1932

Abstract

Future sea-level rise generates hazards for coastal populations, economies, infrastructure, and ecosystems around the world. The projection of future sea-level rise relies on an accurate understanding of the mechanisms driving its complex spatio-temporal evolution, which must be founded on an understanding of its history. We review the current methodologies and data sources used to reconstruct the history of sea-level change over geological (Pliocene, Last Interglacial, and Holocene) and instrumental (tide-gauge and satellite alimetry) eras, and the tools used to project the future spatial and temporal evolution of sea level. We summarize the understanding of the future evolution of sea level over the near (through 2050), medium (2100), and long (post-2100) terms. Using case studies from Singapore and New Jersey, we illustrate the ways in which current methodologies and data sources can constrain future projections, and how accurate projections can motivate the development of new sea-level research questions across relevant timescales.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102017-025826
2018-10-17
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/energy/43/1/annurev-environ-102017-025826.html?itemId=/content/journals/10.1146/annurev-environ-102017-025826&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME et al. 2013. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29:493–504
    [Google Scholar]
  2. 2.  Douglas BC 1991. Global sea level rise. J. Geophys. Res. Oceans 96:C46981–92
    [Google Scholar]
  3. 3.  Holgate SJ 2007. On the decadal rates of sea level change during the twentieth century. Geophys. Res. Lett. 34:1L01602
    [Google Scholar]
  4. 4.  Dutton A, Webster JM, Zwartz D, Lambeck K, Wohlfarth B 2015. Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands. Quat. Sci. Rev 107:182–96
    [Google Scholar]
  5. 5.  Kemp AC, Horton BP, Donnelly JP, Mann ME, Vermeer M, Rahmstorf S 2011. Climate related sea-level variations over the past two millennia. PNAS 108:2711017–22
    [Google Scholar]
  6. 6.  Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M 2009. Probabilistic assessment of sea level during the Last Interglacial Stage. Nature 462:7275863–67
    [Google Scholar]
  7. 7.  Raymo ME, Mitrovica JX, O'Leary MJ, DeConto RM, Hearty PJ 2011. Departures from eustasy in Pliocene sea-level records. Nat. Geosci. 4:5328–32
    [Google Scholar]
  8. 8.  Dutton A, Carlson AE, Long AJ, Milne GA, Clark PU et al. 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349:6244aaa4019
    [Google Scholar]
  9. 9.  Milne GA, Gehrels WR, Hughes CW, Tamisiea ME 2009. Identifying the causes of sea-level change. Nat. Geosci. 2:7471–78
    [Google Scholar]
  10. 10.  Sweet WV, Kopp RE, Weaver CP, Obeysekera J, Horton R et al. 2017. Global and regional sea level rise scenarios for the United States Tech. Rep. NOS CO-OPS 083 Nat. Oceanic Atmos. Admin., US Dep. Comm.
  11. 11.  Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S et al. 2013. Sea level change. Climate Change 2013: The Physical Science Basis TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.1137–216 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  12. 12.  Cahill N, Kemp AC, Horton BP, Parnell AC 2015. Modeling sea-level change using errors-in-variables integrated Gaussian processes. Ann. Appl. Stat. 9:2547–71
    [Google Scholar]
  13. 13.  Hinkel J, Jaeger C, Nicholls RJ, Lowe J, Renn O, Peijun S 2015. Sea-level rise scenarios and coastal risk management. Nat. Clim. Change 5:3188–90
    [Google Scholar]
  14. 14.  Slangen ABA, Meyssignac B, Agosta C, Champollion N, Church JA et al. 2017. Evaluating model simulations of twentieth-century sea level rise. Part I: Global mean sea level change. J. Clim. 30:218539–63
    [Google Scholar]
  15. 15.  Marzeion B, Jarosch AH, Hofer M 2012. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6:61295–1322
    [Google Scholar]
  16. 16.  Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ et al. 2012. A reconciled estimate of ice-sheet mass balance. Science 338:61111183–89
    [Google Scholar]
  17. 17.  Konikow LF 2011. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 38:17L17401
    [Google Scholar]
  18. 18.  Merrifield MA, Thompson PR, Lander M 2012. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. 39:13L13602
    [Google Scholar]
  19. 19.  Ezer T, Atkinson LP, Corlett WB, Blanco JL 2013. Gulf Stream's induced sea level rise and variability along the U.S. mid-Atlantic coast. J. Geophys. Res. Oceans 118:2685–97
    [Google Scholar]
  20. 20.  Kopp RE 2013. Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability?. Geophys. Res. Lett. 40:153981–85
    [Google Scholar]
  21. 21.  Little CM, Piecuch CG, Ponte RM 2017. On the relationship between the meridional overturning circulation, alongshore wind stress, and United States East Coast sea level in the Community Earth System Model Large Ensemble. J. Geophys. Res. Oceans 122:64554–68
    [Google Scholar]
  22. 22.  Kemp AC, Bernhardt CE, Horton BP, Kopp RE, Vane CH 2014. Late Holocene sea- and land-level change on the U.S. southeastern Atlantic coast. Mar Geol 357:90–100
    [Google Scholar]
  23. 23.  Kemp AC, Hawkes AD, Donnelly JP, Vane CH, Horton BP 2015. Relative sea-level change in Connecticut (USA) during the last 2200 yrs. Earth Planet. Sci. Lett 428:217–229
    [Google Scholar]
  24. 24.  Kopp RE, Hay CC, Little CM, Mitrovica JX 2015. Geographic variability of sea-level change. Curr. Clim. Change Rep. 1:3192–204
    [Google Scholar]
  25. 25.  Kopp RE, Kemp AC, Bittermann K, Horton BP, Donnelly JP 2016. Temperature-driven global sea-level variability in the Common Era. PNAS 113:111434–41
    [Google Scholar]
  26. 26.  Nerem RS, Chambers DP, Choe C, Mitchum GT 2010. Estimating mean sea level change from the TOPEX and Jason Altimeter missions. Mar. Geod. 33:sup1435–46
    [Google Scholar]
  27. 27.  Hamlington BD, Cheon SH, Thompson PR, Merrifield MA, Nerem RS et al. 2016. An ongoing shift in Pacific Ocean sea level. J. Geophys. Res. Oceans 121:75084–97
    [Google Scholar]
  28. 28.  McGregor S, Gupta AS, England MH 2012. Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution. J. Clim. 25:238164–76
    [Google Scholar]
  29. 29.  Yin J, Goddard PB 2013. Oceanic control of sea level rise patterns along the East Coast of the United States. Geophys. Res. Lett. 40:205514–20
    [Google Scholar]
  30. 30.  Taylor KE, Stouffer RJ, Meehl GA 2012. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93:4485–98
    [Google Scholar]
  31. 31.  Valle-Levinson A, Dutton A, Martin JB 2017. Spatial and temporal variability of sea level rise hot spots over the eastern United States. Geophys. Res. Lett. 44:157876–82
    [Google Scholar]
  32. 32.  Clark JA, Lingle CS 1977. Future sea-level changes due to West Antarctic ice sheet fluctuations. Nature 269:5625206–9
    [Google Scholar]
  33. 33.  Mitrovica JX, Gomez N, Morrow E, Hay C, Latychev K, Tamisiea ME 2011. On the robustness of predictions of sea level fingerprints. Geophys. J. Int. 187:2729–42
    [Google Scholar]
  34. 34.  Mitrovica JX, Tamisiea ME, Davis JL, Milne GA 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:68231026–29
    [Google Scholar]
  35. 35.  Hsu C-W, Velicogna I 2017. Detection of sea level fingerprints derived from GRACE gravity data. Geophys. Res. Lett. 44:178953–61
    [Google Scholar]
  36. 36.  Mitrovica JX, Hay CC, Kopp RE, Harig C, Latychev K 2018. Quantifying the sensitivity of sea level change in coastal localities to the geometry of polar ice mass flux. J. Clim. 31:3702–9
    [Google Scholar]
  37. 37.  Larour E, Ivins ER, Adhikari S 2017. Should coastal planners have concern over where land ice is melting?. Sci. Adv. 3:11e1700537
    [Google Scholar]
  38. 38.  Wu P, Peltier WR 1984. Pleistocene deglaciation and the Earth's rotation: a new analysis. Geophys. J. R. Astron. Soc. 76:3753–91
    [Google Scholar]
  39. 39.  Farrell WE, Clark JA 1976. On postglacial sea level. Geophys. J. R. Astron. Soc. 46:3647–67
    [Google Scholar]
  40. 40.  Clark JA, Farrell WE, Peltier WR 1978. Global changes in postglacial sea level: a numerical calculation. Quat. Res. 9:265–87
    [Google Scholar]
  41. 41.  Mitrovica JX, Milne GA 2003. On post-glacial sea level: I. General theory. Geophys. J. Int. 154:2253–67
    [Google Scholar]
  42. 42.  Peltier WR, Argus DF, Drummond R 2015. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120:1450–87
    [Google Scholar]
  43. 43.  Kendall R, Mitrovica JX, Milne GA 2005. On post-glacial sea level: II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161:679–706
    [Google Scholar]
  44. 44.  Hay CC, Lau HCP, Gomez N, Austermann J, Powell E et al. 2017. Sea level fingerprints in a region of complex Earth structure: the case of WAIS. J. Clim. 30:61881–92
    [Google Scholar]
  45. 45.  Khan NS, Ashe E, Shaw TA, Vacchi M, Walker J 2015. Holocene relative sea-level changes from near-, intermediate-, and far-field locations. Curr. Clim. Change Rep. 1:247–62
    [Google Scholar]
  46. 46.  Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. PNAS 111:4315296–303
    [Google Scholar]
  47. 47.  Milne GA 2015. Glacial isostatic adjustment. Handbook of Sea-Level Research I Shennan, AJ Long, BP Horton 419–37 Chichester, UK: Wiley
    [Google Scholar]
  48. 48.  Roy K, Peltier WR 2017. Space-geodetic and water level gauge constraints on continental uplift and tilting over North America: regional convergence of the ICE-6G_C (VM5a/VM6) models. Geophys. J. Int. 210:21115–42
    [Google Scholar]
  49. 49.  Engelhart SE, Horton BP, Douglas BC, Peltier WR, Törnqvist TE 2009. Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology 37:121115–18
    [Google Scholar]
  50. 50.  Milne GA, Long AJ, Bassett SE 2005. Modelling Holocene relative sea-level observations from the Caribbean and South America. Quat. Sci. Rev. 24:101183–1202
    [Google Scholar]
  51. 51.  Mitrovica JX, Milne GA 2002. On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat. Sci. Rev. 21:202179–90
    [Google Scholar]
  52. 52.  Peltier WR 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32:1111–49
    [Google Scholar]
  53. 53.  Abe-Ouchi A, Saito F, Kageyama M, Braconnot P, Harrison SP et al. 2015. Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model. Dev. 8:113621–37
    [Google Scholar]
  54. 54.  Horton BP, Shennan I 2009. Compaction of Holocene strata and the implications for relative sealevel change on the east coast of England. Geology 37:121083–86
    [Google Scholar]
  55. 55.  Miller KG, Kopp RE, Horton BP, Browning JV, Kemp AC 2013. A geological perspective on sea-level rise and its impacts along the U.S. mid-Atlantic coast. Earths Future 1:13–18
    [Google Scholar]
  56. 56.  Johnson CS, Miller KG, Browning JV, Kopp RE, Khan NS et al. 2018. The role of sediment compaction and groundwater withdrawal in local sea-level rise, Sandy Hook, New Jersey, USA. Quat. Sci. Rev. 181:30–42
    [Google Scholar]
  57. 57.  Törnqvist TE, Wallace DJ, Storms JEA, Wallinga J, van Dam RL et al. 2008. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 1:3173–76
    [Google Scholar]
  58. 58.  Kolker AS, Allison MA, Hameed S 2011. An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 38:21L21404
    [Google Scholar]
  59. 59.  Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT et al. 2009. Sinking deltas due to human activities. Nat. Geosci. 2:10681–86
    [Google Scholar]
  60. 60.  Allison M, Yuill B, Törnqvist T, Amelung F, Dixon T et al. 2016. Global risks and research priorities for coastal subsidence. Eos Trans. Am. Geophys. Union 97:22–27
    [Google Scholar]
  61. 61.  van de Plassche O, Wright AJ, Horton BP, Engelhart SE, Kemp AC et al. 2014. Estimating tectonic uplift of the Cape Fear Arch (southeast-Atlantic coast, USA) using reconstructions of Holocene relative sea level. J. Quat. Sci. 29:8749–59
    [Google Scholar]
  62. 62.  Meltzner AJ, Sieh K, Abrams M, Agnew DC, Hudnut KW et al. 2006. Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004. J. Geophys. Res. Solid Earth 111:B02407
    [Google Scholar]
  63. 63.  Feng L, Hill EM, Banerjee P, Hermawan I, Tsang LLH et al. 2015. A unified GPS-based earthquake catalog for the Sumatran plate boundary between 2002 and 2013. J. Geophys. Res. Solid Earth 120:53566–98
    [Google Scholar]
  64. 64.  Horton B, Milker Y, Dura T, Wang K, Bridgeland W et al. 2017. Microfossil measures of rapid sea-level rise: timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia. Geology 45:6535–38
    [Google Scholar]
  65. 65.  Herman F, Seward D, Valla PG, Carter A, Kohn B et al. 2013. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504:7480423–26
    [Google Scholar]
  66. 66.  Woo HB, Panning MP, Adams PN, Dutton A 2017. Karst-driven flexural isostasy in North-Central Florida. Geochem. Geophys. Geosyst. 18:93327–39
    [Google Scholar]
  67. 67.  Creveling JR, Mitrovica JX, Hay CC, Austermann J, Kopp RE 2015. Revisiting tectonic corrections applied to Pleistocene sea-level highstands. Quat. Sci. Rev. 111:72–80
    [Google Scholar]
  68. 68.  Rovere A, Raymo ME, Vacchi M, Lorscheid T, Stocchi P et al. 2016. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: reconstructing sea-level in a warmer world. Earth-Sci. Rev. 159:404–27
    [Google Scholar]
  69. 69.  Flament N, Gurnis M, Müller RD 2013. A review of observations and models of dynamic topography. Lithosphere 5:2189–210
    [Google Scholar]
  70. 70.  Hoggard MJ, White N, Al-Attar D 2016. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nat. Geosci. 9:6456–63
    [Google Scholar]
  71. 71.  Husson L, Conrad CP 2006. Tectonic velocities, dynamic topography, and relative sea level. Geophys. Res. Lett. 33:18L18303
    [Google Scholar]
  72. 72.  Conrad CP, Husson L 2009. Influence of dynamic topography on sea level and its rate of change. Lithosphere 1:2110–20
    [Google Scholar]
  73. 73.  Austermann J, Mitrovica JX, Huybers P, Rovere A 2017. Detection of a dynamic topography signal in last interglacial sea-level records. Sci. Adv. 3:7e1700457
    [Google Scholar]
  74. 74.  Rowley DB, Forte AM, Moucha R, Mitrovica JX, Simmons NA, Grand SP 2013. Dynamic topography change of the Eastern United States since 3 million years ago. Science 340:61401560–63
    [Google Scholar]
  75. 75.  Austermann J, Pollard D, Mitrovica JX, Moucha R, Forte AM et al. 2015. The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period. Geology 43:10927–30
    [Google Scholar]
  76. 76.  Shennan I 2015. Handbook of Sea-Level Research: framing research questions. Handbook of Sea-Level Research I Shennan, AJ Long, BP Horton 3–25 Chichester, UK: Wiley
    [Google Scholar]
  77. 77.  van de Plassche O 1986. Sea-Level Research: A Manual for the Collection and Evaluation of Data Dordrecht, Neth: Springer
  78. 78.  Hibbert FD, Rohling EJ, Dutton A, Williams FH, Chutcharavan PM et al. 2016. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145:1–56
    [Google Scholar]
  79. 79.  Wilmes S-B, Green JAM, Gomez N, Rippeth TP, Lau H 2017. Global tidal impacts of large-scale ice sheet collapses. J. Geophys. Res. Oceans 122:118354–70
    [Google Scholar]
  80. 80.  Walker MJC 2005. Quaternary Dating Methods Chichester, UK: Wiley
  81. 81.  Haywood AM, Chandler MA, Valdes PJ, Salzmann U, Lunt DJ, Dowsett HJ 2009. Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models. Glob. Planet. Change 66:3208–24
    [Google Scholar]
  82. 82.  Kemp AC, Dutton A, Raymo ME 2015. Paleo constraints on future sea-level rise. Curr. Clim. Change Rep. 1:3205–15
    [Google Scholar]
  83. 83.  Lisiecki LE, Raymo ME 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:1PA1003
    [Google Scholar]
  84. 84.  Dowsett H, Dolan A, Rowley D, Moucha R, Forte AM et al. 2016. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Clim. Past. 12:71519–38
    [Google Scholar]
  85. 85.  Haywood AM, Dowsett HJ, Dolan AM, Rowley D, Abe-Ouchi A et al. 2016. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific objectives and experimental design. Clim. Past. 12:3663–75
    [Google Scholar]
  86. 86.  Haywood AM, Hill DJ, Dolan AM, Otto-Bliesner BL, Bragg F et al. 2013. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past. 9:1191–209
    [Google Scholar]
  87. 87.  Kennett JP, Hodell DA 1995. Stability or instability of Antarctic ice sheets during warm climates of the Pliocene. GSA Today 5:19–13
    [Google Scholar]
  88. 88.  Dowsett HJ, Cronin T 1990. High eustatic sea level during the middle Pliocene: evidence from the southeastern U.S. Atlantic Coastal Plain. Geology 18:435–38
    [Google Scholar]
  89. 89.  Rovere A, Hearty PJ, Austermann J, Mitrovica JX, Gale J et al. 2015. Mid-Pliocene shorelines of the US Atlantic Coastal Plain—an improved elevation database with comparison to Earth model predictions. Earth-Sci. Rev. 145:117–31
    [Google Scholar]
  90. 90.  Wardlaw BR, Quinn TM 1991. The record of Pliocene sea-level change at Enewetak Atoll. Quat. Sci. Rev. 10:2247–58
    [Google Scholar]
  91. 91.  Petit J, Jouzel R, Raynaud D, Barkov NI, Barnola JA et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999:399429–36
    [Google Scholar]
  92. 92.  Hoffman JS, Clark PU, Parnell AC, He F 2017. Regional and global sea-surface temperatures during the last interglaciation. Science 355:6322276–79
    [Google Scholar]
  93. 93.  Otto-Bliesner BL, Rosenbloom N, Stone EJ, McKay NP, Lunt DJ et al. 2013. How warm was the last interglacial? New model-data comparisons. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 371:20130097
    [Google Scholar]
  94. 94.  Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu ACAPE Last Interglacial Project Members. 2006. Simulating arctic climate warmth and icefield retreat in the Last Interglaciation. Science 311:1751–53
    [Google Scholar]
  95. 95. NEEM Community Members. 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493:489–94
    [Google Scholar]
  96. 96.  Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S 2007. Orbital and Millennial Antarctic climate variability over the past 800,000 years. Science 317:5839793–96
    [Google Scholar]
  97. 97.  Christensen JH, Kanikicharla KK, Aldrian E, An S-I, Cavalcanti IFA et al. 2013. Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.1217–1308 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  98. 98.  Pedoja K, Husson L, Johnson ME, Melnick D, Witt C et al. 2014. Coastal staircase sequences reflecting sea-level oscillations and tectonic uplift during the Quaternary and Neogene. Earth-Sci. Rev. 132:13–38
    [Google Scholar]
  99. 99.  Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M 2013. A probabilistic assessment of sea level variations within the last interglacial stage. Geophys. J. Int. 193:2711–16
    [Google Scholar]
  100. 100.  O'Leary MJ, Hearty PJ, Thompson WG, Raymo ME, Mitrovica JX, Webster JM 2013. Ice sheet collapse following a prolonged period of stable sea level during the last interglacial. Nat. Geosci. 6:9796–800
    [Google Scholar]
  101. 101.  Yau AM, Bender ML, Robinson A, Brook EJ 2016. Reconstructing the last interglacial at Summit, Greenland: insights from GISP2. PNAS 113:359710–15
    [Google Scholar]
  102. 102.  McKay NP, Overpeck JT, Otto-Bliesner BL 2011. The role of ocean thermal expansion in Last Interglacial sea level rise. Geophys. Res. Lett. 38:14605
    [Google Scholar]
  103. 103.  Radić V, Hock R 2010. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res. Earth Surf. 115:01010
    [Google Scholar]
  104. 104.  Kemp AC, Dutton A, Raymo ME 2015. Paleo constraints on future sea-level rise. Curr. Clim. Change Rep. 1:3205–15
    [Google Scholar]
  105. 105.  Marcott SA, Shakun JD, Clark PU, Mix AC 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:61241198–201
    [Google Scholar]
  106. 106.  Liu Z, Zhu J, Rosenthal Y, Zhang X, Otto-Bliesner BL 2014. The Holocene temperature conundrum. PNAS 111:343501–5
    [Google Scholar]
  107. 107.  Marsicek J, Shuman BN, Bartlein PJ, Shafer SL, Brewer S 2018. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554:769092–96
    [Google Scholar]
  108. 108.  Carlson AE, Clark PU 2012. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 50:4RG4007
    [Google Scholar]
  109. 109.  Johnson JS, Bentley MJ, Smith JA, Finkel RC, Rood DH et al. 2014. Rapid thinning of Pine Island Glacier in the Early Holocene. Science 343:999–1001
    [Google Scholar]
  110. 110.  Lecavalier BS, Milne GA, Simpson MJR, Wake L, Huybrechts P et al. 2014. A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quat. Sci. Rev. 102:54–84
    [Google Scholar]
  111. 111.  Bradley SL, Milne GA, Horton BP, Zong Y 2016. Modelling sea level data from China and Malay-Thailand to estimate Holocene ice-volume equivalent sea level change. Quat. Sci. Rev. 137:54–68
    [Google Scholar]
  112. 112.  Roy K, Peltier WR 2018. Relative sea level in the Western Mediterranean basin: a regional test of the ICE-7G_NA (VM7) model and a constraint on Late Holocene Antarctic deglaciation. Quat. Sci. Rev. 183:76–87
    [Google Scholar]
  113. 113.  Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK et al. 2008. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. PNAS 105:3613252–57
    [Google Scholar]
  114. 114.  Ekman M 1988. The world's longest continuous series of sea level observations. Pure Appl. Geophys. 127:73–77
    [Google Scholar]
  115. 115.  Jevrejeva S, Moore JC, Grinsted A, Woodworth PL 2008. Recent global sea level acceleration started over 200 years ago?. Geophys. Res. Lett. 35:8L08715
    [Google Scholar]
  116. 116.  Church JA, White NJ 2011. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32:4–5585–602
    [Google Scholar]
  117. 117.  Jevrejeva S, Moore JC, Grinsted A, Matthews AP, Spada G 2014. Trends and acceleration in global and regional sea levels since 1807. Glob. Planet. Change 113:11–22
    [Google Scholar]
  118. 118.  Dangendorf S, Marcos M, Wöppelmann G, Conrad CP, Frederikse T, Riva R 2017. Reassessment of 20th century global mean sea level rise. PNAS 114:235946–51
    [Google Scholar]
  119. 119.  Hay CC, Morrow E, Kopp RE, Mitrovica JX 2015. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517:7535481–84
    [Google Scholar]
  120. 120.  Cazenave A, Llovel W 2010. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2:1145–73
    [Google Scholar]
  121. 121.  Ray RD, Douglas BC 2011. Experiments in reconstructing twentieth-century sea levels. Prog. Oceanogr. 91:4496–515
    [Google Scholar]
  122. 122.  Calafat FM, Chambers DP, Tsimplis MN 2014. On the ability of global sea level reconstructions to determine trends and variability. J. Geophys. Res. Oceans 119:31572–92
    [Google Scholar]
  123. 123.  Ablain M, Cazenave A, Larnicol G, Balmaseda M, Cipollini P et al. 2015. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean. Sci. 11:167–82
    [Google Scholar]
  124. 124.  Legeais J-F, Ablain M, Zawadzki L, Zuo H, Johannessen JA et al. 2017. An accurate and homogeneous altimeter sea level record from the ESA climate change initiative. Earth Syst. Sci. Data Discuss. 10:281–301
    [Google Scholar]
  125. 125.  Church JA, Monselesan D, Gregory JM, Marzeion B 2013. Evaluating the ability of process based models to project sea-level change. Environ. Res. Lett. 8:1014051
    [Google Scholar]
  126. 126.  Jevrejeva S, Grinsted A, Moore JC 2014. Upper limit for sea level projections by 2100. Environ. Res. Lett. 9:10104008
    [Google Scholar]
  127. 127.  Watson CS, White NJ, Church JA, King MA, Burgette RJ, Legresy B 2015. Unabated global mean sea-level rise over the satellite altimeter era. Nat. Clim. Change 5:6565–68
    [Google Scholar]
  128. 128.  Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT 2018. Climate-change–driven accelerated sea-level rise. PNAS1152022–25
  129. 129.  Marcos M, Marzeion B, Dangendorf S, Slangen ABA, Palanisamy H, Fenoglio-Marc L 2017. Internal variability versus anthropogenic forcing on sea level and its components. Surv. Geophys. 38:1329–48
    [Google Scholar]
  130. 130.  Dangendorf S, Marcos M, Müller A, Zorita E, Riva R et al. 2015. Detecting anthropogenic footprints in sea level rise. Nat. Commun. 6:7849
    [Google Scholar]
  131. 131.  Jevrejeva S, Grinsted A, Moore JC 2009. Anthropogenic forcing dominates sea level rise since 1850. Geophys. Res. Lett. 36:20L20706
    [Google Scholar]
  132. 132.  Slangen ABA, Church JA, Agosta C, Fettweis X, Marzeion B, Richter K 2016. Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Clim. Change 6:701–5
    [Google Scholar]
  133. 133.  Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A et al. 2011. The Representative Concentration Pathways: an overview. Clim. Change 109:5–31
    [Google Scholar]
  134. 134. UNFCCC. 2015. Paris Agreement New York: U. N https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
  135. 135.  Bakker AMR, Wong TE, Ruckert KL, Keller K 2017. Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet. Sci. Rep. 7:13880
    [Google Scholar]
  136. 136.  Goodwin P, Haigh ID, Rohling EJ, Slangen A 2017. A new approach to projecting 21st century sea-level changes and extremes. Earths Future 5:2240–53
    [Google Scholar]
  137. 137.  Grinsted A, Jevrejeva S, Riva REM, Dahl-Jensen D 2015. Sea level rise projections for Northern Europe under RCP8.5. Clim. Res. 64:15–23
    [Google Scholar]
  138. 138.  Jackson LP, Jevrejeva S 2016. A probabilistic approach to 21st century regional sea-level projections using RCP and high-end scenarios. Glob. Planet. Change 146:179–89
    [Google Scholar]
  139. 139.  Jevrejeva S, Moore JC, Grinsted A 2012. Sea level projections to AD2500 with a new generation of climate change scenarios. Glob. Planet. Change 80–81:14–20
    [Google Scholar]
  140. 140.  Kopp RE, Horton RM, Little CM, Mitrovica JX, Oppenheimer M et al. 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites. Earths Future 2:383–406
    [Google Scholar]
  141. 141.  Mengel M, Levermann A, Frieler K, Robinson A, Marzeion B, Winkelmann R 2016. Future sea level rise constrained by observations and long-term commitment. PNAS 113:102597–602
    [Google Scholar]
  142. 142.  Nauels A, Meinshausen M, Mengel M, Lorbacher K, Wigley TML 2017. Synthesizing long-term sea level rise projections—the MAGICC sea level model v2.0. Geosci. Model. Dev. 10:62495–524
    [Google Scholar]
  143. 143.  DeConto RM, Pollard D 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531:7596591–97
    [Google Scholar]
  144. 144.  Kopp RE, DeConto RM, Bader DA, Horton RM, Hay CC et al. 2017. Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections. Earths Future 5:1217–33
    [Google Scholar]
  145. 145.  Pfeffer WT, Harper JT, O'Neel S 2008. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:58941340–43
    [Google Scholar]
  146. 146.  Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S et al. 2013. Sea-level rise by 2100. Science 342:61651445
    [Google Scholar]
  147. 147.  Slangen ABA, Carson M, Katsman CA, van de Wal RSW, Köhl A et al. 2014. Projecting twenty-first century regional sea-level changes. Clim. Change 124:317–32
    [Google Scholar]
  148. 148.  Sriver RL, Urban NM, Olson R, Keller K 2012. Toward a physically plausible upper bound of sea-level rise projections. Clim. Change 115:3–4893–902
    [Google Scholar]
  149. 149.  Titus JG, Narayanan VK 1995. The Probability of Sea Level Rise 95 Wash., DC: Environ. Protect. Agency, Off. Policy, Plann., Eval., Clim. Change Div., Adapt. Branch
  150. 150.  Wong TE, Bakker AMR, Keller K 2017. Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense. Clim. Change 144:2347–64
    [Google Scholar]
  151. 151.  Gornitz V, Lebedeff S, Hansen J 1982. Global sea level trend in the past century. Science 215:45401611–14
    [Google Scholar]
  152. 152.  Rahmstorf S 2007. A semi-empirical approach to projecting future sea-level rise. Science 315:5810368–70
    [Google Scholar]
  153. 153.  Schaeffer M, Hare W, Rahmstorf S, Vermeer M 2012. Long-term sea-level rise implied by 1.5°C and 2°C warming levels. Nat. Clim. Change 2:867–70
    [Google Scholar]
  154. 154.  Bamber JL, Aspinall WP 2013. An expert judgement assessment of future sea level rise from the ice sheets. Nat. Clim. Change 3:424–27
    [Google Scholar]
  155. 155.  Horton BP, Rahmstorf S, Engelhart SE, Kemp AC 2014. Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat. Sci. Rev. 84:1–6
    [Google Scholar]
  156. 156.  Behar DH, Kopp RE, DeConto RM, Weaver CP, White KD et al. 2017. Planning for sea level rise: an AGU talk in the form of a co-production experiment exploring recent science Presented at Am. Geophys. Union, Fall Meeting New Orleans: https://www.wucaonline.org/assets/pdf/pubs-agu-consensus-statement.pdf
  157. 157. National Research Council. 1987. Responding to Changes in Sea Level: Engineering Implications Wash., DC: Nat. Acad. Press
  158. 158. National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide Wash., DC: Nat. Acad. Press
  159. 159.  Buchanan MK, Oppenheimer M, Kopp RE 2017. Amplification of flood frequencies with local sea level rise and emerging flood regimes. Environ. Res. Lett. 12:064009
    [Google Scholar]
  160. 160.  Garner AJ, Mann ME, Emanuel KA, Kopp RE, Ling N et al. 2017. Impact of climate change on New York City's coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. PNAS 114:11861–66
    [Google Scholar]
  161. 161.  Heal G, Millner A 2014. Uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy 8:1120–37
    [Google Scholar]
  162. 162.  Le Cozannet G, Nicholls RJ, Hinkel J, Sweet WV, McInnes KL et al. 2017. Sea level change and coastal climate services: the way forward. J. Mar. Sci. Eng. 5:449
    [Google Scholar]
  163. 163.  Bittermann K, Rahmstorf S, Kopp RE, Kemp AC 2017. Global mean sea-level rise in a world agreed upon in Paris. Environ. Res. Lett. 12:12124010
    [Google Scholar]
  164. 164.  Jackson LP, Grinsted A, Jevrejeva S 2018. 21st century sea-level rise in line with the Paris Accord. Earths Future 6:213–29
    [Google Scholar]
  165. 165.  Rasmussen DJ, Bittermann K, Buchanan MK, Kulp S, Strauss BH, Kopp RE, Oppenheimer M 2018. Extreme sea level implications of 1.5°C, 2.0°C, and 2.5°C temperature stabilization targets in the 21st and 22nd century. Environ. Res Lett. 13:3034040
    [Google Scholar]
  166. 166.  Schleussner C-F, Lissner TK, Fischer EM, Wohland J, Perrette M et al. 2016. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5°C and 2°C. Earth Syst. Dynam. 7:2327–51
    [Google Scholar]
  167. 167.  Schaeffer M, Hare W, Rahmstorf S, Vermeer M 2012. Long-term sea-level rise implied by 1.5°C and 2°C warming levels. Nat. Clim. Change 2:867–70
    [Google Scholar]
  168. 168.  Levermann A, Clark PU, Marzeion B, Milne GA, Pollard D et al. 2013. The multimillennial sea-level commitment of global warming. PNAS 110:3413745–50
    [Google Scholar]
  169. 169.  Clark PU, Shakun JD, Marcott SA, Mix AC, Eby M 2016. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6:360–69
    [Google Scholar]
  170. 170.  Zickfeld K, Solomon S, Gilford DM 2017. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases. PNAS 114:4657–62
    [Google Scholar]
  171. 171.  Golledge NR, Kowalewski DE, Naish TR, Levy RH, Fogwill CJ, Gasson EGW 2015. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526:7573421–25
    [Google Scholar]
  172. 172.  Meltzner AJ, Switzer AD, Horton BP, Ashe E, Qiu Q et al. 2017. Half-metre sea-level fluctuations on centennial timescales from mid-Holocene corals of Southeast Asia. Nat. Commun. 8:14387
    [Google Scholar]
  173. 173.  Kopp RE, Horton BP, Kemp AC, Tebaldi C 2015. Past and future sea-level rise along the coast of North Carolina, USA. Clim. Change 132:4693–707
    [Google Scholar]
  174. 174.  Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLOS ONE 10:6e0131375
    [Google Scholar]
  175. 175.  Long AJ, Roberts DH, Rasch M 2003. New observations on the relative sea level and deglacial history of Greenland from Innaarsuit, Disko Bugt. Quat. Res. 60:2162–71
    [Google Scholar]
  176. 176.  Long AJ, Roberts DH 2003. Late Weichselian deglacial history of Disko Bugt, West Greenland, and the dynamics of the Jakobshavns Isbrae ice stream. Boreas 32:1208–26
    [Google Scholar]
  177. 177.  Shennan I, Lambeck K, Horton B, Innes J, Lloyd J et al. 2000. Late Devensian and Holocene records of relative sea-level changes in northwest Scotland and their implications for glacio-hydro-isostatic modelling. Quat. Sci. Rev. 19:111103–35
    [Google Scholar]
  178. 178.  Zong Y 2004. Mid-Holocene sea-level highstand along the Southeast Coast of China. Quat. Int. 117:155–67
    [Google Scholar]
  179. 179.  Boski T, Bezerra FHR, de Fátima Pereira L, Souza AM, Maia RP, Lima-Filho FP 2015. Sea-level rise since 8.2 ka recorded in the sediments of the Potengi-Jundiai Estuary, NE Brasil. Mar. Geol. 365:1–13
    [Google Scholar]
  180. 180.  Watcham EP, Bentley MJ, Hodgson DA, Roberts SJ, Fretwell PT et al. 2011. A new Holocene relative sea level curve for the South Shetland Islands, Antarctica. Quat. Sci. Rev. 30:213152–70
    [Google Scholar]
  181. 181.  Compton JS 2001. Holocene sea-level fluctuations inferred from the evolution of depositional environments of the southern Langebaan Lagoon salt marsh, South Africa. Holocene 11:4395–405
    [Google Scholar]
  182. 182.  Gallup CD, Edwards RL, Johnson RG 1994. The timing of high sea levels over the past 200,000 years. Science 263:5148796–800
    [Google Scholar]
  183. 183.  Gallup CD, Cheng H, Taylor FW, Edwards RL 2002. Direct determination of the timing of sea level change during termination II. Science 295:5553310–13
    [Google Scholar]
  184. 184.  Speed RC, Cheng H 2004. Evolution of marine terraces and sea level in the last interglacial, Cave Hill, Barbados. GSA Bull 116:1–2219–32
    [Google Scholar]
  185. 185.  Cutler KB, Edwards RL, Taylor FW, Cheng H, Adkins J et al. 2003. Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth Planet. Sci. Lett. 206:3253–71
    [Google Scholar]
  186. 186.  Thompson WG, Spiegelman MW, Goldstein SL, Speed RC 2003. An open-system model for U-series age determinations of fossil corals. Earth Planet. Sci. Lett. 210:1365–81
    [Google Scholar]
  187. 187.  Bard E, Hamelin B, Fairbanks RG, Zindler A 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:6274405–10
    [Google Scholar]
  188. 188.  Hamelin B, Bard E, Zindler A, Fairbanks RG 1991. 234U/238U mass spectrometry of corals: How accurate is the UTh age of the last interglacial period?. Earth Planet. Sci. Lett. 106:1169–80
    [Google Scholar]
  189. 189.  Edwards RL, Cheng H, Murrell MT, Goldstein SJ 1997. Protactinium-231 dating of carbonates by thermal ionization mass spectrometry: implications for quaternary climate change. Science 276:5313782–86
    [Google Scholar]
  190. 190.  Edwards RL, Chen JH, Ku T-L, Wasserburg GJ 1987. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals. Science 236:48081547–53
    [Google Scholar]
  191. 191.  Blanchon P, Eisenhauer A 2000. Multi-stage reef development on Barbados during the Last Interglaciation. Quat. Sci. Rev. 20:101093–112
    [Google Scholar]
  192. 192.  Potter E-K, Esat TM, Schellmann G, Radtke U, Lambeck K, McCulloch MT 2004. Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth Planet. Sci. Lett. 225:1191–204
    [Google Scholar]
  193. 193.  Zagwin WH 1983. Sea-level changes in the Netherlands during the Eemian. Geol. Mijnb. 62:437–50
    [Google Scholar]
  194. 194.  Grant KM, Rohling EJ, Bar-Matthews M, Ayalon A, Medina-Elizalde M et al. 2012. Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491:744–47
    [Google Scholar]
  195. 195.  Dutton A, Webster JM, Zwartz D, Lambeck K, Wohlfarth B 2015. Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands. Quat. Sci. Rev. 107:182–96
    [Google Scholar]
  196. 196.  Hearty PJ, Hollin JT, Neumann AC, O'Leary MJ, McCulloch M 2007. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quat. Sci. Rev. 26:172090–112
    [Google Scholar]
  197. 197.  Stirling CH, Esat TM, McCulloch MT, Lambeck K 1995. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial. Earth Planet. Sci. Lett. 135:1115–30
    [Google Scholar]
  198. 198.  Stirling CH, Esat TM, Lambeck K, McCulloch MT 1998. Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett. 160:3745–62
    [Google Scholar]
  199. 199.  Stirling CH, Esat TM, Lambeck K, McCulloch MT, Blake SG et al. 2001. Orbital forcing of the Marine Isotope Stage 9 Interglacial. Science 291:5502290–93
    [Google Scholar]
  200. 200.  McCulloch MT, Mortimer G 2008. Applications of the 238U-230Th decay series to dating of fossil and modern corals using MC-ICPMS. Aust. J. Earth Sci. 55:955–65
    [Google Scholar]
  201. 201.  Zhu ZR, Wyrwoll K-H, Collins LB, Chen JH, Wasserburg GJ, Eisenhauer A 1993. High-precision U-series dating of Last Interglacial events by mass spectrometry: Houtman Abrolhos Islands, western Australia. Earth Planet. Sci. Lett. 118:1281–93
    [Google Scholar]
  202. 202.  Eisenhauer A, Zhu ZR, Collins LB, Wyrwoll KH, Eichstätter R 1996. The Last Interglacial sea level change: new evidence from the Abrolhos islands, West Australia. Geol. Rundsch. 85:3606–14
    [Google Scholar]
  203. 203.  O'Leary MJ, Hearty PJ, McCulloch MT 2008. U-series evidence for widespread reef development in Shark Bay during the last interglacial. Palaeogeogr. Palaeoclimatol. Palaeoecol. 259:4424–35
    [Google Scholar]
  204. 204.  O'Leary MJ, Hearty PJ, McCulloch MT 2008. Geomorphic evidence of major sea-level fluctuations during marine isotope substage-5e, Cape Cuvier, Western Australia. Geomorphology 102:3595–602
    [Google Scholar]
  205. 205.  Stirling CH, Esat TM, McCulloch MT, Lambeck K 1995. High-precision U-series dating of corals from Western Australia: implications for Last Interglacial sea levels. Earth Planet. Sci. Lett. 135:115–30
    [Google Scholar]
  206. 206.  Andersen MB, Stirling CH, Potter E-K, Halliday AN, Blake SG et al. 2010. The timing of sea-level high-stands during Marine Isotope Stages 7.5 and 9: constraints from the uranium-series dating of fossil corals from Henderson Island. Geochim. Cosmochim. Acta 74:123598–620
    [Google Scholar]
  207. 207.  Douglas BC 1997. Global sea rise: a redetermination. Surv. Geophys. 18:2–3279–92
    [Google Scholar]
  208. 208.  Perrette M, Landerer F, Riva R, Frieler K, Meinshausen M 2013. A scaling approach to project regional sea level rise and its uncertainties. Earth Syst. Dyn. 4:11–29
    [Google Scholar]
  209. 209.  Nauels A, Rogelj J, Schleussner C-F, Meinshausen M, Mengel M 2017. Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways. Environ. Res Lett. 12:11114002
    [Google Scholar]
/content/journals/10.1146/annurev-environ-102017-025826
Loading
/content/journals/10.1146/annurev-environ-102017-025826
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error