1932

Abstract

Weather and climate extremes impose serious impacts on natural and human systems. In its fifth assessment report (AR5) and a special report [Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX)], the Intergovernmental Panel on Climate Change provided a thorough assessment of observed and projected changes in extremes in a warming climate, with evidenced scientific gaps in the understanding of these responsive changes being reported. Reviewing post-AR5 literature, this article synthesizes recent advances regarding these previous gaps with respect to detection, attribution, and projection of extremes. We focus on constraints for the assessment confidence, overlooked types and characteristics of extremes, and changes in their thermodynamic-dynamic drivers. We also stress potential misinterpretations of existing results, propose an update of earlier key findings, and identify burgeoning topics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102017-030052
2018-10-17
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/energy/43/1/annurev-environ-102017-030052.html?itemId=/content/journals/10.1146/annurev-environ-102017-030052&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Sillmann J, Thorarinsdottir T, Keenlyside N, Schaller N, Alexander LV et al. 2017. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extremes 18:65–74
    [Google Scholar]
  2. 2.  Field CB, Barros V, Stocker TF, Qin D, Dokken DJ et al. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  3. 3.  Stocker T, Qin D, Plattner G, Tignor M, Allen S et al. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  4. 4.  Mastrandrea MD, Mach KJ, Plattner GK, Edenhofer O, Stocker TF et al. 2011. The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Clim. Change 108:675–91
    [Google Scholar]
  5. 5.  Peterson TC, Heim RR Jr., Hirsch R, Kaiser DP, Brooks H et al. 2013. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull. Am. Meteorol. Soc. 94:821–34
    [Google Scholar]
  6. 6.  Chen Y, Zhai P 2017. Revisiting summertime hot extremes in China during 1961–2015: overlooked compound extremes and significant changes. Geophys. Res. Lett. 44:5096–103
    [Google Scholar]
  7. 7.  Gershunov A, Cayan DR, Iacobellis SF 2009. The great 2006 heat wave over California and Nevada: signal of an increasing trend. J. Clim. 22:6181–203
    [Google Scholar]
  8. 8.  Oswald EM, Rood RB 2013. A trend analysis of the 1930–2010 extreme heat events in the continental United States. J. Appl. Meteorol. Climatol. 53:565–82
    [Google Scholar]
  9. 9.  Spinoni J, Lakatos M, Szentimrey T, Bihari Z, Szalai S et al. 2016. Heat and cold waves trends in the Carpathian Region from 1961 to 2010. Int. J. Climatol. 35:4197–209
    [Google Scholar]
  10. 10.  Matthews TK, Wilby RL, Murphy C 2017. Communicating the deadly consequences of global warming for human heat stress. PNAS 114:3861–66
    [Google Scholar]
  11. 11.  Zscheischler J, Seneviratne SI 2017. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3:e1700263
    [Google Scholar]
  12. 12.  Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P et al. 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15:1090–103
    [Google Scholar]
  13. 13.  Gentemann CL, Fewings MR, García-Reyes M 2017. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44:312–19
    [Google Scholar]
  14. 14.  Scannell HA, Pershing AJ, Alexander MA, Thomas AC, Mills KE 2016. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 43:2069–76
    [Google Scholar]
  15. 15.  Chen Y, Zhai P 2017. Persisting and strong warming hiatus over eastern China during the past two decades. Environ. Res. Lett. 12:104010
    [Google Scholar]
  16. 16.  Liu Z, Jian Z, Yoshimura K, Buenning NH, Poulsen CJ, Bowen GJ 2015. Recent contrasting winter temperature changes over North America linked to enhanced positive Pacific-North American pattern. Geophys. Res. Lett. 42:7750–57
    [Google Scholar]
  17. 17.  McCusker KE, Fyfe JC, Sigmond M 2016. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci. 9:834–42
    [Google Scholar]
  18. 18.  Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7:627–37
    [Google Scholar]
  19. 19.  Sigmond M, Fyfe JC 2016. Tropical Pacific impacts on cooling North American winters. Nat. Clim. Change 6:970–74
    [Google Scholar]
  20. 20.  Trenberth KE, Zhang Y, Gehne M 2017. Intermittency in precipitation: duration, frequency, intensity and amounts using hourly data. J. Hydrometeorol. 18:1393–412
    [Google Scholar]
  21. 21.  Zolina O, Simmer C, Belyaev K, Gulev SK, Koltermann P 2013. Changes in the duration of European wet and dry spells during the last 60 years. J. Clim. 26:2022–47
    [Google Scholar]
  22. 22.  Luo Y, Wu M, Ren F, Li J, Wong WK 2016. Synoptic situations of extreme hourly precipitation over China. J. Clim. 29:8703–19
    [Google Scholar]
  23. 23.  Zheng F, Westra S, Leonard M 2015. Opposing local precipitation extremes. Nat. Clim. Change 5:389–90
    [Google Scholar]
  24. 24.  Berg P, Moseley C, Haerter JO 2013. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6:181–85
    [Google Scholar]
  25. 25.  Feng Z, Leung LR, Hagos S, Houze RA, Burleyson CD, Balaguru K 2016. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7:13429
    [Google Scholar]
  26. 26.  Lenderink G, Meijgaard EV 2008. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1:511–14
    [Google Scholar]
  27. 27.  Jones RH, Westra S, Sharma A 2010. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett. 37:L22805
    [Google Scholar]
  28. 28.  Utsumi N, Seto S, Kanae S, Maeda EE, Oki T 2011. Does higher surface temperature intensify extreme precipitation?. Geophys. Res. Lett. 38:239–55
    [Google Scholar]
  29. 29.  Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ 2016. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7:48–52
    [Google Scholar]
  30. 30.  Zhang X, Zwiers FW, Li G, Wan H, Cannon AJ 2017. Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci. 10:255–59
    [Google Scholar]
  31. 31.  Molnar P, Fatichi S, Gaál L, Szolgay J, Burlando P 2015. Storm type effects on super Clausius-Clapeyron scaling of intense rainstorm properties with air temperature. Hydrol. Earth Syst. Sci. 19:1753–66
    [Google Scholar]
  32. 32.  Park IH, Min SK, Park IH, Min SK 2017. Role of convective precipitation in the relationship between sub-daily extreme precipitation and temperature. J. Clim. 30:9527–37
    [Google Scholar]
  33. 33.  Panthou G, Mailhot A, Laurence E, Talbot G 2014. Relationship between surface temperature and extreme rainfalls: a multi-time-scale and event-based analysis. J. Hydrometeorol. 15:1999–2011
    [Google Scholar]
  34. 34.  Ban N, Schmidli J, Schär C 2015. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?. Geophys. Res. Lett. 42:1165–72
    [Google Scholar]
  35. 35.  Zhang W, Villarini G, Scoccimarro E, Vecchi GA 2017. Stronger influences of increased CO2 on sub-daily precipitation extremes than at the daily scale. Geophys. Res. Lett. 44:7464–71
    [Google Scholar]
  36. 36.  Kunkel KE, Robinson DA, Champion S, Yin X, Estilow T, Frankson RM 2016. Trends and extremes in Northern Hemisphere snow characteristics. Curr. Clim. Change Rep. 2:1–9
    [Google Scholar]
  37. 37.  Lute AC, Abatzoglou JT, Hegewisch KC 2015. Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour. Res. 51:960–72
    [Google Scholar]
  38. 38.  O'Gorman PA 2014. Contrasting responses of mean and extreme snowfall to climate change. Nature 512:416–18
    [Google Scholar]
  39. 39.  Stewart RE, Thériault JM, Henson W 2015. On the characteristics of and processes producing winter precipitation types near 0°C. Bull. Am. Meteorol. Soc. 96:623–39
    [Google Scholar]
  40. 40.  Groisman PY, Bulygina ON, Yin X, Vose RS, Gulev SK et al. 2016. Recent changes in the frequency of freezing precipitation in North America and Northern Eurasia. Environ. Res. Lett. 11:045007
    [Google Scholar]
  41. 41.  Solomon SD, Qin M, Manning M, Marquis M, Averyt K et al. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  42. 42.  Greve P, Orlowsky B, Mueller B, Sheffield J, Reichstein M, Seneviratne SI 2014. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7:716–21
    [Google Scholar]
  43. 43.  Sheffield J, Wood EF, Roderick ML 2012. Little change in global drought over the past 60 years. Nature 491:435–38
    [Google Scholar]
  44. 44.  Greve P, Seneviratne SI 2015. Assessment of future changes in water availability and aridity. Geophys. Res. Lett. 42:5493–99
    [Google Scholar]
  45. 45.  Dai A 2013. Increasing drought under global warming in observations and models. Nat. Clim. Change 3:52–58
    [Google Scholar]
  46. 46.  Trenberth KE, Dai A, Schrier GVD, Jones PD, Barichivich J et al. 2014. Global warming and changes in drought. Nat. Clim. Change 4:17–22
    [Google Scholar]
  47. 47.  Dai A, Zhao T 2017. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Clim. Change 144:1–15
    [Google Scholar]
  48. 48.  Hao Z, Aghakouchak A 2014. A nonparametric multivariate multi-index drought monitoring framework. J. Hydrometeorol. 15:89–101
    [Google Scholar]
  49. 49.  Aghakouchak A, Farahmand A, Melton FS, Teixeira J, Anderson MC et al. 2015. Remote sensing of drought: progress, challenges and opportunities. Rev. Geophys. 53:452–80
    [Google Scholar]
  50. 50.  Huang S, Leng G, Huang Q, Xie Y, Liu S et al. 2017. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations. Sci. Rep. 7:5891
    [Google Scholar]
  51. 51.  Huang J, Yu H, Guan X, Wang G, Guo R 2016. Accelerated dryland expansion under climate change. Nat. Clim. Change 6:166–71
    [Google Scholar]
  52. 52.  Schlaepfer DR, Bradford JB, Lauenroth WK, Munson SM, Tietjen B et al. 2017. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8:14196
    [Google Scholar]
  53. 53.  Milly PCD, Dunne KA 2016. Potential evapotranspiration and continental drying. Nat. Clim. Change 6:946–49
    [Google Scholar]
  54. 54.  Wang L, Xing Y, Xie Z, Wu P, Li Y 2016. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 6:30571
    [Google Scholar]
  55. 55.  Knutson T, Landsea C, Emanuel K 2010. Tropical cyclones and climate change: a review. Global Perspectives on Tropical Cyclones: From Science to Mitigation Singapore: World Sci. Publ. Co
    [Google Scholar]
  56. 56.  Kossin JP, Emanuel KA, Camargo SJ 2016. Past and projected changes in western North Pacific tropical cyclone exposure. J. Clim. 29:5725–39
    [Google Scholar]
  57. 57.  Park DSR, Ho CH, Kim JH 2014. Growing threat of intense tropical cyclones to East Asia over the period 1977–2010. Environ. Res. Lett. 9:014008
    [Google Scholar]
  58. 58.  Kossin JP, Emanuel KA, Vecchi GA 2014. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–52
    [Google Scholar]
  59. 59.  Walsh KJE, Mcbride JL, Klotzbach PJ, Balachandran S, Camargo SJ et al. 2016. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Change 7:65–89
    [Google Scholar]
  60. 60.  Chavas DR, Lin N, Dong W, Lin Y 2016. Observed tropical cyclone size revisited. J. Clim. 29:2923–39
    [Google Scholar]
  61. 61.  Haigh ID, Macpherson LR, Mason MS, Wijeratne EMS, Pattiaratchi CB et al. 2014. Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tropical cyclone-induced storm surges. Clim. Dyn. 42:139–57
    [Google Scholar]
  62. 62.  Leonard M, Westra S, Phatak A, Lambert M, Hurk BVD et al. 2013. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Change 5:113–28
    [Google Scholar]
  63. 63.  Mazdiyasni O, Aghakouchak A 2015. Substantial increase in concurrent droughts and heatwaves in the United States. PNAS 112:11484–89
    [Google Scholar]
  64. 64.  Wahl T, Jain S, Bender J, Meyers SD, Luther ME 2015. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Change 5:1093–97
    [Google Scholar]
  65. 65.  Schnell JL, Prather MJ 2017. Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America. PNAS 114:112854–59
    [Google Scholar]
  66. 66.  Aghakouchak A, Cheng L, Mazdiyasni O, Farahmand A 2015. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys. Res. Lett. 41:8847–52
    [Google Scholar]
  67. 67.  Trenberth KE, Fasullo JT 2012. Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J. Geophys. Res. Atmos. 117:D17103
    [Google Scholar]
  68. 68.  Chen Y, Zhai P, Li L 2017. Low-frequency oscillations of East Asia/Pacific teleconnection and simultaneous weather anomalies/extremes over eastern Asia. Int. J. Climatol. 37:276–95
    [Google Scholar]
  69. 69.  Hegerl GC, Hoegh-Guldberg O, Casassa G, Hoerling M, Kovats S et al. 2010. Good practice guidance paper on detection and attribution related to anthropogenic climate change. Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change TF Stocker, C Field, Q Dahe, V Barros, G-K Plattner et al.1–8 Bern, Switz: Univ. Bern
    [Google Scholar]
  70. 70.  Herring SC, Hoerling MP, Peterson TC, Stott PA 2014. Explaining extreme events of 2013 from a climate perspective. Bull. Am. Meteorol. Soc. 95:S1–S104
    [Google Scholar]
  71. 71.  Herring SC, Hoell A, Hoerling MP, Kossin JP, Schreck CJ, Stott PA 2016. Explaining extreme events of 2015 from a climate perspective. Bull. Am. Meteorol. Soc. 97:S1–S145
    [Google Scholar]
  72. 72.  Herring SC, Hoerling MP, Kossin JP, Peterson TC, Stott PA 2015. Explaining extreme events of 2014 from a climate perspective. Bull. Am. Meteorol. Soc. 96:S1–S172
    [Google Scholar]
  73. 73.  Peterson TC, Hoerling MP, Stott PA, Herring SC 2013. Explaining extreme events of 2012 from a climate perspective. Bull. Am. Meteorol. Soc. 94:S1–S74
    [Google Scholar]
  74. 74.  Peterson TC, Stott PA, Herring S 2012. Explaining extreme events of 2011 from a climate perspective. Bull. Am. Meteorol. Soc. 93:1041–67
    [Google Scholar]
  75. 75. National Academies of Sciences, Engineering and Medicine 2016. Attribution of Extreme Weather Events in the Context of Climate Change Washington, DC: Natl. Acad. Press
    [Google Scholar]
  76. 76.  Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL et al. 2017. Quantifying the influence of global warming on unprecedented extreme climate events. PNAS 114:4881–86
    [Google Scholar]
  77. 77.  Otto FEL, Massey N, Oldenborgh GJV, Jones RG, Allen MR 2012. Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett. 39:81–83
    [Google Scholar]
  78. 78.  Angélil O, Stone D, Wehner M, Paciorek CJ, Krishnan H, Collins W 2017. An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events. J. Clim. 30:5–16
    [Google Scholar]
  79. 79.  Bellprat O, Doblas-Reyes F 2016. Attribution of extreme weather and climate events overestimated by unreliable climate simulations. Geophys. Res. Lett. 43:2158–64
    [Google Scholar]
  80. 80.  Stott P, Christidis N, Otto F, Sun Y, Vanderlinden J et al. 2016. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Change 7:23–41
    [Google Scholar]
  81. 81.  Mitchell D, Davini P, Harvey B, Massey N, Haustein K et al. 2017. Assessing mid-latitude dynamics in extreme event attribution systems. Clim. Dyn. 48:3889–901
    [Google Scholar]
  82. 82.  Peings Y, Magnusdottir G 2014. Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett. 9:034018
    [Google Scholar]
  83. 83.  Shepherd TG 2014. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7:703–8
    [Google Scholar]
  84. 84.  Sippel S, Zscheischler J, Mahecha MD, Orth R, Reichstein M et al. 2017. Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics. Earth Syst. Dyn. Discuss. 8:387–403
    [Google Scholar]
  85. 85.  Vogel MM, Orth R, Cheruy F, Hagemann S, Lorenz R et al. 2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44:1511–19
    [Google Scholar]
  86. 86.  Swain DL, Horton DE, Singh D, Diffenbaugh NS 2016. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv. 2:e1501344
    [Google Scholar]
  87. 87.  Vautard R, Yiou P, Otto F, Stott P, Christidis N et al. 2016. Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ. Res. Lett. 11:114009
    [Google Scholar]
  88. 88.  Horton DE, Johnson NC, Singh D, Swain DL, Rajaratnam B, Diffenbaugh NS 2015. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522:465–69
    [Google Scholar]
  89. 89.  García-Valero JA, Montávez JP, Gómez-Navarro JJ, Jiménez-Guerrero P 2015. Attributing trends in extremely hot days to changes in atmospheric dynamics. Nat. Hazards Earth Syst. Sci. 15:2143–59
    [Google Scholar]
  90. 90.  Chang EKM, Ma CG, Zheng C, Yau AMW 2016. Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett. 43:2200–28
    [Google Scholar]
  91. 91.  Screen JA, Simmonds I 2013. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 40:959–64
    [Google Scholar]
  92. 92.  Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK, Coumou D 2017. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7:45242
    [Google Scholar]
  93. 93.  Fischer EM, Knutti R 2015. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5:560–64
    [Google Scholar]
  94. 94.  Palmer T 2014. Record-breaking winters and global climate change. Science 344:803–4
    [Google Scholar]
  95. 95.  Busuioc A, Birsan MV, Carbunaru D, Baciu M, Orzan A 2016. Changes in the large-scale thermodynamic instability and connection with rain shower frequency over Romania: verification of the Clausius–Clapeyron scaling. Int. J. Climatol. 36:2015–34
    [Google Scholar]
  96. 96.  Miralles DG, Teuling AJ 2014. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7:345–49
    [Google Scholar]
  97. 97.  Blackport R, Kushner PJ 2017. Isolating the atmospheric circulation response to Arctic sea ice loss in the coupled climate system. J. Clim. 30:2163–85
    [Google Scholar]
  98. 98.  Herold N, Kala J, Alexander LV 2016. The influence of soil moisture deficits on Australian heatwaves. Environ. Res. Lett. 11:064003
    [Google Scholar]
  99. 99.  Ralph FM, Cordeira JM, Neiman PJ, Hughes M 2016. Landfalling atmospheric rivers, the Sierra barrier jet, and extreme daily precipitation in northern California's upper Sacramento River watershed. J. Hydrometeorol. 17:1905–14
    [Google Scholar]
  100. 100.  Ralph FM, Dettinger M, Lavers D, Gorodetskaya IV, Martin A et al. 2017. Atmospheric rivers emerge as a global science and applications focus. Bull. Am. Meteorol. Soc. 98:1969–73
    [Google Scholar]
  101. 101.  Lavers DA, Villarini G 2013. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett. 40:3259–64
    [Google Scholar]
  102. 102.  Ramos AM, Liberato MLR, Trigo RM 2015. Extreme precipitation events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeorol. 16:579–97
    [Google Scholar]
  103. 103.  Cattiaux J, Vautard R, Cassou C, Yiou P, Massondelmotte V, Codron F 2010. Winter 2010 in Europe: a cold extreme in a warming climate. Geophys. Res. Lett. 37:114–22
    [Google Scholar]
  104. 104.  Trenberth KE, Fasullo JT, Shepherd TG 2015. Attribution of climate extreme events. Nat. Clim. Change 5:725–30
    [Google Scholar]
  105. 105.  Thiery W, Davin EL, Lawrence DM, Hirsch AL, Hauser M, Seneviratne SI 2017. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122:1–20
    [Google Scholar]
  106. 106.  Freychet N, Tett S, Wang J, Hegerl G 2017. Summer heat waves over Eastern China: dynamical processes and trend attribution. Environ. Res. Lett. 12:024015
    [Google Scholar]
  107. 107.  Hauser M, Gudmundsson L, Orth R, Jézéquel A, Haustein K et al. 2017. Methods and model dependency of extreme event attribution: the 2015 European drought. Earth's Future 5:1034–43
    [Google Scholar]
  108. 108.  Watts N, Adger WN, Ayeb-Karlsson S, Bai Y, Byass P et al. 2017. The Lancet Countdown: tracking progress on health and climate change. Lancet 389:1151–64
    [Google Scholar]
  109. 109.  Field CB, Barros V, Dokken DJ, Mach KJ, Mastrandrea MD 2014. Climate Change 2014: Impacts, Adaptation and Vulnerability: Regional Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  110. 110.  Gershunov A, Guirguis K 2012. California heat waves in the present and future. Geophys. Res. Lett. 39:L18701
    [Google Scholar]
  111. 111.  Amengual A, Homar V, Romero R, Brooks HE, Ramis C et al. 2014. Projections of heat waves with high impact on human health in Europe. Glob. Planet. Change 119:71–84
    [Google Scholar]
  112. 112.  Seneviratne SI, Donat MG, Pitman AJ, Knutti R, Wilby RL 2016. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529:477–83
    [Google Scholar]
  113. 113.  Sillmann J, Donat MG, Fyfe JC, Zwiers FW 2014. Observed and simulated temperature extremes during the recent warming hiatus. Environ. Res. Lett. 9:064023
    [Google Scholar]
  114. 114.  Gao Y, Leung LR, Lu J, Masato G 2015. Persistent cold air outbreaks over North America in a warming climate. Environ. Res. Lett. 10:044001
    [Google Scholar]
  115. 115.  Kawase H, Murata A, Mizuta R, Sasaki H, Nosaka M et al. 2016. Enhancement of heavy daily snowfall in central Japan due to global warming as projected by large ensemble of regional climate simulations. Clim. Change 139:1–14
    [Google Scholar]
  116. 116.  Erler AR, Peltier WR 2016. Projected changes in precipitation extremes for western Canada based on high-resolution regional climate simulations. J. Clim. 29:8841–63
    [Google Scholar]
  117. 117.  Monjo R, Gaitán E, Pórtoles J, Ribalaygua J, Torres L 2016. Changes in extreme precipitation over Spain using statistical downscaling of CMIP5 projections. Int. J. Climatol. 36:757–69
    [Google Scholar]
  118. 118.  Karin VDW, Kapnick SB, Vecchi GA, Cooke WF, Delworth TL et al. 2016. The resolution dependence of contiguous U.S. precipitation extremes in response to CO2 forcing. J. Clim. 29:7991–8012
    [Google Scholar]
  119. 119.  Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ et al. 2017. Do convection-permitting regional climate models improve projections of future precipitation change?. Bull. Am. Meteorol. Soc. 98:79–93
    [Google Scholar]
  120. 120.  Fosser G, Khodayar S, Berg P 2017. Climate change in the next 30 years: What can a convection-permitting model tell us that we did not already know?. Clim. Dyn. 48:1987–2003
    [Google Scholar]
  121. 121.  Bao J, Sherwood SC, Alexander LV, Evans JP 2017. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Change 7:128–32
    [Google Scholar]
  122. 122.  Chaney NW, Herman JD, Reed PM, Wood EF 2015. Flood and drought hydrologic monitoring: the role of model parameter uncertainty. Hydrol. Earth Syst. Sci. 19:3239–51
    [Google Scholar]
  123. 123.  Gettelman A, Bresch DN, Chen CC, Truesdale JE, Bacmeister JT 2017. Projections of future tropical cyclone damage with a high-resolution global climate model. Clim. Change 146:575–85
    [Google Scholar]
  124. 124.  Tsuboki K, Yoshioka MK, Shinoda T, Kato M, Kanada S, Kitoh A 2015. Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett. 42:646–52
    [Google Scholar]
  125. 125.  Bador M, Terray L, Boé J 2015. Emergence of human influence on summer record-breaking temperatures over Europe. Geophys. Res. Lett. 43:404–12
    [Google Scholar]
  126. 126.  King AD, Donat MG, Fischer EM, Hawkins E, Alexander LV et al. 2015. The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett. 10:094015
    [Google Scholar]
  127. 127.  Diffenbaugh NS, Scherer M 2011. Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Clim. Change 107:615–24
    [Google Scholar]
  128. 128.  Mahlstein I, Hegerl G, Solomon S 2012. Emerging local warming signals in observational data. Geophys. Res. Lett. 39:L21711
    [Google Scholar]
  129. 129.  Hawkins E, Anderson B, Diffenbaugh N, Mahlstein I, Betts R et al. 2014. Uncertainties in the timing of unprecedented climates. Nature 511:E3–E5
    [Google Scholar]
  130. 130.  Lehner F, Deser C, Terray L 2017. Toward a new estimate of “time of emergence” of anthropogenic warming: insights from dynamical adjustment and a large initial-condition model ensemble. J. Clim. 30:7739–56
    [Google Scholar]
  131. 131.  James R, Washington R, Schleussner CF, Rogelj J, Conway D 2017. Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. Wiley Interdiscip. Rev. Clim. Change 8:e457
    [Google Scholar]
  132. 132.  Schurer AP, Mann ME, Hawkins E, Tett SFB, Hegerl GC 2017. Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nat. Clim. Change 7:563–67
    [Google Scholar]
  133. 133.  Rogelj J, Schleussner CF, Hare W 2017. Getting it right matters—temperature goal interpretations in geoscience research. Geophys. Res. Lett. 44:10662–65
    [Google Scholar]
  134. 134.  King AD, Karoly DJ, Henley BJ 2017. Australian climate extremes at 1.5°C and 2°C of global warming. Nat. Clim. Change 7:412–16
    [Google Scholar]
  135. 135.  Schleussner CF, Lissner TK, Fischer EM, Wohland J, Perrette M et al. 2016. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5°C and 2°C. Earth Syst. Dyn. 6:2447–505
    [Google Scholar]
  136. 136.  Mitchell D, James R, Forster PM, Betts RA, Shiogama H, Allen M 2016. Realizing the impacts of a 1.5°C warmer world. Nat. Clim. Change 6:735–37
    [Google Scholar]
  137. 137.  Sanderson BM, Oleson KW, Strand WG, Lehner F, O'Neill BC 2015. A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Clim. Change 146:303–18
    [Google Scholar]
  138. 138.  Mitchell D, Achutarao K, Allen M, Bethke I, Beyerle U et al. 2017. Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geosci. Model Dev. 10:571–83
    [Google Scholar]
  139. 139.  Barring L, Strandberg G 2018. Does the projected pathway to global warming targets matter?. Environ. Res. Lett. 13:024029
    [Google Scholar]
  140. 140.  Sanderson BM, Xu Y, Tebaldi C, Wehner M, O'Neill B et al. 2017. Community climate simulations to assess avoided impacts in 1.5 and 2°C futures. Earth Syst. Dyn. 8:827–47
    [Google Scholar]
  141. 141.  Lewis SC, King AD, Mitchell DM 2017. Australia's unprecedented future temperature extremes under Paris limits to warming. Geophys. Res. Lett. 44:9947–56
    [Google Scholar]
  142. 142.  Mishra V, Mukherjee S, Kumar R, Stone D 2017. Heat wave exposure in India in current, 1.5°C, and 2.0°C worlds. Environ. Res. Lett. 12:124012
    [Google Scholar]
  143. 143.  Zhang W, Villarini G 2017. Heavy precipitation is highly sensitive to the magnitude of future warming. Clim. Change 145:249–57
    [Google Scholar]
  144. 144.  Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM et al. 2017. Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett. 44:7419–28
    [Google Scholar]
  145. 145.  Schleussner CF, Pfleiderer P, Fischer EM 2017. In the observational record half a degree matters. Nat. Clim. Change 7:460–62
    [Google Scholar]
  146. 146.  Donnelly C, Greuell W, Andersson J, Gerten D, Pisacane G et al. 2017. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Change 143:13–26
    [Google Scholar]
  147. 147.  Wang Z, Lin L, Zhang X, Zhang H, Liu L, Xu Y 2017. Scenario dependence of future changes in climate extremes under 1.5°C and 2°C global warming. Sci. Rep. 7:46432
    [Google Scholar]
  148. 148.  Mauritsen T, Pincus R 2017. Committed warming inferred from observations. Nat. Clim. Change 7:652–55
    [Google Scholar]
  149. 149.  Kraaijenbrink PDA, Bierkens MFP, Lutz AF, Immerzeel WW 2017. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature 549:257–60
    [Google Scholar]
/content/journals/10.1146/annurev-environ-102017-030052
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error