1932

Abstract

Differentiating the impacts of climate change between 1.5°C and 2°C requires a regional and sector-specific perspective. Whereas for some regions and sectors the difference in climate variables might be indistinguishable from natural variability, other areas especially in the tropics and subtropics will experience significant shifts. In addition to region-specific changes in climatic conditions, vulnerability and exposure also differ substantially across the world. Even small differences in climate hazards can translate into sizeable impact differences for particularly vulnerable regions or sectors. Here, we review scientific evidence of regional differences in climate hazards at 1.5°C and 2°C and provide an assessment of selected hotspots of climate change, including small islands as well as rural, urban, and coastal areas in sub-Saharan Africa and South Asia, that are particularly affected by the additional 0.5°C global mean temperature increase. We interlink these with a review of the vulnerability and exposure literature related to these hotspots to provide an integrated perspective on the differences in climate impacts between 1.5°C and 2°C.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102017-025835
2018-10-17
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/energy/43/1/annurev-environ-102017-025835.html?itemId=/content/journals/10.1146/annurev-environ-102017-025835&mimeType=html&fmt=ahah

Literature Cited

  1. 1. United Nations Framework Convention on Climate Change (UNFCCC). 2015. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 UNFCCC Paris: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
    [Google Scholar]
  2. 2.  Schleussner C-F, Rogelj J, Schaeffer M, Lissner T, Licker R et al. 2016. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6:827–35
    [Google Scholar]
  3. 3.  Ourbak T, Magnan AK 2017. The Paris Agreement and climate change negotiations: small Islands, big players. Reg. Environ. Change. https://doi.org/10.1007/s10113-017-1247-9
    [Crossref] [Google Scholar]
  4. 4.  Hare WL, Cramer W, Schaeffer M, Battaglini A, Jaeger CC 2011. Climate hotspots: key vulnerable regions, climate change and limits to warming. Reg. Environ. Change 11:S11–13
    [Google Scholar]
  5. 5. United Nations Framework Convention on Climate Change (UNFCCC). 2009. Ideas and Proposals on the Elements Contained in Paragraph 1 of the Bali Action Plan FCCC/AWGLCA/2009/MISC.4 (Part 1) UNFCCC Paris: https://unfccc.int/sites/default/files/resource/docs/2009/awglca6/eng/misc04p01.pdf
    [Google Scholar]
  6. 6. United Nations Framework Convention on Climate Change (UNFCCC). 2010. Report of the Conference of the Parties on its Sixteenth Session, Held in Cancun from 29 November to 10 December 2010. Addendum, Part Two: Action Taken by the Conference of the Parties at its Sixteenth Session FCCC/CP/2010/7/Add.1 UNFCCC Paris: https://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf
    [Google Scholar]
  7. 7. Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Synthesis Report Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  8. 8. United Nations Framework Convention on Climate Change (UNFCCC). 2015. Report on the Structured Expert Dialogue on the 2013–2015 Review FCCC/SB/2015/INF.1 UNFCCC Paris: https://unfccc.int/resource/docs/2015/sb/eng/inf01.pdf
    [Google Scholar]
  9. 9.  Seneviratne SI, Donat MG, Pitman AJ, Knutti R, Wilby RL 2016. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529:477–83
    [Google Scholar]
  10. 10.  Clark PU, Shakun JD, Marcott SA, Mix AC, Eby M et al. 2016. Consequences of twenty-first-century policy for multi-millennial climate and sea level change. Nat. Clim. Change 6:February360–69
    [Google Scholar]
  11. 11.  Jones CD, Ciais P, Davis SJ, Friedlingstein P, Gasser T et al. 2016. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11:9095012
    [Google Scholar]
  12. 12.  Wang G, Cai W, Gan B, Wu L, Santoso A et al. 2017. Continued increase of extreme El Niño frequency long after 1.5°C warming stabilization. Nat. Clim. Change 7:568–72
    [Google Scholar]
  13. 13.  Schleussner C-F, Levermann A, Meinshausen M 2014. Probabilistic projections of the Atlantic overturning. Clim. Change 127:579–86
    [Google Scholar]
  14. 14.  Pendergrass AG, Lehner F, Sanderson BM, Xu Y 2015. Does extreme precipitation intensity depend on the emissions scenario?. Geophys. Res. Lett. 42:208767–74
    [Google Scholar]
  15. 15.  Wang Z, Lin L, Zhang X, Zhang H, Liu L, Xu Y 2017. Scenario dependence of future changes in climate extremes under 1.5°C and 2°C global warming. Sci. Rep. 7:March46432
    [Google Scholar]
  16. 16.  Samset BH, Sand M, Smith CJ, Bauer SE, Forster PM et al. 2018. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys. Res. Lett. 45:1020–29
    [Google Scholar]
  17. 17.  Vogel MM, Orth R, Cheruy F, Hagemann S, Lorenz R et al. 2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44:31511–19
    [Google Scholar]
  18. 18.  Lejeune Q, Davin EL, Gudmundsson L, Winckler J, Seneviratne SI 2018. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat. Clim. Change 8:5386–90
    [Google Scholar]
  19. 19.  Schleussner C-F, Lissner T, Fischer E, Wohland J, Perrette M et al. 2016. Differential climate impacts for policy relevant limits to global warming: the case of 1.5°C and 2°C. Earth Syst. Dyn. 7:327–51
    [Google Scholar]
  20. 20.  King AD, Harrington LJ 2018. The inequality of climate change from 1.5 to 2°C of global warming. Geophys. Res. Lett. 45:105030–33
    [Google Scholar]
  21. 21.  Schleussner C-F, Pfleiderer P, Fischer EM 2017. In the observational record half a degree matters. Nat. Clim. Change. 7:7460–62
    [Google Scholar]
  22. 22.  Chen Y, Zhai P, Zhou B 2018. Detectable impacts of the past half-degree global warming on summertime hot extremes in China. Geophys. Res. Lett. https://doi.org/10.1029/2018GL079216
    [Crossref] [Google Scholar]
  23. 23.  Cramer W, Yohe GW, Auffhammer M, Huggel C, Molau U et al. 2014. Detection and attribution of observed impacts. See Ref. 191 979–1037
  24. 24.  Huggel C, Wallimann-Helmer I, Stone D, Cramer W 2016. Reconciling justice and attribution research to advance climate policy. Nat. Clim. Change 6:10901–8
    [Google Scholar]
  25. 25.  Mora C, Frazier AG, Longman RJ, Dacks RS, Walton MM et al. 2013. The projected timing of climate departure from recent variability. Nature 502:7470183–87
    [Google Scholar]
  26. 26.  Tebaldi C, Arblaster JM 2014. Pattern scaling: its strengths and limitations, and an update on the latest model simulations. Clim. Change 122:3459–71
    [Google Scholar]
  27. 27.  Herger N, Sanderson BM, Knutti R 2015. Improved pattern scaling approaches for the use in climate impact studies. Geophys. Res. Lett. 42:3486–94
    [Google Scholar]
  28. 28.  Tebaldi C, Knutti R 2018. Evaluating the accuracy of climate change pattern emulation for low warming targets. Environ. Res. Lett. 13:5055006
    [Google Scholar]
  29. 29.  Arnell NW, Lowe JA, Lloyd-Hughes B, Osborn TJ 2018. The impacts avoided with a 1.5°C climate target: a global and regional assessment. Clim. Change 147:1–261–76
    [Google Scholar]
  30. 30.  Sanderson BM, Xu Y, Tebaldi C, Wehner M, O'Neill B et al. 2017. Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures. Earth Syst. Dyn. 8:3827–47
    [Google Scholar]
  31. 31.  Mitchell D, Achutarao K, Allen M, Bethke I, Beyerle U et al. 2017. Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geosci. Model. Dev. 10:571–83
    [Google Scholar]
  32. 32.  James R, Washington R, Schleussner C-F, Rogelj J, Conway D 2017. Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. Wiley Interdiscip. Rev. Clim. Chang. http://doi.wiley.com/10.1002/wcc.457
    [Google Scholar]
  33. 33.  Costa L, Kropp JP 2013. Linking components of vulnerability in theoretic frameworks and case studies. Sustain. Sci. 8:11–9
    [Google Scholar]
  34. 34. IPCC. 2014. Annex II. Glossary. See Ref. 191 1757–76
  35. 35. Intergovernmental Panel on Climate Change (IPCC). 2007. Glossary to Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK:
    [Google Scholar]
  36. 36.  O'Brien K, Eriksen S, Nygard LP, Schjolden A 2007. Why different interpretations of vulnerability matter in climate change discourses. Clim. Policy 7:173–88
    [Google Scholar]
  37. 37.  Oppenheimer M, Campos M, Warren R, Birkmann J, Luber G et al. 2014. Emergent risks and key vulnerabilities. See Ref. 191 1039–99
  38. 38.  Lutz W, Muttarak R 2017. Forecasting societies’ adaptive capacities through a demographic metabolism model. Nat. Clim. Change 7:3177–84
    [Google Scholar]
  39. 39.  Seaman JA, Sawdon GE, Acidri J, Petty C 2014. The Household Economy Approach. Managing the impact of climate change on poverty and food security in developing countries. Clim. Risk Manag. 4–5:59–68
    [Google Scholar]
  40. 40.  Dumenu WK, Obeng EA 2016. Climate change and rural communities in Ghana: social vulnerability, impacts, adaptations and policy implications. Environ. Sci. Policy 55:208–17
    [Google Scholar]
  41. 41.  Hewitson BC, Janetos AC, Carter TR, Giorgi F, Jones RG et al. 2014. Regional context. See Ref. 192 1133–97
  42. 42.  O'Brien K, Leichenko R, Kelkar U, Venema H, Aandahl G et al. 2004. Mapping vulnerability to multiple stressors: climate change and globalization in India. Glob. Environ. Change 14:4303–13
    [Google Scholar]
  43. 43.  Soora N, Aggarwal P, Saxena R, Rani S, Jain S, Chauhan N 2013. An assessment of regional vulnerability of rice to climate change in India. Clim. Change 118:3–4683–89
    [Google Scholar]
  44. 44.  Alkire S, Jindra C, Robles G, Vaz A 2016. Multidimensional Poverty Index 2016: brief methodological note and results. OPHI Brief 42:2
    [Google Scholar]
  45. 45.  Pelling M, Uitto JI 2001. Small island developing states: natural disaster vulnerability and global change. Environ. Hazards 3:49–62
    [Google Scholar]
  46. 46.  Nurse LA, McLean RF, Agard J, Briguglio LP, Duvat-Magnan V et al. 2014. Small islands. See Ref. 192 1613–54
  47. 47.  Albert S, Leon JX, Grinham AR, Church JA, Gibbes BR, Woodroffe CD 2016. Interactions between sea level rise and wave exposure on reef island dynamics in the Solomon Islands. Environ. Res. Lett. 11:5054011
    [Google Scholar]
  48. 48.  Storlazzi CD, Elias EPL, Berkowitz P 2015. Many atolls may be uninhabitable within decades due to climate change. Nat. Sci. Rep. 5:14546:1–9
    [Google Scholar]
  49. 49.  Warren R, Price J, Graham E, Forstenhaeusler N, VanDerWal J 2018. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science 360:6390791–95
    [Google Scholar]
  50. 50.  Marzeion B, Kaser G, Maussion F, Champollion N 2018. Limited influence of climate change mitigation on short-term glacier mass loss. Nat. Clim. Change 8:305–8
    [Google Scholar]
  51. 51.  Notz D, Stroeve J 2016. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354:6313747–50
    [Google Scholar]
  52. 52.  Screen JA, Williamson D 2017. Ice-free Arctic at 1.5°C?. Nat. Clim. Change 7:4230–31
    [Google Scholar]
  53. 53.  Laura NA, Dirk N 2018. Arctic Sea Ice in a 1.5°C warmer world. Geophys. Res. Lett. 45:41963–71
    [Google Scholar]
  54. 54.  Sigmond M, Fyfe JC, Swart NC 2018. Ice-free Arctic projections under the Paris Agreement. Nat. Clim. Change 8:5404–8
    [Google Scholar]
  55. 55.  Burke M, Davis WM, Diffenbaugh NS 2018. Large potential reduction in economic damages under UN mitigation targets. Nature 557:7706549–53
    [Google Scholar]
  56. 56.  Saeed F, Bethke I, Lange S, Lierhammer L, Shiogama H et al. 2018. Bias correction of multi-ensemble simulations from the HAPPI model intercomparison project. Geosci. Model. Dev. Discuss. 2018:1–23
    [Google Scholar]
  57. 57.  Knutti R, Sedláček J 2012. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3:4369–73
    [Google Scholar]
  58. 58.  Pendergrass AG, Knutti R, Lehner F, Deser C, Sanderson BM 2017. Precipitation variability increases in a warmer climate. Sci. Rep. 7:117966
    [Google Scholar]
  59. 59.  Saeed F, Bethke I, Fischer E, Legutke S, Shiogama H et al. 2018. Robust changes in tropical rainy season length at 1.5°C and 2°C. Environ. Res. Lett. 13:6064024
    [Google Scholar]
  60. 60.  Wartenburger R, Hirschi M, Donat MG, Greve P, Pitman AJ, Seneviratne SI 2017. Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci. Model. Dev. 10:3609–34
    [Google Scholar]
  61. 61.  Seneviratne SI, Wartenburger R, Guillod BP, Hirsch AL, Vogel MM et al. 2018. Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C. Philos. Trans. R. Soc. A 376:211920160450
    [Google Scholar]
  62. 62. Intergovernmental Panel on Climate Change. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) Geneva: Cambridge Univ. Press
    [Google Scholar]
  63. 63.  Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK et al. 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2:6851–70
    [Google Scholar]
  64. 64.  King AD, Karoly DJ 2017. Climate extremes in Europe at 1.5 and 2 degrees of global warming. Environ. Res. Lett. 12:11114031
    [Google Scholar]
  65. 65.  Dosio A, Fischer EM 2018. Will half a degree make a difference? Robust projections of indices of mean and extreme climate in Europe under 1.5°C, 2°C, and 3°C global warming. Geophys. Res. Lett. 45:2935–44
    [Google Scholar]
  66. 66.  King AD, Karoly DJ, Henley BJ 2017. Australian climate extremes at 1.5°C and 2°C of global warming. Nat. Clim. Change 7:412–16
    [Google Scholar]
  67. 67.  Dosio A, Mentaschi L, Fischer EM, Wyser K 2018. Extreme heat waves under 1.5°C and 2°C global warming. Environ. Res. Lett. 13:5054006
    [Google Scholar]
  68. 68.  Nikulin G, Lennard C, Dosio A, Kjellström E, Chen Y et al. 2018. The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environ. Res. Lett. 13:6065003
    [Google Scholar]
  69. 69.  Russo S, Marchese AF, Sillmann J, Immé G 2016. When will unusual heat waves become normal in a warming Africa?. Environ. Res. Lett. 11:5054016
    [Google Scholar]
  70. 70.  Watts N, Amann M, Ayeb-Karlsson S, Belesova K, Bouley T et al. 2017. The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391:581–630
    [Google Scholar]
  71. 71.  Fischer EM, Beyerle U, Schleussner CF, King AD, Knutti R 2018. Biased estimates of changes in climate extremes from prescribed SST simulations. Geophys. Res. Lett. 45: https://doi.org/10.1029/2018GL079176
    [Crossref] [Google Scholar]
  72. 72.  Rodríguez-Fonseca B, Mohino E, Mechoso CR, Caminade C, Biasutti M et al. 2015. Variability and predictability of west African droughts: a review on the role of sea surface temperature anomalies. J. Clim. 28:104034–60
    [Google Scholar]
  73. 73.  Seager R, Hoerling M 2014. Atmosphere and ocean origins of North American droughts. J. Clim. 27:124581–606
    [Google Scholar]
  74. 74.  Kharin VV, Zwiers FW, Zhang X, Wehner M 2013. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119:2345–57
    [Google Scholar]
  75. 75.  Chevuturi A, Klingaman NP, Turner AG, Hannah S 2018. Projected Changes in the Asian-Australian monsoon region in 1.5°C and 2.0°C global-warming scenarios. Earth's Future 6:3339–58
    [Google Scholar]
  76. 76.  Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM et al. 2017. Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett. 44:147419–28
    [Google Scholar]
  77. 77.  Ramankutty N, Evan AT, Monfreda C, Foley JA 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. 22GB1003
  78. 78.  Park C-E, Jeong S-J, Joshi M, Osborn TJ, Ho C-H et al. 2018. Keeping global warming within 1.5°C constrains emergence of aridification. Nat. Clim. Change 8:70–74
    [Google Scholar]
  79. 79.  Marzeion B, Cogley JG, Richter K, Parkes D 2014. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345:6199919–21
    [Google Scholar]
  80. 80.  Marzeion B, Jarosch AH, Gregory JM 2013. Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change. Cryosph. Discuss. 7:32761–800
    [Google Scholar]
  81. 81.  Kraaijenbrink PDA, Bierkens MFP, Lutz AF, Immerzeel WW 2017. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature 549:7671257–60
    [Google Scholar]
  82. 82.  De Souza K, Kituyi E, Harvey B, Leone M, Murali KS, Ford JD 2015. Vulnerability to climate change in three hotspots in Africa and Asia: key issues for policy-relevant adaptation and resilience-building research. Reg. Environ. Change 15:5747–53
    [Google Scholar]
  83. 83.  Magrin GO, Marengo JA, Boulanger J-P, Buckeridge MS, Castellanos E et al. 2014. Central and South America. See Ref. 192 1499–566
  84. 84.  Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C et al. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS 111:93268–73
    [Google Scholar]
  85. 85.  Lobell DB, Schlenker W, Costa-Roberts J 2011. Climate trends and global crop production since 1980. Science 333:6042616–20
    [Google Scholar]
  86. 86.  Ray DK, Gerber JS, Macdonald GK, West PC 2015. Climate variation explains a third of global crop yield variability. Nat. Commun. 6:5989
    [Google Scholar]
  87. 87.  Iizumi T, Ramankutty N 2016. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11:3034003
    [Google Scholar]
  88. 88.  Lesk C, Rowhani P, Ramankutty N 2016. Influence of extreme weather disasters on global crop production. Nature 529:758484–87
    [Google Scholar]
  89. 89.  Faye B, Webber H, Naab JB, MacCarthy DS, Adam M et al. 2018. Impacts of 1.5 versus 2.0°C on cereal yields in the West African Sudan Savanna. Environ. Res. Lett. 13:034014
    [Google Scholar]
  90. 90.  Zhao C, Liu B, Piao S, Wang X, Lobell DB et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. PNAS 114:359326–31
    [Google Scholar]
  91. 91.  Schleussner C, Deryng D, Müller C, Elliott J, Saeed F et al. 2018. Crop productivity changes in 1.5°C and 2°C worlds under climate sensitivity uncertainty. Environ. Res. Lett. 13:6064007
    [Google Scholar]
  92. 92.  Ghini R, Bettiol W, Hamada E 2011. Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol. 60:1122–32
    [Google Scholar]
  93. 93.  Bradshaw JE 2016. Climate change and resistance to pests and diseases. Plant Breeding: Past, Present and Future591–626 Cham, Switz.: Springer
    [Google Scholar]
  94. 94.  Wheeler T, Von Braun J 2013. Climate change impacts on global food security. Science 341:6145508–13
    [Google Scholar]
  95. 95.  Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S et al. 2013. Sea level change. See Ref. 193 1135–216
  96. 96.  Levermann A, Clark PU, Marzeion B, Milne GA, Pollard D et al. 2013. The multimillennial sea level commitment of global warming. PNAS 110:13745–50
    [Google Scholar]
  97. 97.  Schaeffer M, Hare W, Rahmstorf S, Vermeer M 2012. Long-term sea level rise implied by 1.5°C and 2°C warming levels. Nat. Clim. Change 2:867–70
    [Google Scholar]
  98. 98.  Joughin I, Smith BE, Medley B 2014. Marine ice sheet collapse potentially underway for the Thwaites glacier basin, West Antarctica. Science 344:6185735–38
    [Google Scholar]
  99. 99.  Feldmann J, Levermann A 2015. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. PNAS 112:4614191–96
    [Google Scholar]
  100. 100.  Deconto RM, Pollard D 2016. Contribution of Antarctica to past and future sea level rise. Nature 531:7596591–97
    [Google Scholar]
  101. 101.  Nauels A, Rogelj J, Schleussner C, Meinshausen M 2017. Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways. Environ. Res. Lett. 12:11400211
    [Google Scholar]
  102. 102.  Kopp RE, DeConto RM, Bader DA, Hay CC, Horton RM et al. 2017. Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea level projections. Earth's Future 5:1217–33
    [Google Scholar]
  103. 103.  Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K 2014. Probabilistic cost estimates for climate change mitigation. Nature 493:743079–83
    [Google Scholar]
  104. 104.  Perrette M, Landerer F, Riva R, Frieler K, Meinshausen M 2013. A scaling approach to project regional sea level rise and its uncertainties. Earth Syst. Dyn. 4:111–29
    [Google Scholar]
  105. 105.  Nauels A, Meinshausen M, Mengel M, Lorbacher K, Wigley TML 2017. Synthesizing long-term sea level rise projections—the MAGICC sea level model v2.0. Geosci. Model Dev. 10:62495–524
    [Google Scholar]
  106. 106.  Meinshausen M, Raper SCB, Wigley TML 2011. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: Model description and calibration. Atmos. Chem. Phys. 11:41417–56
    [Google Scholar]
  107. 107.  Slangen ABA, Carson M, Katsman CA, van de Wal RSW, Köhl A et al. 2014. Projecting twenty-first century regional sea level changes. Clim. Change 124:1–2317–32
    [Google Scholar]
  108. 108.  Kopp RE, Horton RM, Little CM, Mitrovica JX, Oppenheimer M et al. 2014. Probabilistic 21st and 22nd century sea level projections at a global network of tide-gauge sites. Earth's Future 2:8383–406
    [Google Scholar]
  109. 109.  Garner AJ, Mann ME, Emanuel KA, Kopp RE, Lin N et al. 2017. Impact of climate change on New York City's coastal flood hazard: increasing flood heights from the preindustrial to 2300 CE. PNAS 114:45201703568
    [Google Scholar]
  110. 110.  Vitousek S, Barnard PL, Fletcher CH, Frazer N, Erikson L, Storlazzi CD 2017. Doubling of coastal flooding frequency within decades due to sea level rise. Sci. Rep. 7:11399
    [Google Scholar]
  111. 111.  Woodruff JD, Irish JL, Camargo SJ 2013. Coastal flooding by tropical cyclones and sea level rise. Nature 504:747844–52
    [Google Scholar]
  112. 112.  Widlansky MJ, Timmermann A, Cai W 2015. Future extreme sea level seesaws in the tropical Pacific. Sci. Adv. 1:e1500560
    [Google Scholar]
  113. 113.  Wang G, Cai W, Gan B, Wu L, Santoso A et al. 2017. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat. Clim. Chang. 7:8568–72
    [Google Scholar]
  114. 114.  Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D et al. 2013. Observations: ocean. See Ref. 193 255–316
  115. 115.  Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J et al. 2018. Global Carbon Budget 2017. Earth Syst. Sci. Data. 10:1405–48
    [Google Scholar]
  116. 116.  Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT et al. 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 5:8080–83
    [Google Scholar]
  117. 117.  Gattuso J-PP, Magnan A, Billé R, Cheung WWL, Howes EL et al. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:6243aac4722
    [Google Scholar]
  118. 118.  Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS et al. 2017. Coral reefs in the Anthropocene. Nature 546:82–90
    [Google Scholar]
  119. 119.  Meissner KJ, Lippmann T, Sen Gupta A 2012. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. Coral Reefs 31:2309–19
    [Google Scholar]
  120. 120.  Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K et al. 2012. Limiting global warming to 2°C is unlikely to save most coral reefs. Nat. Clim. Change 3:2165–70
    [Google Scholar]
  121. 121.  Pörtner H-O, Karl DM, Boyd PW, Cheung WWL, Lluch-Cota SE et al. 2014. Ocean systems. See Ref. 191 411–84
  122. 122.  Frölicher TL, Rodgers KB, Stock CA, Cheung WWL 2016. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Glob. Biogeochem. Cycles 30:81224–43
    [Google Scholar]
  123. 123.  Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C et al. 2014. Africa. See Ref. 192 1199–265
  124. 124.  Morice CP, Kennedy JJ, Rayner NA, Jones PD 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. 117:D8D08101
    [Google Scholar]
  125. 125.  Guichard F, Kergoat L, Hourdin F, Leauthaud C, Barbier J et al. 2015. Le réchauffement climatique observé depuis 1950 au Sahel Marseille: IRD Ed.
    [Google Scholar]
  126. 126.  Ly M, Traore S, Alhassane A, Sarr B 2013. Evolution of some observed climate extremes in the West African Sahel. Weather Clim. Extrem. 1:19–25
    [Google Scholar]
  127. 127. Agrhymet. 2010. Le Sahel face aux changements climatiques. Bulletin mensuel, numéro spécial Niamey, Niger: Cent. Rég. AGRHYMET www.agrhymet.ne/PDF/BM2010/specialChC.pdf
    [Google Scholar]
  128. 128.  Alhassane A, Salack S, Ly M, Lona I, Traore SB, Sarr B 2013. Evolution des risques agroclimatiques associes aux tendances recentes du regime pluviometrique en Afrique de l'Ouest soudano-sahelienne. Secheresse 24:282–93
    [Google Scholar]
  129. 129.  Lodoun T, Giannini A, Traoré PS, Somé L, Sanon M et al. 2013. Changes in the character of precipitation in Burkina Faso associated with late-20th century drought and recovery in the Sahel. Environ. Dev. 5:96–108
    [Google Scholar]
  130. 130.  Sarr B, Atta S, Ly M, Salack S, Ourback T et al. 2015. Adapting to climate variability and change in smallholder farming communities: a case study from Burkina Faso, Chad and Niger. J. Agric. Ext. Rural Dev. 7:116–27
    [Google Scholar]
  131. 131.  Deme A, Gaye AT, Hourdin F 2015. Les projections du climate en Afrique de l'Ouest, Evidences et incertitudes. Les sociétés rurales face aux changements climatiques et environnementaux en Afrique de l'Ouest Marseille: IRD Ed.
    [Google Scholar]
  132. 132.  Nangombe S, Zhou T, Zhang W, Wu B, Hu S et al. 2018. Record-breaking climate extremes in Africa under stabilized 1.5°C and 2°C global warming scenarios. Nat. Clim. Change 8:5375–80
    [Google Scholar]
  133. 133. Food and Agricultural Organization of the United Nations (FAO). 2009. FAO Statistical Yearbook 2009 Rome: FAO
    [Google Scholar]
  134. 134.  Jalloh A, Nelson GC, Thomas TS, Zougmoré RB, Roy-Macauley H 2013. West African agriculture and climate change: a comprehensive analysis. Intl. Food Policy Res. Inst.
    [Google Scholar]
  135. 135.  Akamani K, Hall TE 2015. Determinants of the process and outcomes of household participation in collaborative forest management in Ghana: a quantitative test of a community resilience model. J. Environ. Manag. 147:1–11
    [Google Scholar]
  136. 136. World Bank. 2017. World Development Indicators Washington, DC: https://datacatalog.worldbank.org/dataset/world-development-indicators
    [Google Scholar]
  137. 137.  Vinke K, Martin MA, Adams S, Baarsch F, Bondeau A et al. 2017. Climatic risks and impacts in South Asia: extremes of water scarcity and excess. Reg. Environ. Change 17:61569–83
    [Google Scholar]
  138. 138.  Eckstein D, Künzel V, Schäfer L 2017. Global Climate Risk Index 2018: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2016 and 1997 to 2016 Bonn/Berlin, Ger.: Germanwatch http://www.germanwatch.org/en/cri
    [Google Scholar]
  139. 139.  Mohammed K, Islam AS, Islam GT, Alfieri L, Bala SK, Khan MJU 2017. Extreme flows and water availability of the Brahmaputra River under 1.5 and 2°C global warming scenarios. Clim. Change 145:159–75
    [Google Scholar]
  140. 140.  Betts RA, Alfieri L, Bradshaw C, Caesar J, Feyen L et al. 2018. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model. Philos. Trans. R. Soc. A Sci. 376:20160452
    [Google Scholar]
  141. 141.  Carleton TA 2017. Crop-damaging temperatures increase suicide rates in India. PNAS 114:8746–51
    [Google Scholar]
  142. 142.  Rasmussen KL, Hill AJ, Toma VE, Zuluaga MD, Webster PJ, Houze RA 2015. Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Q. J. R. Meteorol. Soc. 141:6891259–76
    [Google Scholar]
  143. 143.  Singh D, Horton DE, Tsiang M, Haugen M, Ashfaq M et al. 2014. Severe precipitation in Northern India in June 2013: causes, historical context, and changes in probability. Bull. Am. Meteorol. Soc. 95:9558–61
    [Google Scholar]
  144. 144.  Munich RE 2018. NatCatSERVICE. http://natcatservice.munichre.com/
    [Google Scholar]
  145. 145.  Saeed F, Almazroui M, Islam N, Khan MS 2017. Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble. Nat. Hazards 87:31635–47
    [Google Scholar]
  146. 146.  Murari KK, Ghosh S, Patwardhan A, Daly E, Salvi K 2015. Intensification of future severe heat waves in India and their effect on heat stress and mortality. Reg. Environ. Change 15:4569–79
    [Google Scholar]
  147. 147.  Im E-S, Pal JS, Eltahir EAB 2017. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3:81–8
    [Google Scholar]
  148. 148.  Mishra V, Mukherjee S, Kumar R, Stone D 2017. Heat wave exposure in India in current, 1.5°C, and 2.0°C worlds. Environ. Res. Lett. 12:12124012
    [Google Scholar]
  149. 149.  Mueller V, Gray C, Kosec K 2014. Heat stress increases long-term human migration in rural Pakistan. Nat. Clim. Change 4:3182–85
    [Google Scholar]
  150. 150.  Saeed F, Salik KM, Ishfaq S 2016. Climate induced rural-to-urban migration in Pakistan PRISE Work. Pap. http://www.prise.odi.org/wp-content/uploads/2016/01/Low_Res-Climate-induced-rural-to-urban-migration-in-Pakistan.pdf
    [Google Scholar]
  151. 151.  Wong PP, Losada IJ, Gattuso J-P, Hinkel J, Khattabi A et al. 2014. Coastal systems and low-lying areas. See Ref. 191 361–409
  152. 152.  Anthoff D, Nicholls RJ, Tol RSJ 2010. The economic impact of substantial sea level rise. Mitig. Adapt. Strateg. Glob. Change 15:4321–35
    [Google Scholar]
  153. 153.  Nicholls RJ, Cazenave A 2010. Sea level rise and its impact on coastal zones. Science 328:59851517–20
    [Google Scholar]
  154. 154.  Khan AE, Xun WW, Ahsan H, Vineis P 2011. Climate change, sea level rise, & health impacts in Bangladesh. Environ. Sci. Policy Sustain. Dev. 53:518–33
    [Google Scholar]
  155. 155.  Kebede AS, Nicholls RJ, Hanson S, Mokrech M 2012. Impacts of climate change and sea level rise: a preliminary case study of Mombasa, Kenya. J. Coast. Res. 278:8–19
    [Google Scholar]
  156. 156.  Snoussi M, Ouchani T, Niazi S 2008. Vulnerability assessment of the impact of sea level rise and flooding on the Moroccan coast: the case of the Mediterranean eastern zone. Estuar. Coast. Shelf Sci. 77:2206–13
    [Google Scholar]
  157. 157.  Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ 2015. Future coastal population growth and exposure to sea level rise and coastal flooding—a global assessment. PLOS ONE 10:3e0118571
    [Google Scholar]
  158. 158.  Brecht H, Dasgupta S, Laplante B, Murray S, Wheeler D 2012. Sea level rise and storm surges: high stakes for a small number of developing countries. J. Environ. Dev. 21:1120–38
    [Google Scholar]
  159. 159.  Blankespoor B, Dasgupta S, Laplante B 2012. Sea Level Rise and Coastal Wetlands Impacts and Costs Washington, DC: World Bank
    [Google Scholar]
  160. 160.  McGranahan G, Balk D, Anderson B 2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19:117–37
    [Google Scholar]
  161. 161.  Nicholls RJ, Cazenave A 2010. Sea level rise and its impact on coastal zones. Science 328:59851517–20
    [Google Scholar]
  162. 162.  Nicholls RJ, Townend IH, Bradbury AP, Ramsbottom D, Day SA 2013. Planning for long-term coastal change: experiences from England and Wales. Ocean Eng 71:3–16
    [Google Scholar]
  163. 163.  Niemeyer HD, Beaufort G, Mayerle R, Monbaliu J, Townend I et al. 2016. Socio-economic impacts—coastal protection. North Sea Region Climate Change Assessment457–74 Cham, Switz.: Springer
    [Google Scholar]
  164. 164.  Goble BJ, Lewis M, Hill TR, Phillips MR 2014. Coastal management in South Africa: historical perspectives and setting the stage of a new era. Ocean Coast. Manag. 91:32–40
    [Google Scholar]
  165. 165.  Ramsey V, Cooper JAG, Yates KL 2015. Integrated Coastal Zone Management and its potential application to Antigua and Barbuda. Ocean Coast. Manag. 118:259–74
    [Google Scholar]
  166. 166.  Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ et al. 2014. Coastal flood damage and adaptation costs under 21st century sea level rise. PNAS 111:93292–97
    [Google Scholar]
  167. 167.  Neumann JE, Emanuel K, Ravela S, Ludwig L, Kirshen P et al. 2015. Joint effects of storm surge and sea level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy. Clim. Change 129:1–2337–49
    [Google Scholar]
  168. 168.  Williams SJ 2013. Sea level rise implications for coastal regions. J. Coast. Res. 29:SI63184–96
    [Google Scholar]
  169. 169.  Friedrich E, Kretzinger D 2012. Vulnerability of wastewater infrastructure of coastal cities to sea level rise: a South African case study. Water SA 38:5755–64
    [Google Scholar]
  170. 170.  Roberts E, Andrei S 2015. The rising tide: migration as a response to loss and damage from sea level rise in vulnerable communities. Int. J. Glob. Warm. 8:2258–73
    [Google Scholar]
  171. 171.  Storlazzi CD, Gingerich SB, van Dongeren AR, Cheriton OM, Swarzenski PW et al. 2018. Most atolls will be uninhabitable by the mid-21st century because of sea level rise exacerbating wave-driven flooding. Sci. Adv. 4:eaap97411–10
    [Google Scholar]
  172. 172.  Serdeczny O2019 Non-economic losses and the Warsaw International Mechanism. Loss and Damage from Climate Change. Concepts, Methods and Policy Options R Mechler, LM Bouwer, J Linnnerooth-Bayer, T Schinko, S Surminski. https://doi.org/10.1007/978-3-319-72026-5. In press
    [Crossref] [Google Scholar]
  173. 173.  Thomas A, Benjamin L 2017. Management of loss and damage in small island developing states: implications for a 1.5°C or warmer world. Reg. Environ. Change. https://doi.org/10.1007/s10113-017-1184-7
    [Crossref] [Google Scholar]
  174. 174.  Chen P-Y, Chen C-C, Chu L, McCarl B 2015. Evaluating the economic damage of climate change on global coral reefs. Glob. Environ. Change 30:12–20
    [Google Scholar]
  175. 175. PACCSAP, P-ACCS, APP. 2014. PACCSAP: Ocean Acidification in the Western Tropical Pacific CSIRO, Bureau Meteorol https://www.pacificclimatechange.net/document/ocean-acidification-western-tropical-pacific
    [Google Scholar]
  176. 176.  Johnson J, Bell J, Sen GA 2015. Pacific Islands Ocean Acidification Vulnerability Assessment Apia, Somoa: SPREP
    [Google Scholar]
  177. 177.  Karnauskas KB, Donnelly JP, Anchukaitis KJ 2016. Future freshwater stress for island populations. Nat. Clim. Change 6:720–25
    [Google Scholar]
  178. 178.  Terry JP, Chui TFM 2012. Evaluating the fate of freshwater lenses on atoll islands after eustatic sea level rise and cyclone-driven inundation: a modelling approach. Glob. Planet. Change 88–89:76–84
    [Google Scholar]
  179. 179.  Karnauskas KB, Schleussner C-F, Donnelly JP, Anchukaitis KJ 2018. Freshwater stress on small island developing states: population projections and aridity changes at 1.5 and 2°C. Reg. Environ. Change. https://doi.org/10.1007/s10113-018-1331-9
    [Crossref] [Google Scholar]
  180. 180.  Mertz O, Halsnæs K, Olesen JE, Rasmussen K 2009. Adaptation to climate change in developing countries. Environ. Manag. 43:5743–52
    [Google Scholar]
  181. 181.  Macpherson C, Akpinar-Elci M 2013. Impacts of climate change on Caribbean life. Am. J. Public Health 103:1e6
    [Google Scholar]
  182. 182.  O'Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S et al. 2013. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122:3387–400
    [Google Scholar]
  183. 183.  Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O'Neill BC et al. 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42:153–68
    [Google Scholar]
  184. 184.  von Stechow C, Minx JC, Riahi K, Jewell J, McCollum DL et al. 2016. 2°C and SDGs: United they stand, divided they fall?. Environ. Res. Lett. 11:3034022
    [Google Scholar]
  185. 185.  Guiot J, Cramer W 2016. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354:6311465–68
    [Google Scholar]
  186. 186.  Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y 2015. Climate change in the Fertile Crescent and implications of the recent Syrian drought. PNAS 112:3241–46
    [Google Scholar]
  187. 187.  Bren d'Amour C, Wenz L, Kalkuhl M, Christoph Steckel J, Creutzig F 2016. Teleconnected food supply shocks. Environ. Res. Lett. 11:3035007
    [Google Scholar]
  188. 188.  Fischer EM, Knutti R 2015. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5:April560–64
    [Google Scholar]
  189. 189.  Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K et al. 2012. Limiting global warming to 2°C is unlikely to save most coral reefs. Nat. Clim. Change 3:2165–70
    [Google Scholar]
  190. 190.  Levermann A, Clark PU, Marzeion B, Milne GA, Pollard D et al. 2013. The multimillennial sea level commitment of global warming. PNAS 110:3413745–50
    [Google Scholar]
  191. 191.  Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD et al. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  192. 192.  Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ et al. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  193. 193.  Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK et al. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
/content/journals/10.1146/annurev-environ-102017-025835
Loading
/content/journals/10.1146/annurev-environ-102017-025835
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error