pdf [Google Scholar]
  18. Jones-Albertus R, Feldman D, Fu R, Horowitz K, Woodhouse M. 18.  2016. Technology advances needed for photovoltaics to achieve widespread grid price parity. Prog. Photovolt. Res. Appl. https://energy.gov/sites/prod/files/2016/04/f30/PV%20Technology%20Advances.pdf [Google Scholar]
  19. 19. US Department of Energy (DOE). 2016. SunShot initiative goals. DOE Nov. https://energy.gov/eere/sunshot/sunshot-initiative-goals [Google Scholar]
  20. 20. World Energy Council (WEC). 2016. Energy resources > hydropower. World Energy Congress, 23rd, Istambul, Turkey, Oct. 9–13. https://www.worldenergy.org/data/resources/resource/hydropower/ [Google Scholar]
  21. 21. US Department of Energy (DOE). 2016. Hydropower Vision:. a new chapter for America's 1st renewable electricity source Rep. DOE/GO-102016-4869, DOE, July. http://energy.gov/eere/water/articles/hydropower-vision-new-chapter-america-s-1st-renewable-electricity-source [Google Scholar]
  22. 22. California Energy Commission. 2016. Hydroelectric power in California. State of California. CA.gov http://www.energy.ca.gov/hydroelectric/ [Google Scholar]
  23. Magill B. 23.  2014. Methane emissions may swell from behind dams. Scientific American Oct. 29. https://www.scientificamerican.com/article/methane-emissions-may-swell-from-behind-dams/ [Google Scholar]
  24. 24. U.S. Department of Energy (DOE). 2017. Marine and Hydrokinetic Energy Research & Development. Off. Energy Effic. Renew. Energy, DOE. energy.gov. http://energy.gov/eere/water/marine-and-hydrokinetic-energy-research-development [Google Scholar]
  25. 25. U.S. Department of Energy (DOE). 2017. Marine and Hydrokinetic Resource Assessment and Characterization. Off. Energy Effic. Renew. Energy, DOE. energy.gov. http://energy.gov/eere/water/marine-and-hydrokinetic-resource-assessment-and-characterization [Google Scholar]
  26. Snowberg D, Weber J. 26.  2015. Marine and hydrokinetic technology development risk management framework Rep. NREL/TP-5000–63258, Natl. Renew. Energy Lab., Sept. http://www.nrel.gov/docs/fy15osti/63258.pdf [Google Scholar]
  27. Hydro TV. 27.  2016. HydroVision International 2016 keynote speech Presented at HydroVision Intl. 2016 Conf., PennWell Corp Tulsa, OK: Dec. 5. http://www.hydroworld.com/topics/m/video/117663639/hydrovision-international-2016-keynote.htm [Google Scholar]
  28. 28. Geothermal Technologies Office. 2016. Geothermal value-added technologies Rep. DOE/EE-0853, Off. Energy Effic. Renew. Energy, US Dep. Energy, Febr. https://energy.gov/sites/prod/files/2016/04/f30/LT-Copro%20Fact%20Sheet.pdf [Google Scholar]
  29. 29. U.S. Department of Energy (DOE). 2017. Enhanced Geothermal Systems, Off. Energy Effic. Renew. Energy, DOE. energy.gov. https://www.energy.gov/eere/geothermal/enhanced-geothermal-systems-0 [Google Scholar]
  30. Ziagos J, Phillips BR, Boyd L, Jelacic A, Stillman G, Hass E. 30.  2013. A technology roadmap for strategic development of enhanced geothermal systems. Pap. SGP-TR-198., Proc. 38th Workshop Geotherm Res. Eng., Stanf. Univ., Stanf., CA, Febr. 11–13 https://www.energy.gov/sites/prod/files/2014/02/f7/stanford_egs_technical_roadmap2013.pdf
  31. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P. 31.  et al. 2011. Bioenergy. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation O Edenhofer, R Pichs-Madruga, Y Sokono, S Seyboth, S Kadner, et al., Chapter 2 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  32. 32. International Energy Agency (IEA). 2011. Combining bioenergy with CCS: reporting and accounting for negative emissions under UNFCCC and the Kyoto Protocol Working Pap. IEA. https://www.iea.org/publications/freepublications/publication/bioenergy_ccs.pdf [Google Scholar]
  33. Sanchez DL, Nelson JH, Johnston J, Mileva A, Kammen DM. 33.  2015. Biomass enables the transition to a carbon-negative power system across western North America. Nat. Climate Change 5:230–35 [Google Scholar]
  34. Azar C, Lindgren K, Obersteiner M, Riahi K, van Vuuren DP. 34.  et al. 2010. The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Climatic Change 100:195–202 [Google Scholar]
  35. 35. International Energy Agency (IEA). 2016. Key world energy statistics Rep., IEA. https://www.iea.org/publications/freepublications/publication/KeyWorld2016.pdf [Google Scholar]
  36. Bragg-Sitton S. 36.  2015. Hybrid energy systems (HESs) using small modular reactors (SMRs). Handbook of Small Modular Nuclear Reactors MD Carelli, DT Ingersoll 39–50 Waltham, MA: Woodhead. http://dx.doi.org/10.1533/9780857098535.3.319 [Crossref] [Google Scholar]
  37. Wang B. 37.  2016. Update of death per terawatt hour by energy source. Next Big Future June 3. http://www.nextbigfuture.com/2016/06/update-of-death-per-terawatt-hour-by.html [Google Scholar]
  38. Blake EM. 38.  2014. U.S. capacity factors: still near 90 percent. Nuclear News 57:630 http://www.ans.org/pubs/magazines/download/a_928 [Google Scholar]
  39. Zinkle SJ, Terrani KA, Snead LL. 39.  2016. Motivation for utilizing new high-performance advanced materials in nuclear energy systems. Curr. Opin. Solid State Mater. Sci. 20:401–10 http://dx.doi.org/10.1016/j.cossms.2016.10.004 [Crossref] [Google Scholar]
  40. Wigeland R, Taiwo T, Ludewig H, Todosow M, Halsey W. 40.  et al. 2014. Nuclear fuel cycle evaluation and screening—final report Rep. INL/EXT-14–31465 Idaho Natl. Lab., Idaho Falls [Google Scholar]
  41. 41. World Nuclear Association (WNA). 2016. Mixed Oxide (MOX) Fuel London: WNA http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/mixed-oxide-fuel-mox.aspx [Google Scholar]
  42. Zinkle SJ, Terranni KA, Gehin JC, Ott LJ, Snead LL. 42.  2014. Accident tolerant fuels for LWRs: a perspective. J. Nucl. Mater. 448:374–79 [Google Scholar]
  43. Terrani KA, Zinkle SJ, Snead LL. 43.  2014. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J. Nuclear Mater. 448:420–35 [Google Scholar]
  44. White JT, Nelson AT, Dunwoody JT, Byler DD, Safarik DJ, McClellan KJ. 44.  2015. Thermophysical properties of U3Si2 to 1773 K. J. Nucl. Mater. 464:275–80 [Google Scholar]
  45. Terrani KA, Kiggans JO, Katoh Y, Shimoda K, Montgomery FC. 45.  et al. 2012. Fabrication and characterization of fully ceramic microencapsulated fuels. J. Nuclear Mater. 426:268–76 [Google Scholar]
  46. Locatelli G, Bingham C, Mancini M. 46.  2014. Small modular reactors: a comprehensive overview of their economics and strategic aspects. Progr. Nuclear Energy 73:75–85 [Google Scholar]
  47. Kessides IN. 47.  2010. Nuclear power: understanding the economic risks and uncertainties. Energy Policy 38:83849–64 [Google Scholar]
  48. Ruth MF, Zinaman OR, Antkowiak M, Boardman RD, Cherry RS, Bazilian MD. 48.  2014. Nuclear-renewable hybrid energy systems: opportunities, interconnections, and needs. Energy Convers. Manag. 78:684–94 [Google Scholar]
  49. Grubler A. 49.  2010. The costs of the French nuclear scale-up: a case of negative learning by doing. Energy Policy 38:95174–88 [Google Scholar]
  50. Feng B, Dixon B, Sunny E, Cuadra A, Jacobson A, Brown NR. 50.  et al. 2016. Standardized verification of fuel cycle modeling. Ann. Nuclear Energy 94:300–12 [Google Scholar]
  51. Greenwood MS, Brown NR, Betzler BR, Mays GT. 51.  2016. Summary of the Workshop on Molten Salt Reactor Technologies Commemorating the 50th Anniversary of the Startup of the Molten Salt Reactor Experiment Presented at Intl. Congr. Adv. Nucl. Power Plant (ICAPP): Nucl. Innov. Invent. Future Exist. New Nucl. Power, Apr. 17–20 San Franc: CA [Google Scholar]
  52. Brinton S. 52.  2015. The advanced nuclear industry Rep., Third Way Washington, DC: http://www.thirdway.org/report/the-advanced-nuclear-industry [Google Scholar]
  53. 53. Nuclear Innovation Bootcamp. 2016. 2016 Bootcamp. Nuclear Innovation Alliance, University of California, Berkeley, Thirdway, U.S. Department of Energy and Idaho National Laboratory, August 1-12. http://nuclearbootcamp.berkeley.edu/2016-2
  54. 54. Idaho National Laboratory (INL). 2016. Technical program plan for INL Advanced Reactor Technologies Technology Development Office/Advanced Gas Reactor Fuel Development and Qualification Program Rep. INL/MIS-10–20662, INL, Idaho Falls [Google Scholar]
  55. Brown NR, Revankar ST. 55.  2012. A review of catalytic sulfur (VI) oxide decomposition. Int. J. Hydrogen Energy 37:2685–98 [Google Scholar]
  56. Petti D, Hill R, Gehin J, Gougar H, Strydom G. 56.  et al. 2016. Advanced demonstration and test reactor options study Tech. Rep. INL/EXT-16–37867, Idaho Natl. Lab., Idaho Falls [Google Scholar]
  57. Peterson PF. 57.  2003. Multiple-reheat Brayton cycles for nuclear power conversion with molten coolants. Nuclear Technol 144:3279–88 [Google Scholar]
  58. Pacio J, Wetzel T. 58.  2013. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Solar Energy 93:11–22 [Google Scholar]
  59. Brosseau D, Kelton JW, Ray D, Edgar M, Chisman K, Emms B. 59.  2005. Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants. J. Solar Energy Eng. 127.1:109–16 [Google Scholar]
  60. Saraev OM, Noskov YV, Zverev DL, Vasil'ev BA, Sedakov VY. 60.  et al. 2010. BN-800 design validation and construction status. Atomic Energy 108:4248–53 [Google Scholar]
  61. 61. World Nuclear News (WNN). 2015. Russia connects BN-800 fast reactor to grid. WNN, Dec. 11. http://www.world-nuclear-news.org/NN-Russia-connects-BN800-fast-reactor-to-grid-11121501.html
  62. Zhang Z, Wu Z, Wang D, Xu Y, Sun Y. 62.  et al. 2009. Current status and technical description of Chinese 2 × 250 MWth HTR-PM. Nuclear Eng. Des. 239:71212–19 [Google Scholar]
  63. Adams R. 63.  2016. China building technology that can convert coal plants to nuclear plants. Forbes Nov. 8. http://www.forbes.com/sites/rodadams/2016/11/08/china-is-taking-serious-stides-towards-cleaner-air/#542330527209 [Google Scholar]
  64. Xiao Y, Hu L-W, Forsberg C, Qiu S, Su G. 64.  et al. 2014. Analysis for limiting safety system settings of fluoride salt–cooled high-temperature test reactor. Nucl. Technol. 187:3221–34 [Google Scholar]
  65. Brown NR, Powers JJ, Feng B, Heidet F, Stauff NE. 65.  et al. 2015. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems. Nucl. Eng. Des. 289:252–65 [Google Scholar]
  66. Heidet F, Brown NR, Haj Tahar M. 66.  2015. Accelerator—reactor coupling for energy production in advanced Nuclear Fuel Cycles. Rev. Accel. Sci. Technol. 8:99–114 [Google Scholar]
  67. Metz B, Davidson O, de Coninck H, Loos M, Meyer L. 67. , eds. 2005. IPCC Special Report on Carbon Dioxide Capture and Storage Cambridge, UK: Cambridge Univ. Press442 pp. [Google Scholar]
  68. Coninck H, de Benson SM. 68.  2014. Carbon dioxide capture and storage: issues and prospects. Annu. Rev. Environ. Resour. 39:1243–70 [Google Scholar]
  69. Jansen D, Gazzani M, Manzolini G, van Dijk E, Carbo M. 69.  2015. Pre-combustion CO2 capture. Int. J. Greenh. Gas Control. 40:167–87 [Google Scholar]
  70. Liang Z, Rongwong W, Liu H, Fu K, Gao H. 70.  et al. 2015. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. Int. J. Greenh. Gas Control. 40:26–54 [Google Scholar]
  71. Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S. 71.  et al. 2015. Oxyfuel combustion for CO2 capture in power plants. Int. J. Greenh. Gas Control. 40:55–125 [Google Scholar]
  72. 72. IEA Greenhouse Gas R&D Programme (IEAGHG). 2007. Improved oxygen production technology Tech. Rep. 2007/14, IEAGHG Cheltenham, UK: http://ieaghg.org/docs/General_Docs/Reports/2007-14.pdf [Google Scholar]
  73. 73. International Energy Agency (IEA). 2016. Ready for CCS retrofit: the potential for equipping China's existing coal fleet with carbon capture and storage Rep., Insights Ser IEA, Paris: https://www.iea.org/publications/insights/insightpublications/ThePotentialforEquippingChinasExistingCoalFleetwithCarbonCaptureandStorage.pdf [Google Scholar]
  74. 74. Pipeline and Hazardous Materials Safety Administration (PHMSA). 2017. Mileage for hazardous liquid or carbon dioxide systems Annu. Rep., U.S. Dep. Transport Washington, DC: http://www.phmsa.dot.gov/pipeline/library/data-stats/annual-report-mileage-for-hazardous-liquid-or-carbon-dioxide-systems [Google Scholar]
  75. Kuuskraa V, Wallace M. 75.  2014. CO2-EOR set for growth as new CO2 supplies emerge. Oil Gas Journal April 7. http://www.ogj.com/articles/print/volume-112/issue-4/special-report-eor-heavy-oil-survey/co-sub-2-sub-eor-set-for-growth-as-new-co-sub-2-sub-supplies-emerge.html [Google Scholar]
  76. Decarre S, Berthiaud J, Butin N, Guillaume-Combecave J-L. 76.  2010. CO2 maritime transportation. Int. J. Greenh. Gas Control. 4:5857–64 [Google Scholar]
  77. 77. Chiyoda Corporation. 2011. Preliminary Feasibility Study on CO2 Carrier for Ship-based CCS Rep., Glob. Carbon Capture Storage Inst Canberra, Austr: http://hub.globalccsinstitute.com/sites/default/files/publications/24452/preliminary-feasibility-study-co2-carrier-ship-based-ccs.pdf [Google Scholar]
  78. Birkholzer JT, Oldenburg CM, Zhou Q. 78.  2015. CO2 migration and pressure evolution in deep saline aquifers. Int. J. Greenh. Gas Control. 40:203–20 [Google Scholar]
  79. Thibeau S, Bachu S, Birkholzer J, Holloway S, Neele F, Zhou Q. 79.  2014. Using pressure and volumetric approaches to estimate CO2 storage capacity in deep saline aquifers. Energy Procedia 63:5294–304 [Google Scholar]
  80. Bachu S. 80.  2015. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control. 40:188–202 [Google Scholar]
  81. Buscheck TA, Sun Y, Chen M, Hao Y, Wolery TJ. 81.  et al. 2012. Active CO2 reservoir management for carbon storage: analysis of operational strategies to relieve pressure buildup and improve injectivity. Int. J. Greenh. Gas Control. 6:0230–45 [Google Scholar]
  82. Flett MA, Beacher GJ, Brantjes J, Burt AJ, Dauth C. 82.  et al. 2008. Gorgon Project: subsurface evaluation of carbon dioxide disposal under Barrow Island. Society of Petroleum Engineers Asia Pacific Oil and Gas Conference and Exhibition 20–22 October Perth, Australia: https://doi.org/10.2118/116372-MS [Crossref] [Google Scholar]
  83. Dixon T, McCoy ST, Havercroft I. 83.  2015. Legal and regulatory developments on ccs. Int. J. Greenh. Gas Control. 40:431–48 [Google Scholar]
  84. Pawar RJ, Bromhal GS, Carey JW, Foxall W, Korre A. 84.  et al. 2015. Recent advances in risk assessment and risk management of geologic CO2 storage. Int. J. Greenh. Gas Control. 40:292–311 [Google Scholar]
  85. Koornneef J, Ramírez A, Turkenburg W, Faaij A. 85.  2012. The environmental impact and risk assessment of CO2 capture, transport and storage—an evaluation of the knowledge base. Progr. Energy Combust. Sci. 38:162–86 [Google Scholar]
  86. 86. Shell Canada, Ltd. 2015. Quest Carbon Capture and Storage Project Annu. Rep. 2014, Alberta Dep. Energy, Shell Canada, Ltd., Calgary, Alberta, Can. http://www.energy.alberta.ca/CCS/pdfs/CCSQuestReport2014.pdf [Google Scholar]
  87. Finley RJ. 87.  2014. An overview of the Illinois Basin–Decatur Project. Greenh. Gases Sci. Technol. 4:5571–79 [Google Scholar]
  88. Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp TA, Høier L. 88.  2011. Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Procedia 4:5541–48 [Google Scholar]
  89. Preston C, Monea M, Jazrawi W, Brown K, Whittaker S. 89.  et al. 2005. IEA GHG Weyburn CO2 monitoring and storage project. Fuel Process. Technol. 86:14–151547–68 [Google Scholar]
  90. Rubin ES, Davison JE, Herzog HJ. 90.  2015. The cost of CO2 capture and storage. Int. J. Greenh. Gas Control. 40:378–400 [Google Scholar]
  91. Merrow EW, Phillips K, Myers CW. 91.  1981. Understanding Cost Growth and Performance Shortfalls in Pioneer Process Plants Santa Monica, CA: RAND Corp. [Google Scholar]
  92. Corsten M, Ramírez A, Shen L, Koornneef J, Faaij A. 92.  2012. Environmental impact assessment of CCS chains—lessons learned and limitations from LCA literature. Int. J. Greenh. Gas Control. 13:059–71 [Google Scholar]
  93. 93. IEA Greenhouse Gas R&D Programme (IEAGHG). 2014. Assessment of emerging CO2 capture technologies and their potential to reduce costs Rep. 2014/TR4 IEAGHG, Cheltenham, UK: http://www.ieaghg.org/docs/General_Docs/Reports/2014-TR4.pdf [Google Scholar]
  94. Aldous R, Anderson C, Anderson R, Gerstenberger M, Gurevich B. 94.  et al. 2013. CSLF technology assessment, CCS technology development; gaps, opportunities and research fronts Rep. RPT13–4571, Coop. Res. Cent. Greenh. Gas Technol Canberra, Austr. https://www.cslforum.org/cslf/sites/default/files/documents/CCSTechnologyOpportunitiesGaps_FinalReport.pdf [Google Scholar]
  95. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S. 95.  et al. 2014. Carbon capture and storage update. Energy Environ. Sci. 7:1130–89 [Google Scholar]
  96. Abanades JC, Arias B, Lyngfelt A, Mattisson T, Wiley DE. 96.  et al. 2015. Emerging CO2 capture systems. Int. J. Greenh. Gas Control. 40:126–66 [Google Scholar]
  97. Lyngfelt A. 97.  2013. Chemical-looping combustion of solid fuels—status of development. Appl. Energy 113:01869–73 [Google Scholar]
  98. 98. IEA Greenhouse Gas R&D Programme (IEAGHG). 2012. CO2 capture at gas fired power plants Rep. 2012/8. IEAGHG, Cheltenham, UK. http://www.ieaghg.org/docs/General_Docs/Reports/2012-08.pdf [Google Scholar]
  99. 99. International Energy Agency (IEA). 2015. Energy technology perspectives 2015: mobilizing innovation to accelerate climate action Rep. IEA Paris: https://www.iea.org/publications/freepublications/publication/EnergyTechnologyPerspectives2015ExecutiveSummaryEnglishversion.pdf [Google Scholar]
  100. Mankins JC. 100.  2014. The Case for Space Solar Power Houston: Virginia Ed. Publ. [Google Scholar]
  101. Glaser PE. 101.  1968. Power from the sun: its future. Science 162:857–61 [Google Scholar]
  102. Sasaki S. 102.  2015. How Japan plans to build an orbital solar farm. IEEE Spectrum Apr. 24. http://spectrum.ieee.org/green-tech/solar/how-japan-plans-to-build-an-orbital-solar-farm [Google Scholar]
  103. Mearian L. 103.  2015. China considering space-based solar power station. Computerworld March 30. http://www.computerworld.com/article/2903588/china-considering-space-based-solar-power-station.html [Google Scholar]
  104. Wiens K. 104.  2014. Solar power when it's raining: NRL builds space satellite module to try. Naval Research Laboratory March 12. https://www.nrl.navy.mil/media/news-releases/2014/solar-power-when-its-raining-nrl-builds-space-satellite-module-to-try [Google Scholar]
  105. 105. Solaren Corporation. 2016. Solaren Corporation announces the next phase of their space solar development program. Solaren June 8. http://www.solarenspace.com/2016/06/08/solaren-corporation-announces-the-next-phase-of-their-space-solar-development-program/ [Google Scholar]
  106. Pourbahrami T. 106.  2015. Idea Flow: The Space Solar Power Initiative. ENGenious 12:8–11 http://resolver.caltech.edu/CaltechCampusPubs:20160404-154638072 [Google Scholar]
  107. 107. Global Energy Network Institute (GENI). 1995. Buckminster Fuller on the Global Energy Grid. GENI Newsletters Second Quarter. http://www.geni.org/globalenergy/library/newsletters/1995/buckminster-fuller-on-the-global-energy-grid.shtml [Google Scholar]
  108. Coopersmith J. 108.  2012. Affordable access to space. Issu. Sci. Technol. 29:1 http://issues.org/29–1/jonathan/ [Google Scholar]
  109. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. 109.  2016. Solar cell efficiency tables (version 47). Prog. Photovoltaics 24:3–11 [Google Scholar]
  110. Surampudi S. 110.  2011. Overview of the space power conversion and energy storage technologies. NASA Rep., Jet Propuls. Lab Pasadena, CA: Jan. 24. http://www.lpi.usra.edu/sbag/meetings/jan2011/presentations/day1/d1_1200_Surampudi.pdf [Google Scholar]
  111. Shinohara N. 111.  2010. Beam efficiency of wireless power transmission via radio waves form short range to long range. J. Electromagn. Eng. Sci. 10:4224–30 [Google Scholar]
  112. Mynick HE, Pomphrey N, Xanthopoulos P. 112.  2010. Optimizing stellarators for turbulent transport. Phys. Rev. Lett. 105:095004 [Google Scholar]
  113. Kikuchi M, Azumi M. 113.  2012. Steady-state tokamak research: core physics. Rev. Mod. Phys. 84:1807–54 [Google Scholar]
  114. Betti R, Hurricane OA. 114.  2016. Inertial-confinement fusion with lasers. Nat. Phys. 12:435–48 [Google Scholar]
  115. Luxon JL. 115.  2002. A design retrospective of the DIII-D tokamak. Nucl. Fusion 42:614–33 [Google Scholar]
  116. Greenwald M, Boivin RL, Bombarda F, Bonoli PT, Fiore CL. 116.  et al. 1997. H mode confinement in Alcator C-Mod. Nucl. Fusion 37:793–807 [Google Scholar]
  117. Menard JE, Gerhardt S, Bell M, Bialek J, Brooks A. 117.  et al. 2012. Overview of the physics and engineering design of NSTX upgrade. Nucl. Fusion 52:083015 [Google Scholar]
  118. Miller GH, Moses EI, Wuest CR. 118.  2004. The National Ignition Facility: enabling fusion ignition for the 21st century. Nucl. Fusion 44:S228–38 [Google Scholar]
  119. O'Shea P, Laberge M, Donaldson M, Delage M. 119.  2016. Acoustically driven magnetized target fusion at general fusion: an overview. 58th Annu. Meet. APS Div. Plasma Phys. 6118CP10.00103 http://meetings.aps.org/link/BAPS.2016.DPP.CP10.103 [Google Scholar]
  120. Binderbauer MW, Tajima T, Steinhauer LC, Garate E, Tuszewski M. 120.  et al. 2015. A high performance field-reversed configuration. Phys. Plasmas 22:056110 [Google Scholar]
  121. Machiels A. 121.  2012. Program on Technology Innovation: assessment of fusion energy options for commercial electricity production Tech. Rep. 1025636, Electr. Power Res. Inst Palo Alto, CA: http://fire.pppl.gov/epri__fusion_report_10-2012.pdf [Google Scholar]
  122. 122. Lockheed Martin. 2014. Lockheed Martin pursuing compact nuclear fusion reactor concept. Lockheed Martin Oct. 15. http://www.lockheedmartin.com/us/news/press-releases/2014/october/141015ae_lockheed-martin-pursuing-compact-nuclear-fusion.html [Google Scholar]
  123. Sorbom BN, Ball J, Palmer TR, Mangiarotti FJ, Sierchio JM. 123.  et al. 2015. ARC: a compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Eng. Des. 100:378–405 [Google Scholar]
  124. Ikeda K. 124.  2010. ITER on the road to fusion energy. Nucl. Fusion 50:014002 [Google Scholar]
  125. Maisonnier D, Cook I, Pierre S, Lorenzo B, Luigi DP. 125.  et al. 2006. DEMO and fusion power plant conceptual studies in Europe. Fusion Eng. Des. 81:1123–30 [Google Scholar]
  126. Stacey WM, Stewart CL, Floyd JP, Wilks TM, Moore AP. 126.  et al. 2014. Resolution of fission and fusion technology integration issues: an upgraded design concept for the subcritical advanced burner reactor. Nucl. Tech. 187:15–43 [Google Scholar]
  127. Smith JC, Milligan MR, DeMeo EA, Parsons B. 127.  2007. Utility wind integration and operating impact state of the art. IEEE Trans. On Power Syst. 22:3900–8 [Google Scholar]
  128. Corbus D, Schuerger M, Roose L, Strickler J, Surles T. 128.  et al. 2010. Oahu Wind Integration and Transmission Study: summary report NREL Rep. TP-5500-48632. Natl. Renew. Energy Lab. Nov. http://www.nrel.gov/docs/fy11osti/48632.pdf [Google Scholar]
  129. Denholm P, O'Connell M, Brinkman G, Jorgenson J. 129.  2015. Overgeneration from solar energy in California: a field guide to the duck chart NREL Rep. TP-6A20-65023 Natl. Renew. Energy Lab Nov. http://www.nrel.gov/docs/fy16osti/65023.pdf [Google Scholar]
  130. 130. California Independent System Operator (CAISO). 2016. What The Duck Curve Tells Us About Managing a Green Grid. Fast Facts Folsom, CA: CAISO https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf [Google Scholar]
  131. Cappers P, MacDonald J, Page J, Potter J, Stewart E. 131.  2016. Future Opportunities and Challenges with Using Demand Response as a Resource in Distribution System Operation and Planning Activities Rep. LBNL-1003951 Lawrence Berkeley Natl. Lab Jan. https://eetd.lbl.gov/publications/future-opportunities-and-challenges-w [Google Scholar]
  132. Schoenung S. 132.  2011. Economic analysis of large scale hydrogen storage for renewable utility applications Rep. SAND2011-4845, Sandia Nat. Lab Albuquerque, NM, Livermore, CA: [Google Scholar]
  133. 133. U.S.-Canada Power System Outage Task Force. 2004. Final report on the August 14, 2003 blackout in the United States and Canada: causes and recommendations Rep., U.S.-Canada Power System Outage Task Force, Apr https://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf [Google Scholar]
  134. 134. Federal Energy Regulatory Commission (FERC) and the North American Electric Reliability Corporation (NERC). 2011. Arizona-Southern California Outages on September 8, 2011: Causes and Recommendations Rep. FERC and NERC Apr. http://www.nerc.com/pa/rrm/ea/September%202011%20Southwest%20Blackout%20Event%20Document%20L/AZOutage_Report_01MAY12.pdf [Google Scholar]
  135. 135. North American Electric Reliability Corporation (NERC). 2011. Standard TOP-003-1 Planned Outage Coordination Atlanta, GA: NERC http://www.nerc.com/files/TOP-003-1.pdf [Google Scholar]
  136. 136. U.S. Department of Energy (DOE). 2015. Grid Modernization Multi-Year Program Plan Rep DOE, Washington, DC: http://energy.gov/sites/prod/files/2016/01/f28/Grid%20Modernization%20Multi-Year%20Program%20Plan.pdf [Google Scholar]
  137. Barbose GL, Miller J, Sigrin B, Reiter E, Cory K. 137.  et al. 2016. Utility regulatory and business model reforms for addressing the financial impacts of distributed solar on utilities Rep. LBNL-1004371, Rep. NREL/TP-6A20–65670. Lawrence Berkeley Natl. Lab: https://emp.lbl.gov/publications/utility-regulatory-and-business-model [Google Scholar]
  138. 138. IEEE Standards Association (IEEE-SA). 2016. 1547–2003—IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems IEEE-SA. https://standards.ieee.org/findstds/standard/1547-2003.html [Google Scholar]
  139. Akhil AA, Huff G, Currier AB, Kaun BC, Rastler DM. 139.  et al. 2013. DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA Rep. SAND2013–5131. Sandia Natl. Lab. July. http://www.sandia.gov/ess/publications/SAND2013-5131.pdf [Google Scholar]
  140. Benjaminsson G, Benjaminsson J, Rudberg RB. 140.  2013. Power to gas—a technical review. SGC Rapp. 2013: 284, Swedish Gas Technol. Cent. (SGC). http://www.sgc.se/ckfinder/userfiles/files/SGC284_eng.pdf
  141. Götz M, Lefebvre J, Mörs F, Koch AM, Graf F. 141.  et al. 2016. Renewable power-to-gas: a technological and economic review. Renew. Energy 85:1371–90 [Google Scholar]
  142. Greenblatt J. 142.  2013. Risks of a high renewable electricity future: the “Gigawatt-Day” problem White Pap., CA Energy Future Policy, CA Counc. Sci Technol, Sacramento: https://ccst.us/projects/CEFP_public/documents/070513_Greenblatt_Gigawatt_Day_problem2013.pdf [Google Scholar]
  143. Maul PR, Metcalfe R, Pearce J, Savage D, West JM. 143.  2007. Performance assessments for the geological storage of carbon dioxide: learning from the radioactive waste disposal experience. Int. J. Greenh. Gas Control 1:4444–55 [Google Scholar]
  144. Strauss LL. 144.  1954. Remarks prepared by Lewis L. Strauss, Chairman, United States Atomic Energy Commission. Presented at Founders’ Day Dinner, National Assoc. Sci. Writers, Sept. 16 Washington, DC: http://www.nrc.gov/docs/ML1613/ML16131A120.pdf
  145. Scharping N. 145.  2016. Why nuclear fusion is always 30 years away. Discover Magazine March 23. http://blogs.discovermagazine.com/crux/2016/03/23/nuclear-fusion-reactor-research/#.WFLpscMrJTY [Google Scholar]
  146. Mearns E. 146.  2016. High altitude wind power reviewed. Energy Matters July 4. http://euanmearns.com/high-altitude-wind-power-reviewed/ [Google Scholar]
  147. Ippolito M. 147.  2010. About KiteGen. Blog post. KiteGen Research May 8. http://www.kitegen.com/en/about-2/ [Google Scholar]
  148. Ippolito M. 148.  2016. KiteGen an ambitious energy technology, or an unavoidable enterprise?. KiteGen Research Jan. 29. http://www.kitegen.com/en/technology/kitegen-an-ambitious-energy-technology-or-an-unavoidable-enterprise/ [Google Scholar]
  149. Svitil K. 149.  2015. Space-based solar power project funded. Caltech Press Release, April 28. http://www.caltech.edu/news/space-based-solar-power-project-funded-46644
/content/journals/10.1146/annurev-environ-102016-061138
Loading
/content/journals/10.1146/annurev-environ-102016-061138
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error