1932

Abstract

Depletion and pollution of groundwater, Earth's largest and most accessible freshwater stock, is a global sustainability concern. A changing climate, marked by more frequent and intense hydrologic extremes, poses threats to groundwater recharge and amplifies groundwater use. However, widespread human development and contamination of groundwater reservoirs pose an immediate threat of resource extinction with impacts in many regions with dense population or intensive agriculture. A rapid increase in global groundwater studies has emerged, but this has also highlighted the extreme paucity of data for substantive trend analyses and assessment of the state of the global resource. Noting the difficulty in seeing and measuring this typically invisible resource, we discuss factors that determine the current state of global groundwater, including the uncertainties accompanying data and modeling, with an eye to identifying emerging issues and the prospects for informing local to global resource management in critical regions. We comment on some prospective management strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102017-025800
2020-10-17
2024-05-21
Loading full text...

Full text loading...

/deliver/fulltext/energy/45/1/annurev-environ-102017-025800.html?itemId=/content/journals/10.1146/annurev-environ-102017-025800&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    United Nations WATER 2018. Groundwater Overview: Making the Invisible Visible Delft, Neth: Int. Groundw. Resourc. Assess. Cent.
  2. 2. 
    Richey AS, Thomas BF, Lo M-H, Reager JT, Famiglietti JS et al. 2015. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51:5217–38
    [Google Scholar]
  3. 3. 
    Konikow LF. 2013. Groundwater depletion in the United States (19002008) Tech. rep., US Geol. Survey Reston, VA:
    [Google Scholar]
  4. 4. 
    Kaneko S, Toyota T. 2011. Long-term urbanization and land subsidence in Asian megacities: an indicators system approach. Groundwater and Subsurface Environments M Taniguchi 249–70 Cham, Switz.: Springer
    [Google Scholar]
  5. 5. 
    Chatterjee R, Fruneau B, Rudant J, Roy P, Frison PL et al. 2006. Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by differential synthetic aperture radar interferometry (D-InSAR) technique. Remote Sen. Environ. 102:176–85
    [Google Scholar]
  6. 6. 
    Holzer TL, Johnson AI. 1985. Land subsidence caused by ground water withdrawal in urban areas. GeoJournal 11:245–55
    [Google Scholar]
  7. 7. 
    Sowter A, Amat MBC, Cigna F, Marsh S, Athab A, Alshammari L 2016. Mexico City land subsidence in 2014–2015 with Sentinel-1 IW tops: results using the intermittent SBAS (ISBAS) technique. Int. J. Appl. Earth Obs. Geoinf. 52:230–42
    [Google Scholar]
  8. 8. 
    Castellazzi P, Arroyo-Domínguez N, Martel R, Calderhead AI, Normand JC et al. 2016. Land subsidence in major cities of central Mexico: interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int. J. Appl. Earth Observ. Geoinf. 47:102–11
    [Google Scholar]
  9. 9. 
    Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J et al. 2010. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14:1863–80
    [Google Scholar]
  10. 10. 
    Werner AD, Zhang Q, Xue L, Smerdon BD, Li X et al. 2013. An initial inventory and indexation of groundwater mega-depletion cases. Water Resourc. Manag. 27:507–33
    [Google Scholar]
  11. 11. 
    Wada Y, Van Beek LP, Van Kempen CM, Reckman JW, Vasak S, Bierkens MF 2010. Global depletion of groundwater resources. Geophys. Res. Lett. 37: https://doi.org/10.1029/2010GL044571
    [Crossref] [Google Scholar]
  12. 12. 
    Fan Y, Li H, Miguez-Macho G 2013. Global patterns of groundwater table depth. Science 339:940–43
    [Google Scholar]
  13. 13. 
    Turner SW, Hejazi M, Yonkofski C, Kim SH, Kyle P 2019. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the 21st century. Earth's Future 7:123–35
    [Google Scholar]
  14. 14. 
    McGregor G. 2017. Hydroclimatology, modes of climatic variability and stream flow, lake and groundwater level variability: a progress report. Progress Phys. Geogr. 41:496–512
    [Google Scholar]
  15. 15. 
    Velasco EM, Gurdak JJ, Dickinson JE, Ferré T, Corona CR 2017. Interannual to multidecadal climate forcings on groundwater resources of the US West Coast. J. Hydrol.: Reg. Stud. 11:250–65
    [Google Scholar]
  16. 16. 
    Resende TC, Longuevergne L, Gurdak JJ, Leblanc M, Favreau G et al. 2019. Assessment of the impacts of climate variability on total water storage across Africa: implications for groundwater resources management. Hydrogeol. J. 27:493–512
    [Google Scholar]
  17. 17. 
    Rust W, Holman I, Corstanje R, Bloomfield J, Cuthbert M 2018. A conceptual model for climatic teleconnection signal control on groundwater variability in Europe. Earth-Sci. Rev. 177:164–74
    [Google Scholar]
  18. 18. 
    Taylor RG, Favreau G, Scanlon BR, Villholth KG 2019. Topical collection: determining groundwater sustainability from long-term piezometry in sub-Saharan Africa. Hydrogeol. J. 27:443–46
    [Google Scholar]
  19. 19. 
    Kuss AJM, Gurdak JJ. 2014. Groundwater level response in US principal aquifers to ENSO, NAO, PDO, and AMO. J. Hydrol. 519:1939–52
    [Google Scholar]
  20. 20. 
    Alley WM, Healy RW, LaBaugh JW, Reilly TE 2002. Flow and storage in groundwater systems. Science 296:1985–90
    [Google Scholar]
  21. 21. 
    Russo TA, Lall U. 2017. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10:105–8
    [Google Scholar]
  22. 22. 
    Gurdak JJ. 2017. Groundwater: climate-induced pumping. Nat. Geosci. 10:71
    [Google Scholar]
  23. 23. 
    Thomas BF, Famiglietti JS. 2019. Identifying climate-induced groundwater depletion in GRACE observations. Sci. Rep. 9:4124
    [Google Scholar]
  24. 24. 
    Kath J, Dyer FJ. 2017. Why groundwater matters: an introduction for policy-makers and managers. Policy Stud 38:447–61
    [Google Scholar]
  25. 25. 
    Gurdak JJ, Hanson RT, McMahon PB, Bruce BW, McCray JE et al. 2007. Climate variability controls on unsaturated water and chemical movement, high plains aquifer, USA. Vadose Zone J 6:533–47
    [Google Scholar]
  26. 26. 
    Ng GHC, McLaughlin D, Entekhabi D, Scanlon BR 2010. Probabilistic analysis of the effects of climate change on groundwater recharge. Water Resour. Res. 46: https://doi.org/10.1029/2009WR007904
    [Crossref] [Google Scholar]
  27. 27. 
    Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM et al. 2011. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405:532–60
    [Google Scholar]
  28. 28. 
    Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H et al. 2014. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518:250–66
    [Google Scholar]
  29. 29. 
    Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H et al. 2016. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 534:124–38
    [Google Scholar]
  30. 30. 
    Smerdon BD. 2017. A synopsis of climate change effects on groundwater recharge. J. Hydrol. 555:125–28
    [Google Scholar]
  31. 31. 
    Mishra V, Asoka A, Vatta K, Lall U 2018. Groundwater depletion and associated CO2 emissions in India. Earth's Future 6:1672–81
    [Google Scholar]
  32. 32. 
    Tyson A, George B, Aye L, Nawarathna B, Malano H 2012. Energy and greenhouse gas emission accounting framework for groundwater use in agriculture. Irrig. Drain. 61:542–54
    [Google Scholar]
  33. 33. 
    Wang J, Rothausen SG, Conway D, Zhang L, Xiong W et al. 2012. China's water–energy nexus: greenhouse-gas emissions from groundwater use for agriculture. Environ. Res. Lett. 7:014035
    [Google Scholar]
  34. 34. 
    Wood WW, Hyndman DW. 2017. Groundwater depletion: a significant unreported source of atmospheric carbon dioxide. Earth's Future 5:1133–35
    [Google Scholar]
  35. 35. 
    Wang ZP, Zhang L, Wang B, Hou LY, Xiao CW et al. 2018. Dissolved methane in groundwater of domestic wells and its potential emissions in arid and semi-arid regions of inner Mongolia, China. Sci. Total Environ. 626:1193–99
    [Google Scholar]
  36. 36. 
    Pugh CA, Reed DE, Desai AR, Sulman BN 2018. Wetland flux controls: How does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin. Biogeochemistry 137:15–25
    [Google Scholar]
  37. 37. 
    Lupon A, Denfeld BA, Laudon H, Leach J, Karlsson J, Sponseller RA 2019. Groundwater inflows control patterns and sources of greenhouse gas emissions from streams. Limnol. Oceanogr. 64:1545–57
    [Google Scholar]
  38. 38. 
    Amini M, Mueller K, Abbaspour KC, Rosenberg T, Afyuni M et al. 2008. Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ. Sci. Technol. 42:3662–68
    [Google Scholar]
  39. 39. 
    Amini M, Abbaspour KC, Berg M, Winkel L, Hug SJ et al. 2008. Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 42:3669–75
    [Google Scholar]
  40. 40. 
    Sarkar A, Paul B. 2016. The global menace of arsenic and its conventional remediation—a critical review. Chemosphere 158:37–49
    [Google Scholar]
  41. 41. 
    Singh R, Singh S, Parihar P, Singh VP, Prasad SM 2015. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol. Environ. Saf. 112:247–70
    [Google Scholar]
  42. 42. 
    Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV 2015. Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J. Environ. Manag. 162:306–25
    [Google Scholar]
  43. 43. 
    Huang L, Wu H, van der Kuijp TJ 2015. The health effects of exposure to arsenic-contaminated drinking water: a review by global geographical distribution. Int. J. Environ. Health Res. 25:432–52
    [Google Scholar]
  44. 44. 
    Rasool A, Farooqi A, Xiao T, Ali W, Noor S et al. 2018. A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environ. Geochem. Health 40:1265–81
    [Google Scholar]
  45. 45. 
    Malago J, Makoba E, Muzuka AN 2017. Fluoride levels in surface and groundwater in Africa: a review. Am. J. Water Sci. Eng 3:1–17
    [Google Scholar]
  46. 46. 
    Podgorski JE, Labhasetwar P, Saha D, Berg M 2018. Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environ. Sci. Technol. 52:9889–98
    [Google Scholar]
  47. 47. 
    Wang Y, Zheng C, Ma R 2018. Safe and sustainable groundwater supply in China. Hydrogeol. J. 26:1301–24
    [Google Scholar]
  48. 48. 
    Foster S, Chilton P. 2003. Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. Ser. B 358:1957–72
    [Google Scholar]
  49. 49. 
    Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B et al. 2006. Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J. Health, Popul. Nutr. 24:142–63
    [Google Scholar]
  50. 50. 
    Ravenscroft P, Brammer H, Richards K 2009. Arsenic Pollution: A Global Synthesis 28 Hoboken, NJ: Wiley
  51. 51. 
    Herath I, Vithanage M, Bundschuh J, Maity JP, Bhattacharya P 2016. Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization. Curr. Pollut. Rep. 2:68–89
    [Google Scholar]
  52. 52. 
    Berg M, Winkel L, Amini M, Rodriguez-Lado L, Hug S et al. 2016. Regional to sub-continental prediction modeling of groundwater arsenic contamination. Arsenic Research and Global Sustainability: Proceedings of the Sixth International Congress on Arsenic in the Environment (As2016), June 19–23, 2016, Stockholm, Sweden P Bhattacharya, M Vahter, J Jarsjö, J Kumpiene, A Ahmad et al.21 Boca Raton, FL: CRC Press
    [Google Scholar]
  53. 53. 
    Ali W, Rasool A, Junaid M, Zhang H 2019. A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environ. Geochem. Health 41:737–60
    [Google Scholar]
  54. 54. 
    Shukla S, Saxena A. 2018. Global status of nitrate contamination in groundwater: its occurrence, health impacts, and mitigation measures. Handbook of Environmental Materials Management CM Hussain 1–21 Cham, Switz.: Springer
    [Google Scholar]
  55. 55. 
    Padilla FM, Gallardo M, Manzano-Agugliaro F 2018. Global trends in nitrate leaching research in the 1960–2017 period. Sci. Total Environ. 643:400–13
    [Google Scholar]
  56. 56. 
    Allouche N, Maanan M, Gontara M, Rollo N, Jmal I, Bouri S 2017. A global risk approach to assessing groundwater vulnerability. Environ. Model. Softw. 88:168–82
    [Google Scholar]
  57. 57. 
    Bouwman AF, Beusen AHW, Lassaletta L, van Apeldoorn DF, van Grinsven HJM et al. 2017. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7:40366
    [Google Scholar]
  58. 58. 
    Huno SKM, Rene ER, van Hullebusch ED, Annachhatre AP 2018. Nitrate removal from groundwater: a review of natural and engineered processes. J. Water Supply: Res. Technol.-Aqua 67:885–902
    [Google Scholar]
  59. 59. 
    Ward MH, Jones RR, Brender JD, De Kok TM, Weyer PJ et al. 2018. Drinking water nitrate and human health: an updated review. Int. J. Environ. Res. Public Health 15:1557
    [Google Scholar]
  60. 60. 
    Nolan BT, Hitt KJ, Ruddy BC 2002. Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States. Environ. Sci. Technol. 36:2138–45
    [Google Scholar]
  61. 61. 
    Burow KR, Nolan BT, Rupert MG, Dubrovsky NM 2010. Nitrate in groundwater of the United States, 1991–2003. Environ. Sci. Technol. 44:4988–97
    [Google Scholar]
  62. 62. 
    Hynds PD, Thomas MK, Pintar KDM 2014. Contamination of groundwater systems in the US and Canada by enteric pathogens, 1990–2013: a review and pooled-analysis. PLOS ONE 9:e93301
    [Google Scholar]
  63. 63. 
    Andrade L, O'Dwyer J, O'Neill E, Hynds P 2018. Surface water flooding, groundwater contamination, and enteric disease in developed countries: a scoping review of connections and consequences. Environ. Pollut. 236:540–49
    [Google Scholar]
  64. 64. 
    Sui Q, Cao X, Lu S, Zhao W, Qiu Z, Yu G 2015. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerg. Contam. 1:14–24
    [Google Scholar]
  65. 65. 
    Bonneau J, Fletcher TD, Costelloe JF, Burns MJ 2017. Stormwater infiltration and the “urban karst”—a review. J. Hydrol. 552:141–50
    [Google Scholar]
  66. 66. 
    Sorensen JPR, Lapworth DJ, Nkhuwa DCW, Stuart ME, Gooddy DC et al. 2015. Emerging contaminants in urban groundwater sources in Africa. Water Res 72:51–63
    [Google Scholar]
  67. 67. 
    Tijani JO, Fatoba OO, Babajide OO, Petrik LF 2016. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ. Chem. Lett. 14:27–49
    [Google Scholar]
  68. 68. 
    Cousins IT, Vestergren R, Wang Z, Scheringer M, McLachlan MS 2016. The precautionary principle and chemicals management: the example of perfluoroalkyl acids in groundwater. Environ. Int. 94:331–40
    [Google Scholar]
  69. 69. 
    Hepburn E, Madden C, Szabo D, Coggan TL, Clarke B, Currell M 2019. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environ. Pollut. 248:101–13
    [Google Scholar]
  70. 70. 
    Munoz G, Labadie P, Botta F, Lestremau F, Lopez B et al. 2017. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments. Sci. Total Environ. 607–608:243–52
    [Google Scholar]
  71. 71. 
    NGWA.org 2018. NGWA releases groundwater and PFAS: state of knowledge and practice. NGWA Jan. 4. https://www.ngwa.org/publications-and-news/Newsroom/2018-press-releases/ngwa-releases-groundwater-and-pfas
    [Google Scholar]
  72. 72. 
    Stevanović Z. 2018. Global distribution and use of water from karst aquifers. Geol. Soc., Lond., Spec. Publ. 466:217–36
    [Google Scholar]
  73. 73. 
    Kalhor K, Ghasemizadeh R, Rajic L, Alshawabkeh A 2019. Assessment of groundwater quality and remediation in karst aquifers: a review. Groundw. Sustain. Dev. 8:104–21
    [Google Scholar]
  74. 74. 
    Dudka S, Adriano DC. 1997. Environmental impacts of metal ore mining and processing: a review. J. Environ. Q. 26:590–602
    [Google Scholar]
  75. 75. 
    Kossoff D, Dubbin WE, Alfredsson M, Edwards SJ, Macklin MG, Hudson-Edwards KA 2014. Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 51:229–45
    [Google Scholar]
  76. 76. 
    Umezawa Y, Hosono T, Onodera S-I, Siringan F, Buapeng S et al. 2008. Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities. Sci. Total Environ. 404:361–76
    [Google Scholar]
  77. 77. 
    Galitskaya I, Mohan KR, Krishna AK, Batrak G, Eremina O et al. 2017. Assessment of soil and groundwater contamination by heavy metals and metalloids in Russian and Indian megacities. Procedia Earth Planet. Sci. 17:674–77
    [Google Scholar]
  78. 78. 
    Khan MR, Koneshloo M, Knappett PS, Ahmed KM, Bostick BC et al. 2016. Megacity pumping and preferential flow threaten groundwater quality. Nat. Commun. 7:12833
    [Google Scholar]
  79. 79. 
    Winkel LH, Trang PTK, Lan VM, Stengel C, Amini M et al. 2011. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. PNAS 108:1246–51
    [Google Scholar]
  80. 80. 
    Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M 2004. Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, Soil Pollut 152:129–52
    [Google Scholar]
  81. 81. 
    Stamatis G, Voudouris K, Karefilakis F 2001. Groundwater pollution by heavy metals in historical mining area of Lavrio, Attica, Greece. Water, Air, Soil Pollut 128:61–83
    [Google Scholar]
  82. 82. 
    Ochieng GM, Seanego ES, Nkwonta OI 2010. Impacts of mining on water resources in South Africa: a review. Sci. Res. Essays 5:3351–57
    [Google Scholar]
  83. 83. 
    Kefeni KK, Msagati TAM, Mamba BB 2017. Acid mine drainage: prevention, treatment options, and resource recovery: a review. J. Clean. Prod. 151:475–93
    [Google Scholar]
  84. 84. 
    Caraballo MA, Macías F, Nieto JM, Ayora C 2016. Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: implications for water resources management and remediation. Sci. Total Environ. 539:427–35
    [Google Scholar]
  85. 85. 
    Gestring B. 2012. U.S. copper porphyry mines report: the track record of water quality impacts resulting from pipeline spills, tailings failures, and water collection and treatment failures. Rep., Earthworks Washington, DC:
  86. 86. 
    Sumi L, Gestring B. 2013. Polluting the future: how mining companies are contaminating our nation's waters in perpetuity Rep. Earthworks Washington, DC:
  87. 87. 
    Gestring B, Hadder J. 2017. U.S. gold mines spills & failures report: the track record of environmental impacts resulting from pipeline spills, accidental releases and failure to capture and treat mine impacted water. Rep., Earthworks Washington, DC:
  88. 88. 
    Pichtel J. 2016. Oil and gas production wastewater: soil contamination and pollution prevention. Appl. Environ. Soil. Sci. 2016:2707989
    [Google Scholar]
  89. 89. 
    Lapworth DJ, Baran N, Stuart ME, Ward RS 2012. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 163:287–303
    [Google Scholar]
  90. 90. 
    Lefebre R. 2017. Mechanisms leading to potential impacts of shale gas development on groundwater quality. WIREs Water 4:e1188
    [Google Scholar]
  91. 91. 
    Soeder D. 2018. Groundwater quality and hydraulic fracturing: current understanding and science needs. Groundwater 56:852–58
    [Google Scholar]
  92. 92. 
    McIntosh JC, Hendry MJ, Ballentine C, Haszeldine RS, Mayer B et al. 2019. A critical review of state-of-the-art and emerging approaches to identify fracking-derived gases and associated contaminants in aquifers. Environ. Sci. Technol. 53:1063–77
    [Google Scholar]
  93. 93. 
    United Nations Environment Programme, Global Environmental Alert Service 2012. A glass half empty: regions at risk due to groundwater depletion. Environ. Dev. 2:117–27
    [Google Scholar]
  94. 94. 
    Jasechko S, Perrone D, Befus KM, Bayani Cardenas M, Ferguson G et al. 2017. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nat. Geosci. 10:425–29
    [Google Scholar]
  95. 95. 
    Hora T, Srinivasan V, Basu NB 2019. The groundwater recovery paradox in south India. Geophys. Res. Lett. 46:9602–11
    [Google Scholar]
  96. 96. 
    Fienen MN, Arshad M. 2016. The international scale of the groundwater issue. Integrated Groundwater Management: Concepts, Approaches and Challenges Cham, Switz.: Springer
    [Google Scholar]
  97. 97. 
    Ramillien G, Famiglietti JS, Wahr J 2008. Detection of continental hydrology and glaciology signals from GRACE: a review. Surv. Geophys. 29:361–74
    [Google Scholar]
  98. 98. 
    Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A 2014. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50:5698–720
    [Google Scholar]
  99. 99. 
    Alley WM, Konikow LF. 2015. Bringing GRACE down to earth. Groundwater 53:826–29
    [Google Scholar]
  100. 100. 
    Chen J, Famigliett JS, Scanlon BR, Rodell M 2016. Groundwater storage changes: present status from GRACE observations. Remote Sensing and Water Resources A Cazenave, N Champollion, J Benveniste, J Chen 207–27 Cham, Switz.: Springer
    [Google Scholar]
  101. 101. 
    Felfelani F, Wada Y, Longuevergne L, Pokhrel YN 2017. Natural and human-induced terrestrial water storage change: a global analysis using hydrological models and GRACE. J. Hydrol. 553:105–18
    [Google Scholar]
  102. 102. 
    Barron OV, Emelyanova I, Van Niel TG, Pollock D, Hodgson G 2014. Mapping groundwater-dependent ecosystems using remote sensing measures of vegetation and moisture dynamics. Hydrol. Process. 28:372–85
    [Google Scholar]
  103. 103. 
    Gumma MK, Pavelic P. 2013. Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling. Environ. Monit. Assess. 185:3561–79
    [Google Scholar]
  104. 104. 
    Wada Y, Van Beek LP, Van Kempen CM, Reckman JW, Vasak S, Bierkens MF 2010. Global depletion of groundwater resources. Geophys. Res. Lett. 37:L20402
    [Google Scholar]
  105. 105. 
    Dieter CA, Maupin MA, Caldwell RR, Harris MA, Ivahnenko TI et al. 2018. Estimated use of water in the United States in 2015 Circ. 1441, US Geol. Surv Reston, VA:
  106. 106. 
    Scanlon BR, Zhang Z, Save H, Sun AY, Schmied HM et al. 2018. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. PNAS 115:E1080–E1089
    [Google Scholar]
  107. 107. 
    Earth Security Group 2016. Earth Security Index 2016: Business Diplomacy for Sustainable Development London: Earth Secur. Group https://earthsecuritygroup.com/wp-content/uploads/2016/06/The-Earth-Security-Index-2016.pdf
  108. 108. 
    Walker D, Forsythe N, Parkin G, Gowing J 2016. Filling the observational void: scientific value and quantitative validation of hydrometeorological data from a community-based monitoring programme. J. Hydrol. 538:713–25
    [Google Scholar]
  109. 109. 
    Little KE, Hayashi M, Liang S 2016. Community-based groundwater monitoring network using a citizen-science approach. Groundwater 54:317–24
    [Google Scholar]
  110. 110. 
    Lowry CS, Fienen MN. 2013. Crowdhydrology: crowdsourcing hydrologic data and engaging citizen scientists. Groundwater 51:151–56
    [Google Scholar]
  111. 111. 
    Lavoie R, Joerin F, Vansnick JC, Rodriguez MJ 2015. Integrating groundwater into land planning: a risk assessment methodology. J. Environ. Manag. 154:358–71
    [Google Scholar]
  112. 112. 
    Mulligan KB, Brown C, Yang YCE, Ahlfeld DP 2014. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling. Water Resour. Res. 50:2257–75
    [Google Scholar]
  113. 113. 
    Maxwell R, Condon L, Kollet S 2015. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev. 8:923–37
    [Google Scholar]
  114. 114. 
    Pokhrel YN, Koirala S, Yeh PJ, Hanasaki N, Longuevergne L et al. 2015. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resour. Res. 51:78–96
    [Google Scholar]
  115. 115. 
    de Graaf IE, van Beek RL, Gleeson T, Moosdorf N, Schmitz O et al. 2017. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv. Water Resour. 102:53–67
    [Google Scholar]
  116. 116. 
    Wada Y. 2016. Modeling groundwater depletion at regional and global scales: present state and future prospects. Surveys Geophys 37:419–51
    [Google Scholar]
  117. 117. 
    Gleeson T, Wada Y. 2013. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint. Environ. Res. Lett. 8:044010
    [Google Scholar]
  118. 118. 
    Gorelick SM, Zheng C. 2015. Global change and the groundwater management challenge. Water Resour. Res. 51:3031–51
    [Google Scholar]
  119. 119. 
    Linde N, Ginsbourger D, Irving J, Nobile F, Doucet A 2017. On uncertainty quantification in hydrogeology and hydrogeophysics. Adv. Water Resour. 110:166–81
    [Google Scholar]
  120. 120. 
    Rubin Y, Chang CF, Chen J, Cucchi K, Harken B et al. 2018. Stochastic hydrogeology's biggest hurdles analyzed and its big blind spot. Hydrol. Earth Syst. Sci. 22:5675–95
    [Google Scholar]
  121. 121. 
    Gorelick SM, Zheng C. 2015. Global change and the groundwater management challenge. Water Resour. Res. 51:3031–51
    [Google Scholar]
  122. 122. 
    García M, Smidt E, de Vries JJ 2018. Emergence and evolution of groundwater management and governance. Advances in Groundwater Governance KG Villholth, E López-Gunn, K Conti, A Garrido, J van der Gun 33–54 Boca Raton, FL: CRC Press
    [Google Scholar]
  123. 123. 
    Zilberman D, Dinar A, MacDougall N, Khanna M, Brown C, Castillo F 2002. Individual and institutional responses to the drought: the case of California agriculture. J. Contemp. Water Res. Educ. 121:3
    [Google Scholar]
  124. 124. 
    Ojha C, Shirzaei M, Werth S, Argus DF, Farr TG 2018. Sustained groundwater loss in California's Central Valley exacerbated by intense drought periods. Water Resour. Res. 54:4449–60
    [Google Scholar]
  125. 125. 
    Thomas BF, Famiglietti JS, Landerer FW, Wiese DN, Molotch NP, Argus DF 2017. GRACE groundwater drought index: evaluation of California Central Valley groundwater drought. Remote Sens. Environ. 198:384–92
    [Google Scholar]
  126. 126. 
    Weiser M. 2018. California farms' water use still unclear, despite new reporting rules. NewsDeeply July 23. https://www.newsdeeply.com/water/articles/2018/07/23/california-farms-water-use-still-unclear-despite-new-reporting-rules
    [Google Scholar]
  127. 127. 
    Griggs B. 2014. Lessons from Kansas: a more sustainable groundwater management approach. Water in the West Aug. 18. https://waterinthewest.stanford.edu/news-events/news-press-releases/lessons-kansas-more-sustainable-groundwater-management-approach
    [Google Scholar]
  128. 128. 
    Deines JM, Kendall AD, Butler JJ, Hyndman DW 2019. Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US high plains aquifer. Environ. Res. Lett. 14:4
    [Google Scholar]
  129. 129. 
    Alley WM, Clark BR, Ely DM, Faunt CC 2018. Groundwater development stress: global-scale indices compared to regional modeling. Groundwater 56:266–75
    [Google Scholar]
  130. 130. 
    Albrecht TR, Varady RG, Zuniga-Teran AA, Gerlak AK, Staddon C 2017. Governing a shared hidden resource: a review of governance mechanisms for transboundary groundwater security. Water Secur 2:43–56
    [Google Scholar]
  131. 131. 
    Eckstein G. 2017. The International Law of Transboundary Groundwater Resources Abingdon, UK: Routledge
  132. 132. 
    Altchenko Y, Villholth KG. 2015. Mapping irrigation potential from renewable groundwater in Africa–a quantitative hydrological approach. Hydrol. Earth Syst. Sci. Discuss. 19:1055–67
    [Google Scholar]
  133. 133. 
    Oates N, Jobbins G, Mosello B, Arnold J 2015. Pathways for irrigation development in Africa–insights from Ethiopia, Morocco and Mozambique Work. Pap. 119, Future Agric Brighton, UK:
  134. 134. 
    de Fraiture C, Giordano M 2014. Small private irrigation: a thriving but overlooked sector. Agric. Water Manag. 131:167–74
    [Google Scholar]
  135. 135. 
    Schmitter P, Kibret KS, Lefore N, Barron J 2018. Suitability mapping framework for solar photovoltaic pumps for smallholder farmers in sub-Saharan Africa. Appl. Geogr. 94:41–57
    [Google Scholar]
  136. 136. 
    Dalin C, Wada Y, Kastner T, Puma MJ 2017. Groundwater depletion embedded in international food trade. Nature 543:700–4
    [Google Scholar]
  137. 137. 
    Hoekstra AY. 2018. Global food and trade dimensions of groundwater governance. Advances in Groundwater Governance KG Villholth, E López-Gunn, KI Conti, A Garrido, J van der Gun 353–66 Boca Raton, FL: CRC Press
    [Google Scholar]
  138. 138. 
    Devineni N, Perveen S. 2012. Securing the future of India's “Water, energy and food.” Discuss. Pap. 1240 Glob. Water Forum https://globalwaterforum.org/
  139. 139. 
    Vatta K, Sidhu R, Lall U, Birthal P, Taneja G et al. 2018. Assessing the economic impact of a low-cost water-saving irrigation technology in Indian Punjab: the tensiometer. Water Int 43:305–21
    [Google Scholar]
  140. 140. 
    Russo TA, Devineni N, Lall U 2015. Assessment of agricultural water management in Punjab, India, using Bayesian methods. Sustainability of Integrated Water Resources Management SG Setegn, MC Donoso 147–62 Cham, Switz.: Springer
    [Google Scholar]
  141. 141. 
    Fishman R, Devineni N, Raman S 2015. Can improved agricultural water use efficiency save India's groundwater. Environ. Res. Lett. 10:084022
    [Google Scholar]
  142. 142. 
    Fishman R, Lall U, Modi V, Parekh N 2016. Can electricity pricing save India's groundwater? Field evidence from a novel policy mechanism in Gujarat. J. Assoc. Environ. Resour. Economists 3:819–55
    [Google Scholar]
  143. 143. 
    Perry C, Steduto P, Karajeh F 2017. Does improved irrigation technology save water? A review of the evidence Discuss. Pap UN Food Agric. Org Cairo: http://www.fao.org/3/I7090EN/i7090en.pdf
  144. 144. 
    Grafton RQ, Williams J, Perry C, Molle F, Ringler C et al. 2018. The paradox of irrigation efficiency. Science 361:748–50
    [Google Scholar]
  145. 145. 
    Alfredo KA, Russo TA. 2017. Urban, agricultural, and environmental protection practices for sustainable water quality. WIREs Water 4:e1229
    [Google Scholar]
  146. 146. 
    Scanlon BR, Reedy RC, Faunt CC, Pool D, Uhlman K 2016. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11:035013
    [Google Scholar]
  147. 147. 
    Pulido-Velazquez M, Marques GF, Harou JJ, Lund JR 2016. Hydroeconomic models as decision support tools for conjunctive management of surface and groundwater. Integrated Groundwater Management AJ Jakeman, O Barreteau, RJ Hunt, JD Rinaudo, A Ross 693–710 Cham, Switz.: Springer
    [Google Scholar]
  148. 148. 
    Wu X, Zheng Y, Wu B, Tian Y, Han F, Zheng C 2016. Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: a surrogate modeling approach. Agric. Water Manag. 163:380–92
    [Google Scholar]
  149. 149. 
    Heydari F, Saghafian B, Delavar M 2016. Coupled quantity-quality simulation-optimization model for conjunctive surface-groundwater use. Water Resourc. Manag. 30:4381–97
    [Google Scholar]
  150. 150. 
    Milan SG, Roozbahani A, Banihabib ME 2018. Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources. J. Hydrol. 566:421–34
    [Google Scholar]
  151. 151. 
    Elwell BO, Lall U. 1988. Determination of an optimal aquifer yield, with Salt Lake County applications. J. Hydrol. 104:273–87
    [Google Scholar]
  152. 152. 
    Lall U, Lin YC. 1991. A groundwater management model for Salt Lake County, Utah with some water rights and water quality considerations. J. Hydrol. 123:367–93
    [Google Scholar]
  153. 153. 
    Gorelick SM. 1983. A review of distributed parameter groundwater management modeling methods. Water Resour. Res. 19:305–19
    [Google Scholar]
  154. 154. 
    Wagner BJ. 1995. Recent advances in simulation-optimization groundwater management modeling. Rev. Geophys. 33:1021–28
    [Google Scholar]
  155. 155. 
    Asher MJ, Croke BFW, Jakeman AJ, Peeters LJM 2015. A review of surrogate models and their application to groundwater modeling. Water Resour. Res. 51:5957–73
    [Google Scholar]
  156. 156. 
    Ross A. 2018. Speeding the transition towards integrated groundwater and surface water management in Australia. J. Hydrol. 567:e1–e10
    [Google Scholar]
  157. 157. 
    Bouwer H. 2002. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J. 10:121–42
    [Google Scholar]
  158. 158. 
    Dillon P, Stuyfzand P, Grischek T, Lluria M, Pyne RDG et al. 2019. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. 27:1–30
    [Google Scholar]
  159. 159. 
    Stefan C, Ansems N. 2018. Web-based global inventory of managed aquifer recharge applications. Sustain. Water Resourc. Manag. 4:153–62
    [Google Scholar]
/content/journals/10.1146/annurev-environ-102017-025800
Loading
/content/journals/10.1146/annurev-environ-102017-025800
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error