1932

Abstract

The economic case for limiting warming to 1.5°C is unclear, due to manifold uncertainties. However, it cannot be ruled out that the 1.5°C target passes a cost-benefit test. Costs are almost certainly high: The median global carbon price in 1.5°C scenarios implemented by various energy models is more than US$100 per metric ton of CO in 2020, for example. Benefits estimates range from much lower than this to much higher. Some of these uncertainties may reduce in the future, raising the question of how to hedge in the near term. Maintaining an option on limiting warming to 1.5°C means targeting it now. Setting off with higher emissions will make 1.5°C unattainable quickly without recourse to expensive large-scale carbon dioxide removal (CDR), or solar radiation management (SRM), which can be cheap but poses ambiguous risks society seems unwilling to take. Carbon pricing could reduce mitigation costs substantially compared with ramping up the current patchwork of regulatory instruments. Nonetheless, a mix of policies is justified and technology-specific approaches may be required. It is particularly important to step up mitigation finance to developing countries, where emissions abatement is relatively cheap.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: The Economics of 1.5°C Climate Change
Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102017-025817
2018-10-17
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/energy/43/1/annurev-environ-102017-025817.html?itemId=/content/journals/10.1146/annurev-environ-102017-025817&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Jones RN, Patwardhan A, Cohen SJ, Dessai S, Lammel A et al. 2014. Foundations for decision making. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.195–228 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  2. 2.  Heal G, Millner A 2014. Uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy. 8:120–37
    [Google Scholar]
  3. 3.  Pindyck RS 2013. Climate change policy: What do the models tell us?. J. Econ. Lit. 51:3860–72
    [Google Scholar]
  4. 4.  Weitzman ML 2009. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91:11–19
    [Google Scholar]
  5. 5.  Hulme M 2016. 1.5°C and climate research after the Paris Agreement. Nat. Clim. Change 6:3222–24
    [Google Scholar]
  6. 6.  Stern N 2007. The Economics of Climate Change: The Stern Review Cambridge, UK: Cambridge Univ. Press
  7. 7.  Nordhaus WD 2008. A Question of Balance: Weighing the Options on Global Warming Policies New Haven, CT: Yale Univ. Press
  8. 8.  Kolstad C, Urama K, Broome J, Bruvoll A, Carino Olvera M et al. 2014. Social, economic and ethical concepts and methods. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  9. 9.  Broome J 2012. Climate Matters: Ethics in a Warming World New York: WW Norton
  10. 10.  Gardiner SM 2011. A Perfect Moral Storm: The Ethical Tragedy of Climate Change Oxford: Oxford Univ. Press
  11. 11.  Hope C 2013. Critical issues for the calculation of the social cost of CO2: why the estimates from PAGE09 are higher than those from PAGE2002. Clim. Change 117:3531–43
    [Google Scholar]
  12. 12.  Waldhoff S, Anthoff D, Rose S, Tol RSJ 2014. The marginal damage costs of different greenhouse gases: an application of FUND. Economics 8:2014–311–33
    [Google Scholar]
  13. 13.  Nordhaus WD 2017. Revisiting the social cost of carbon. PNAS 114:71518–23
    [Google Scholar]
  14. 14.  Golosov M, Hassler J, Krusell P, Tsyvinski A 2014. Optimal taxes on fossil fuel in general equilibrium. Econometrica 82:141–88
    [Google Scholar]
  15. 15.  van den Bijgaart I, Gerlagh R, Liski M 2016. A simple formula for the social cost of carbon. J. Environ. Econ. Manag. 77:75–94
    [Google Scholar]
  16. 16.  Rezai A, van der Ploeg F 2016. Intergenerational inequality aversion, growth, and the role of damages: Occam's rule for the global carbon tax. J. Assoc. Environ. Resour. Econ. 3:2493–522
    [Google Scholar]
  17. 17.  Nordhaus WD 2007. A review of the “Stern Review on the Economics of Climate Change. .” J. Econ. Lit. 45:3686–702
    [Google Scholar]
  18. 18.  Weitzman ML 2007. A review of the “Stern Review on the Economics of Climate Change. .” J. Econ. Lit. 45:3703–24
    [Google Scholar]
  19. 19.  Dimitrov RS 2016. The Paris Agreement on climate change: behind closed doors. Glob. Environ. Polit. 14:282–101
    [Google Scholar]
  20. 20.  Falkner R 2016. The Paris Agreement and the new logic of international climate politics. Int. Aff. 92:51107–25
    [Google Scholar]
  21. 21.  Adler MD, Treich N 2015. Prioritarianism and climate change. Environ. Resour. Econ. 62:2279–308
    [Google Scholar]
  22. 22.  Adler M, Anthoff D, Bosetti V, Garner G, Keller K, Treich N 2017. Priority for the worse-off and the social cost of carbon. Nat. Clim. Change 7:6443–49
    [Google Scholar]
  23. 23.  Fankhauser S, Tol RSJ, Pearce DW 1997. The aggregation of climate change damages: a welfare theoretic approach. Environ. Resour. Econ. 10:3249–66
    [Google Scholar]
  24. 24.  Arrow KJ, Fisher AC 1974. Environmental preservation, uncertainty, and irreversibility. Q. J. Econ. 88:2312–19
    [Google Scholar]
  25. 25.  Henry C 1974. Option values in the economics of irreplaceable assets. Rev. Econ. Stud. 41:89–104
    [Google Scholar]
  26. 26.  Kolstad CD 1996. Fundamental irreversibilities in stock externalities. J. Public Econ. 60:2221–33
    [Google Scholar]
  27. 27.  Fisher AC, Narain U 2003. Global warming, endogenous risk, and irreversibility. Environ. Resour. Econ. 25:4395–416
    [Google Scholar]
  28. 28.  Kolstad CD 1996. Learning and stock effects in environmental regulation: the case of greenhouse gas emissions. J. Environ. Econ. Manag. 31:11–18
    [Google Scholar]
  29. 29.  Clarke HR, Reed WJ 1994. Consumption/pollution tradeoffs in an environment vulnerable to pollution-related catastrophic collapse. J. Econ. Dyn. Control. 18:5991–1010
    [Google Scholar]
  30. 30.  Tsur Y, Zemel A 1996. Accounting for global warming risks: resource management under event uncertainty. J. Econ. Dyn. Control. 20:6–71289–1305
    [Google Scholar]
  31. 31.  Yohe G, Andronova N, Schlesinger M 2004. To hedge or not against an uncertain climate future?. Science 306:October416–17
    [Google Scholar]
  32. 32.  Knight F 1921. Risk, Uncertainty and Profit Boston: Houghton Mifflin
  33. 33.  Etner J, Jeleva M, Tallon JM 2012. Decision theory under ambiguity. J. Econ. Surv. 26:2234–70
    [Google Scholar]
  34. 34.  Gilboa I 2009. Theory of Decision Under Uncertainty Cambridge, UK: Cambridge Univ. Press
  35. 35.  Athanassoglou S, Xepapadeas A 2012. Pollution control with uncertain stock dynamics: when, and how, to be precautious. J. Environ. Econ. Manag. 63:304–20
    [Google Scholar]
  36. 36.  Millner A, Dietz S, Heal GM 2013. Scientific ambiguity and climate policy. Environ. Resour. Econ. 55:121–46
    [Google Scholar]
  37. 37.  Lemoine D, Traeger C 2014. Watch your step: optimal policy in a tipping climate. Am. Econ. J. Econ. Policy. 6:1137–66
    [Google Scholar]
  38. 38.  Lenton TM, Held H, Kriegler E, Hall JW, Lucht W et al. 2008. Tipping elements in the Earth's climate system. PNAS 105:61786–93
    [Google Scholar]
  39. 39.  Smith JB, Schneider SH, Oppenheimer M, Yohe GW, Hare W et al. 2009. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “Reasons for Concern. .” PNAS 106:114133–37
    [Google Scholar]
  40. 40.  Atkinson G, Mourato S 2008. Environmental cost-benefit analysis. Annu. Rev. Environ. Resour. 33:317–44
    [Google Scholar]
  41. 41.  Sterner T, Persson UM 2008. An even Sterner review: introducing relative prices into the discounting debate. Rev. Environ. Econ. Policy. 2:161–76
    [Google Scholar]
  42. 42.  Traeger CP 2011. Sustainability, limited substitutability, and non-constant social discount rates. J. Environ. Econ. Manag. 62:2215–28
    [Google Scholar]
  43. 43.  Heck V, Gerten D, Lucht W, Popp A 2018. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8:151–55
    [Google Scholar]
  44. 44.  Jahn A 2018. Reduced probability of ice-free summers for 1.5°C compared to 2°C warming. Nat. Clim. Change 8:409–13
    [Google Scholar]
  45. 45.  Niederdrenk AL, Notz D 2018. Arctic sea ice in a 1.5°C warmer world. Geophys. Res. Lett. 45:1963–71
    [Google Scholar]
  46. 46.  Sanderson BM, Xu Y, Tebaldi C, Wehner M, O'Neill B et al. 2017. Community climate simulations to assess avoided impacts in 1.5°C and 2°C futures. Earth Syst. Dyn. 8:3827–47
    [Google Scholar]
  47. 47.  Screen JA, Williamson D 2017. Ice-free Arctic at 1.5°C?. Nat. Clim. Change 7:4230–31
    [Google Scholar]
  48. 48. ACIA. 2004. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. ACIA Overview Report Cambridge, UK: Cambridge Univ. Press
  49. 49.  Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T et al. 2013. Long-term climate change: projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change T Stocker, D Qin, G-K Plattner, M Tignor, S Allen et al.1029–1136 Cambridge, UK: Cambridge Univ Press
    [Google Scholar]
  50. 50.  Chadburn SE, Burke EJ, Cox PM, Friedlingstein P, Hugelius G, Westermann S 2017. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7:5340–44
    [Google Scholar]
  51. 51.  Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:7246556–59
    [Google Scholar]
  52. 52.  Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S et al. 2013. Sea level change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change T Stocker, D Qin, G-K Plattner, M Tignor, S Allen et al.1137–1216 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  53. 53.  Robinson A, Calov R, Ganopolski A 2012. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Change 2:6429–32
    [Google Scholar]
  54. 54.  Nicholls RJ, Brown S, Goodwin P, Wahl T, Lowe J et al. 2018. Stabilisation of global temperature at 1.5°C and 2.0°C: implications for coastal areas. Philos. Trans. R. Soc. A. 306:2119376
    [Google Scholar]
  55. 55.  Rasmussen DJ, Bittermann K, Buchanan M, Kulp S, Strauss B et al. 2018. Extreme sea level implications of 1.5°C, 2.0°C, and 2.5°C temperature stabilization targets in the 21st and 22nd century. Environ. Res. Lett. 13:034040
    [Google Scholar]
  56. 56.  Schleussner C-F, Lissner TK, Fischer EM, Wohland J, Perrette M et al. 2016. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5°C and 2°C. Earth Syst. Dyn. 7:2327–51
    [Google Scholar]
  57. 57.  Warren R, Andrews O, Brown S, Colón-González FJ, Forstenhaeusler N et al. 2018. Quantifying implications of limiting global warming to 1.5 or 2C above pre-industrial levels Submitt. Pap Nature Clim. Change. http://www.tyndall.ac.uk/publications/quantifying-implications-limiting-global-warming-15-or-2%C2%B0c-above-pre-industrial-levels
  58. 58.  Brown S, Nicholls RJ, Lázár AN, Hornby DD, Hill C et al. 2018. What are the implications of sea-level rise for a 1.5, 2 and 3°C rise in global mean temperatures in the Ganges-Brahmaputra-Meghna and other vulnerable deltas?. Reg. Environ. Change 18:1829–42
    [Google Scholar]
  59. 59.  Crosby SC, Sax DF, Palmer ME, Booth HS, Deegan LA et al. 2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuar. Coast. Shelf Sci. 181:93–99
    [Google Scholar]
  60. 60.  Hoegh-Guldberg O, Cai OR, Poloczanska ES, Brewer PG, Sundby S et al. 2014. The ocean. Climate Change 2014: Impacts, Adaptation and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.1655–1731 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  61. 61.  Cheung WW, Reygondeau G, Frölicher TL 2016. Large benefits to marine fisheries of meeting the 1.5 C global warming target. Science 354:63191591–94
    [Google Scholar]
  62. 62.  Lotze HK, Tittensor DP, Bryndum-Buchholz A, Eddy TD, Cheung WWL et al. 2018. Ensemble projections reveal consistent declines of global fish biomass with climate change Submitt. Pap., Science
  63. 63.  Gasparrini A, Guo Y, Sera F, Vicedo-Cabrera AM, Huber V et al. 2017. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Heal. 1:9e360–67
    [Google Scholar]
  64. 64.  Weinberger KR, Haykin L, Eliot MN, Schwartz JD, Gasparrini A, Wellenius GA 2017. Projected temperature-related deaths in ten large U.S. metropolitan areas under different climate change scenarios. Environ. Int. 107:196–204
    [Google Scholar]
  65. 65.  Pfeifer S, Rechid D, Reuter M, Viktor E, Jacob D 2018. 1.5°, 2°, and 3° global warming: European regions affected by multiple changes Submitt. Pap., Atmosphere (Basel)
  66. 66.  Arnell NW, Lowe JA, Lloyd-Hughes B, Osborn TJ 2017. The impacts avoided with a 1.5°C climate target: a global and regional assessment. Clim. Change 147:61–76
    [Google Scholar]
  67. 67.  Kjellstrom T, Lemke B, Otto M 2017. Climate conditions, workplace heat and occupational health in South-East Asia in the context of climate change. WHO South-East Asia J. Public Heal. 6:15–21
    [Google Scholar]
  68. 68.  Butterworth MK, Morin CW, Comrie AC 2016. An analysis of the potential impact of climate change on dengue transmission in the Southeastern United States. Environ. Health Perspect. 125:4579–85
    [Google Scholar]
  69. 69.  Monaghan AJ, Moore SM, Sampson KM, Beard CB, Eisen RJ 2015. Climate change influences on the annual onset of Lyme disease in the United States. Ticks Tick Borne Dis. 6:5615–22
    [Google Scholar]
  70. 70.  Huang J, Yu H, Dai A, Wei Y, Kang L 2017. Drylands face potential threat under 2°C global warming target. Nat. Clim. Change 7:6417–22
    [Google Scholar]
  71. 71.  Park C-E, Jeong S-J, Joshi M, Osborn TJ, Ho C-H et al. 2018. Keeping global warming within 1.5°C constrains emergence of aridification. Nat. Clim. Change 8:170–74
    [Google Scholar]
  72. 72.  Arnell NW, Lloyd-Hughes B 2014. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim. Change 122:1–2127–40
    [Google Scholar]
  73. 73.  Gerten D, Lucht W, Ostberg S, Heinke J, Kowarsch M et al. 2013. Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environ. Res. Lett. 8:3034032
    [Google Scholar]
  74. 74.  Karnauskas KB, Schleussner C-F, Donnelly JP, Anchukaitis KJ 2018. Freshwater stress on Small Island Developing States: population projections and aridity changes at 1.5°C and 2°C. Reg. Environ. Change. https://doi.org/10.1007/s10113-018-1331-9
    [Crossref]
  75. 75.  Döll P, Trautmann T, Gerten D, Müller Schmied H, Ostberg S et al. 2018. Risks for the global freshwater system at 1.5°C and 2°C global warming. Environ. Res. Lett. 13:044038
    [Google Scholar]
  76. 76.  Gudmundsson L, Seneviratne SI 2016. Anthropogenic climate change affects meteorological drought risk in Europe. Environ. Res. Lett. 11:4044005
    [Google Scholar]
  77. 77.  Liu W, Sun F, Lim WH, Zhan J, Wang H et al. 2018. Global meteorological drought and severe drought affected population in 1.5°C and 2°C warmer worlds. Earth Syst. Dyn. Discuss. 9:267–83
    [Google Scholar]
  78. 78.  Alfieri L, Bisselink B, Dottori F, Naumann G, de Roo A et al. 2017. Global projections of river flood risk in a warmer world. Earth's Future 5:2171–82
    [Google Scholar]
  79. 79.  Warren R, Price J, Vanderwal J, Graham E, Forstenhaeusler N 2018. The projected effect on insects, vertebrates and plants of limiting global warming to 1.5°C rather than 2°C. Science 360:791–95
    [Google Scholar]
  80. 80.  Warszawski L, Friend A, Ostberg S, Frieler K, Lucht W et al. 2013. A multi-model analysis of risk of ecosystem shifts under climate change. Environ. Res. Lett. 8:4044018
    [Google Scholar]
  81. 81.  Settele J, Scholes R, Betts R, Bunn SE, Leadley P et al. 2014. Terrestrial and inland water systems. Climate Change 2014: Impacts, Adaptation and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.271–359 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  82. 82.  Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J et al. 2012. Climate change and disruptions to global fire activity. Ecosphere 3:649
    [Google Scholar]
  83. 83.  Romero-Lankao P, Smith JB, Davidson DJ, Diffenbaugh NS, Kinney PL et al. 2014. North America. Climate Change 2014: Impacts, Adaptation and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, MD Mastrandrea, KJ Mach et al.1439–98 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  84. 84.  Engelbrecht CJ, Engelbrecht FA 2016. Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global temperature goals. Theor. Appl. Climatol. 123:1–2247–61
    [Google Scholar]
  85. 85.  Urban MC 2015. Accelerating extinction risk from climate change. Science 348:6234571–73
    [Google Scholar]
  86. 86.  Porter JR, Xie YL, Challinor AJ, Cochrane K, Howden SM et al. 2014. Food security and food production systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.485–533 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  87. 87.  Rosenzweig C, Ruane A, Antle J, Elliott J, Ashfaq M et al. 2018. Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376:211920160455
    [Google Scholar]
  88. 88.  Ren X, Lu Y, O'Neill B, Weitzel M 2018. Economic and biophysical impacts on agriculture under 1.5°C and 2°C warming Submitt. Pap., Environ. Res. Lett.
  89. 89. World Bank. 2013. Turn Down The Heat: Climate Extremes, Regional Impacts, and the Case for Resilience. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics Washington, DC: World Bank
  90. 90.  Iizumi T, Furuya J, Shen Z, Kim W, Okada M et al. 2017. Responses of crop yield growth to global temperature and socioeconomic changes. Sci. Rep. 7:17800
    [Google Scholar]
  91. 91.  Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA et al. 2009. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:72421163–66
    [Google Scholar]
  92. 92.  Matthews HD, Gillett NP, Stott PA, Zickfeld K 2009. The proportionality of global warming to cumulative carbon emissions. Nature 459:7248829–32
    [Google Scholar]
  93. 93.  Zickfeld K, Eby M, Matthews HD, Weaver AJ 2009. Setting cumulative emissions targets to reduce the risk of dangerous climate change. PNAS 106:3816129–34
    [Google Scholar]
  94. 94. IPCC. 2013. Summary for policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change T Stocker, D Qin, G-K Plattner, M Tignor, S Allen et al.3–29 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  95. 95.  Rogelj J, Schaeffer M, Friedlingstein P, Gillett NP, van Vuuren DP et al. 2016. Differences between carbon budget estimates unravelled. Nat. Clim. Change 6:245–52
    [Google Scholar]
  96. 96.  MacDougall AH, Zickfeld K, Knutti R, Matthews HD 2015. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10:12125003
    [Google Scholar]
  97. 97.  Millar RJ, Fuglestvedt JS, Friedlingstein P, Rogelj J, Grubb MJ et al. 2017. Emission budgets and pathways consistent with limiting warming to 1.5°C. Nat. Geosci. 10:10741–47
    [Google Scholar]
  98. 98.  Goodwin P, Katavouta A, Roussenov VM, Foster GL, Rohling EJ, Williams RG 2018. Pathways to 1.5°C and 2°C warming based on observational and geological constraints. Nat. Geosci. 11:2102–7
    [Google Scholar]
  99. 99.  Rogelj J, Luderer G, Pietzcker RC, Kriegler E, Schaeffer M et al. 2015. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Change 5:6519–27
    [Google Scholar]
  100. 100.  Riahi K, Kriegler E, Johnson N, Bertram C, den Elzen M et al. 2015. Locked into Copenhagen pledges: implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90:A8–23
    [Google Scholar]
  101. 101.  World Bank 2017. World Bank Open Data Washington, DC: World Bank https://data.worldbank.org/
  102. 102.  Jackson RB, Le Quere C, Andrew RM, Canadell JG, Peters GP et al. 2017. Warning signs for stabilizing global CO2 emissions. Environ. Res. Lett. 12:11110202
    [Google Scholar]
  103. 103.  Fawcett AA, Iyer GC, Clarke LE, Edmonds JA, Hultman NE et al. 2015. Can Paris pledges avert severe climate change?. Science 350:62651168–69
    [Google Scholar]
  104. 104.  Gernaat DEHJ, Calvin K, Lucas PL, Luderer G, Otto SAC et al. 2015. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Change 33:142–53
    [Google Scholar]
  105. 105.  Gambhir A, Napp T, Hawkes A, Höglund-Isaksson L, Winiwarter W et al. 2017. The contribution of non-CO2 greenhouse gas mitigation to achieving long-term temperature goals. Energies 10:5602
    [Google Scholar]
  106. 106.  Clarke L, Jiang K, Akimoto K, Babiker M, Blanford G et al. 2014. Assessing transformation pathways. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al.413–510 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  107. 107.  Luderer G, Kriegler E, Delsa L, Edelenbosch O, Emmerling J et al. 2016. Deep decarbonization towards 1.5°C-2°C stabilisation: policy findings from the ADVANCE project ADVANCE . , 1st ed..
  108. 108.  Rogelj J, McCollum DL, O'Neill BC, Riahi K 2013. 2020 emissions levels required to limit warming to below 2°C. Nat. Clim. Change 3:4405–12
    [Google Scholar]
  109. 109.  Gambhir A, Drouet L, McCollum D, Napp T, Bernie D et al. 2017. Assessing the feasibility of global long-term mitigation scenarios. Energies 10:1e89
    [Google Scholar]
  110. 110.  Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O'Neill BC et al. 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42:153–68
    [Google Scholar]
  111. 111.  Kriegler E, Petermann N, Krey V, Schwanitz VJ, Luderer G et al. 2015. Diagnostic indicators for integrated assessment models of climate policy. Technol. Forecast. Soc. Change 90:A45–61
    [Google Scholar]
  112. 112.  Schaeffer M, Rogelj J, Roming N, Sferra F, Hare B, Serdeczny O 2015. Feasibility of Limiting Warming to 1.5 and 2°C Berlin: Climate Analytics
  113. 113. IEA, IRENA. 2017. Perspectives for the Energy Transition: Investment Needs for a Low-Carbon Energy System Abu Dhabi, UAE: IEA, IRENA
  114. 114.  Blanford GJ, Kriegler E, Tavoni M 2014. Harmonization versus fragmentation: overview of climate policy scenarios in EMF27. Clim. Change 123:3–4383–96
    [Google Scholar]
  115. 115.  Fujimori S, Kubota I, Dai H, Takahashi K, Hasegawa T et al. 2016. Will international emissions trading help achieve the objectives of the Paris Agreement?. Environ. Res. Lett. 11:10104001
    [Google Scholar]
  116. 116.  Nemet GF, Holloway T, Meier P 2010. Implications of incorporating air-quality co-benefits into climate change policymaking. Environ. Res. Lett. 5:014007
    [Google Scholar]
  117. 117.  Rosen RA 2015. Critical review of: “Making or breaking climate targets: the AMPERE study on staged accession scenarios for climate policy. .” Technol. Forecast. Soc. Change 96:322–26
    [Google Scholar]
  118. 118.  Creutzig F, Agoston P, Goldschmidt JC, Luderer G, Nemet G, Pietzcker RC 2017. The underestimated potential of solar energy to mitigate climate change. Nat. Energy. 2:917140
    [Google Scholar]
  119. 119. Carbon Tracker, Grantham Institute Imperial College London. 2017. Expect the unexpected: the disruptive power of low-carbon technology Rep., Carbon Tracker Initiat. London:
  120. 120.  Stern N 2016. Economics: current climate models are grossly misleading. Nature 530:7591407–9
    [Google Scholar]
  121. 121.  Wilson C, Grubler A, Gallagher KS, Nemet GF 2012. Marginalization of end-use technologies in energy innovation for climate protection. Nat. Clim. Change 2:780–88
    [Google Scholar]
  122. 122.  Anderson K, Peters G 2016. The trouble with negative emissions. Science 354:6309182–83
    [Google Scholar]
  123. 123. The National Research Council. 2015. Climate Intervention: Reflecting Sunlight to Cool Earth Washington, DC: Nat. Acad. Press
  124. 124. Royal Society. 2009. Geoengineering the Climate: Science, Governance and Uncertainty London: R. Soc.
  125. 125.  Lenton TM, Vaughan NE 2009. The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys. 9:155539–61
    [Google Scholar]
  126. 126.  Keith DW 2000. Geoengineering the climate: history and prospect. Annu. Rev. Energy Environ. 25:245–84
    [Google Scholar]
  127. 127.  Heutel G, Moreno-Cruz J, Ricke K 2016. Climate engineering economics. Annu. Rev. Resour. Econ. 8:199–118
    [Google Scholar]
  128. 128.  Klepper G, Rickels W 2014. Climate engineering: economic considerations and research challenges. Rev. Environ. Econ. Policy 8:270–89
    [Google Scholar]
  129. 129.  Keith DW, Parson E, Morgan MG 2010. Research on global sun block needed now. Nature 463:426
    [Google Scholar]
  130. 130.  Rogelj J, Popp A, Calvin KV, Luderer G, Emmerling J et al. 2018. Scenarios towards limiting global mean temperature increase below 1.5°C. Nat. Clim. Change 8:4325–32
    [Google Scholar]
  131. 131.  Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, Amann T 2018. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Rev. Lett. 13:6
    [Google Scholar]
  132. 132.  Smith P, Davis SJ, Creutzig F, Fuss S, Minx J et al. 2015. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6:42–50
    [Google Scholar]
  133. 133.  Jackson RB, Canadell JG, Fuss S, Milne J, Nakicenovic N, Tavoni M 2017. Focus on negative emissions. Environ. Res. Lett. 12:11110201
    [Google Scholar]
  134. 134.  Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM et al. 2014. Betting on negative emissions. Nat. Clim. Change 4:850–53
    [Google Scholar]
  135. 135.  Barrett S 2008. The incredible economics of geoengineering. Environ. Resour. Econ. 39:145–54
    [Google Scholar]
  136. 136.  Barrett S 2014. Solar geoengineering's brave new world: thoughts on the governance of an unprecedented technology. Rev. Environ. Econ. Policy. 8:2249–69
    [Google Scholar]
  137. 137.  Weitzman ML 2015. A voting architecture for the governance of free-driver externalities, with application to geoengineering. Scand. J. Econ. 117:1049–68
    [Google Scholar]
  138. 138.  Goeschl T, Heyen D, Moreno-Cruz J 2013. The intergenerational transfer of solar radiation management capabilities and atmospheric carbon stocks. Environ. Resour. Econ. 56:185–104
    [Google Scholar]
  139. 139.  Robock A, Marquardt A, Kravitz B, Stenchikov G 2009. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 36:19L19703
    [Google Scholar]
  140. 140.  Trisos CH, Amatulli G, Gurevitch J, Robock A, Xia L, Zambri B 2018. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat. Ecol. Evol. 2:3475–82
    [Google Scholar]
  141. 141.  Robock A, Bunzl M, Kravitz B, Stenchikov GL 2010. A test for geoengineering?. Science 327:5965530–31
    [Google Scholar]
  142. 142.  Heutel G, Moreno-Cruz J, Shayegh S 2018. Solar geoengineering, uncertainty, and the price of carbon. J. Environ. Econ. Manag. 87:24–41
    [Google Scholar]
  143. 143.  Bahn O, Chesney M, Gheyssens J, Knutti R, Pana AC 2015. Is there room for geoengineering in the optimal climate policy mix?. Environ. Sci. Policy. 48:67–76
    [Google Scholar]
  144. 144.  Moreno-Cruz JB, Wagner G, Keith DW 2017. An economic anatomy of optimal climate policy Work. Pap. RWP17–028, John F. Kennedy Sch. Gov., Harv. Univ.
  145. 145.  Bickel JE, Agrawal S 2013. Reexamining the economics of aerosol geoengineering. Clim. Change 119:3–4993–1006
    [Google Scholar]
  146. 146.  Goes M, Tuana N, Keller K, Goes M, Keller K et al. 2011. The economics (or lack thereof) of aerosol geoengineering. Clim. Change 109:719–44
    [Google Scholar]
  147. 147.  Heutel G, Moreno-Cruz J, Shayegh S 2016. Climate tipping points and solar geoengineering. J. Econ. Behav. Organ. 132:19–45
    [Google Scholar]
  148. 148.  Moreno-Cruz JB, Keith DW 2013. Climate policy under uncertainty: a case for solar geoengineering. Clim. Change 121:431–44
    [Google Scholar]
  149. 149.  Moreno-Cruz JB 2015. Mitigation and the geoengineering threat. Resour. Energy Econ. 41:248–63
    [Google Scholar]
  150. 150.  Landau E 2018. Revised AGU position statement addresses climate intervention. Eos Jan. 18. https://eos.org/agu-news/revised-agu-position-statement-addresses-climate-intervention
  151. 151.  Bowen A 2011. The case for carbon pricing Policy Brief, Cent. Clim. Change Econ., Grantham Res. Inst. London:
  152. 152.  Baranzini A, van den Bergh JCJM, Carattini S, Howarth RB, Padilla E, Roca J 2017. Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations. Wiley Interdiscip. Rev. Clim. Change 8:41–17
    [Google Scholar]
  153. 153. High-Level Commission on Carbon Prices. 2017. Report of the High-Level Commission on Carbon Prices Washington, DC: World Bank
  154. 154.  Bowen A 2015. Carbon pricing: how best to use the revenue? Policy Brief, Cent. Clim. Change Econ., Grantham Res. Inst. London:
  155. 155.  Coady D, Parry I, Sears L, Shang B 2017. How large are global fossil fuel subsidies?. World Dev 91:11–27
    [Google Scholar]
  156. 156.  Advani A, Bassi S, Bowen A, Fankhauser S, Johnson P et al. 2013. Energy use policies and carbon pricing in the UK Inst. Fiscal Stud., Cent. Clim. Change Econ., Grantham Res. Inst. London:
  157. 157.  Rentschler J 2016. Incidence and impact: the regional variation of poverty effects due to fossil fuel subsidy reform. Energy Policy 96:491–503
    [Google Scholar]
  158. 158.  Hintermann B, Peterson S, Rickels W 2016. Price and market behavior in phase II of the EU ETS: a review of the literature. Rev. Environ. Econ. Policy. 10:1108–28
    [Google Scholar]
  159. 159.  Oda J, Akimoto K 2011. An analysis of CCS investment under uncertainty. Energy Procedia 4:1997–2004
    [Google Scholar]
  160. 160. Canfin-Grandjean Commission. 2015. Mobilizing Climate Finance: A Roadmap to Finance a Low-Carbon Economy http://www.cdcclimat.com/IMG/pdf/exsum-report_canfin-grandjean_eng.pdf
  161. 161.  Fischer C, Newell RG 2008. Environmental and technology policies for climate mitigation. J. Environ. Econ. Manag. 55:2142–62
    [Google Scholar]
  162. 162. Org. Econ. Co-op. Dev. (OECD), Int. Energy Agency, Nucl. Energy Agency, Int. Transport Forum. 2015. Aligning Policies for a Low-Carbon Economy Paris: OECD Publ.
  163. 163.  Zachmann G, Serwah A, Peruzzi M 2014. When and how to support renewables? Letting the data speak Work. Pap. 2014/01 Bruegel Brussels:
  164. 164.  Creutzig F, Fernandez B, Haberl H, Khosla R, Mulugetta Y, Seto KC 2016. Beyond technology: demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 41:1173–98
    [Google Scholar]
  165. 165.  van der Linden S, Maibach E, Leiserowitz A 2015. Improving public engagement with climate change: five “best practice” insights from psychological science. Perspect. Psychol. Sci. 10:6758–63
    [Google Scholar]
  166. 166.  Goodwin T 2012. Why we should reject “nudge. .” Politics 32:285–92
    [Google Scholar]
  167. 167.  Allen MR, Frame DJ, Mason CF 2009. The case for mandatory sequestration. Nat. Geosci. 2:12813–14
    [Google Scholar]
  168. 168.  King D, Browne J, Layard R, Donnell GO, Rees M et al. 2015. A global Apollo programme to combat climate change Rep., Cent. Econ. Perf., London Sch. Econ. London:
  169. 169.  Parry IWH, Walls M, Harrington W 2007. Automobile externalities and policies. J. Econ. Lit. 45:2373–99
    [Google Scholar]
  170. 170.  Jacobsen MR 2013. Evaluating US fuel economy standards in a model with producer and household heterogeneity. Am. Econ. J. Econ. Policy. 5:2148–87
    [Google Scholar]
  171. 171.  Liu Z, Mao X, Tu J, Jaccard M 2014. A comparative assessment of economic-incentive and command-and-control instruments for air pollution and CO2 control in China's iron and steel sector. J. Environ. Manag. 144:135–42
    [Google Scholar]
  172. 172.  Bakam I, Balana BB, Matthews R 2012. Cost-effectiveness analysis of policy instruments for greenhouse gas emission mitigation in the agricultural sector. J. Environ. Manag. 112:33–44
    [Google Scholar]
  173. 173.  Höhne N, den Elzen M, Escalante D 2014. Regional GHG reduction targets based on effort sharing: a comparison of studies. Clim. Policy. 14:1122–47
    [Google Scholar]
  174. 174.  Bowen A, Campiglio E, Herreras Martinez S 2017. An “equal effort” approach to assessing the North–South climate finance gap. Clim. Policy. 17:2231–45
    [Google Scholar]
  175. 175.  Averchenkova A, Stern N, Zenghelis D 2014. Taming the beasts of “burden-sharing”: an analysis of equitable mitigation actions and approaches to 2030 mitigation pledges Policy Pap Cent. Clim. Change Econ., Grantham Res. Inst. London:
  176. 176.  Robiou Du Pont Y, Jeffery ML, Gütschow J, Rogelj J, Christoff P, Meinshausen M 2017. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Change 7:138–43
    [Google Scholar]
  177. 177.  Rogelj J, Luderer G, Pietzcker RC, Kriegler E, Schaeffer M et al. 2016. Corrigendum: energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Change 6:5538
    [Google Scholar]
  178. 178.  Stern N 2013. The structure of economic modeling of the potential impacts of climate change: grafting gross underestimation of risk onto already narrow science models. J. Econ. Lit. 51:3838–59
    [Google Scholar]
  179. 179.  Dietz S, Venmans F 2017. Cumulative carbon emissions and economic policy: in search of general principles Work. Pap. 283 Grantham Res. Inst. Clim. Change Environ. London:
  180. 180.  Nordhaus WD, Moffat A 2017. A survey of global impacts of climate change: replication, survey methods, and a statistical analysis NBER Work. Pap. 23646
  181. 181.  Burke MB, Hsiang SM, Miguel E 2015. Global non-linear effect of temperature on economic production. Nature 527:235–39
    [Google Scholar]
  182. 182.  Dell M, Jones BF, Olken BA, Gates M 2014. What do we learn from the weather? The new climate-economy literature. J. Econ. Lit. 52:3740–98
    [Google Scholar]
  183. 183.  Hsiang S 2016. Climate econometrics. Annu. Rev. Resour. Econ. 8:143–75
    [Google Scholar]
  184. 184.  Drupp M, Freeman MC, Groom B, Nesje F 2018. Discounting disentangled. Am. Econ. J. Econ. Policy. https://www.aeaweb.org/articles?id=10.1257/pol.20160240. In press
  185. 185. United Nations (UN). 2015. World Population Prospects: The 2015 Revision New York: UN
  186. 186.  Gillingham K, Nordhaus WD, Anthoff D, Blanford GJ, Bosetti V et al. 2015. Modeling uncertainty in climate change: a multi-model comparison NBER Work. Pap. 21637
  187. 187. IIASA. 2014. IPCC AR5 Database: version 1.0.2 https://tntcat.iiasa.ac.at/AR5DB/
  188. 188.  Kravitz B 2013. Stratospheric aerosols for solar radiation management. Geoengineering Responses to Climate Change: Selected Entries from the Encyclopedia of Sustainability Science and Technology T Lenton, N Vaughan 21–38 New York: Springer
    [Google Scholar]
  189. 189.  Rogelj J, Den Elzen M, Höhne N, Fransen T, Fekete H et al. 2016. Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature 534:7609631–39
    [Google Scholar]
  190. 190.  Aldy J, Pizer W, Tavoni M, Reis LA, Akimoto K et al. 2016. Economic tools to promote transparency and comparability in the Paris Agreement. Nat. Clim. Change 6:111000–4
    [Google Scholar]
  191. 191.  Smith P 2016. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22:31315–24
    [Google Scholar]
/content/journals/10.1146/annurev-environ-102017-025817
Loading
/content/journals/10.1146/annurev-environ-102017-025817
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error