1932

Abstract

Vegetation modifies land-surface properties, mediating the exchange of energy, moisture, trace gases, and aerosols between the land and the atmosphere. These exchanges influence the atmosphere on local, regional, and global scales. Through altering surface properties, vegetation change can impact on weather and climate. We review current understanding of the processes through which tropical land-cover change (LCC) affects rainfall. Tropical deforestation leads to reduced evapotranspiration, increasing surface temperatures by 1–3 K and causing boundary layer circulations, which in turn increase rainfall over some regions and reduce it elsewhere. On larger scales, deforestation leads to reductions in moisture recycling, reducing regional rainfall by up to 40%. Impacts of future tropical LCC on rainfall are uncertain but could be of similar magnitude to those caused by climate change. Climate and sustainable development policies need to account for the impacts of tropical LCC on local and regional rainfall.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102017-030136
2018-10-17
2024-07-13
Loading full text...

Full text loading...

/deliver/fulltext/energy/43/1/annurev-environ-102017-030136.html?itemId=/content/journals/10.1146/annurev-environ-102017-030136&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Bonan GB 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–49
    [Google Scholar]
  2. 2.  Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng XB, Denning AS 1998. Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob. Change Biol. 4:461–75
    [Google Scholar]
  3. 3.  Pielke RA, Pitman A, Niyogi D, Mahmood R, McAlpine C et al. 2011. Land use/land cover changes and climate: modeling analysis and observational evidence. Clim. Change 2:828–50
    [Google Scholar]
  4. 4.  Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Dirmeyer PA et al. 2014. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34:929–53
    [Google Scholar]
  5. 5.  Liu SG, Bond-Lamberty B, Boysen LR, Ford JD, Fox A et al. 2017. Grand challenges in understanding the interplay of climate and land changes. Earth Interact 21:1–43
    [Google Scholar]
  6. 6.  Heald CL, Spracklen DV 2015. Land use change impacts on air quality and climate. Chem. Rev. 115:4476–96
    [Google Scholar]
  7. 7.  Pielke RA, Adegoke J, Beltran-Przekurat A, Hiemstra CA, Lin J et al. 2007. An overview of regional land-use and land-cover impacts on rainfall. Tellus B 59:587–601
    [Google Scholar]
  8. 8.  Lawrence D, Vandecar K 2015. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5:27–36
    [Google Scholar]
  9. 9.  D'Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD 2007. The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int. J. Climatol. 27:633–47
    [Google Scholar]
  10. 10.  Gash JHC, Nobre CA 1997. Climatic effects of Amazonian deforestation: some results from ABRACOS. Bull. Am. Meteorol. Soc. 78:823–30
    [Google Scholar]
  11. 11.  Giambelluca TW, Holscher D, Bastos TX, Frazao RR, Nullet MA, Ziegler AD 1997. Observations of albedo and radiation balance over postforest land surfaces in the eastern Amazon Basin. J. Climate 10:919–28
    [Google Scholar]
  12. 12.  von Randow C, Manzi AO, Kruijt B, de Oliveira PJ, Zanchi FB et al. 2004. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. 78:5–26
    [Google Scholar]
  13. 13.  Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169:156–73
    [Google Scholar]
  14. 14.  Spracklen DV, Garcia-Carreras L 2015. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42:9546–52
    [Google Scholar]
  15. 15.  Fuller DO, Ottke C 2002. Land cover, rainfall and land-surface albedo in West Africa. Clim. Change 54:181–204
    [Google Scholar]
  16. 16.  Boone AA, Xue YK, De Sales F, Comer RE, Hagos S et al. 2016. The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project. Clim. Dyn. 47:3547–73
    [Google Scholar]
  17. 17.  Bruijnzeel L, Mulligan M, Scatena FN 2011. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Process 25:465–98
    [Google Scholar]
  18. 18.  Vourlitis GL, de Souza Nogueira J, de Almeida Lobo F, Sendall KM, de Paulo SR et al. 2008. Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resour. Res. 44:W03412
    [Google Scholar]
  19. 19.  Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–95
    [Google Scholar]
  20. 20.  Nepstad DC, Decarvalho CR, Davidson EA, Jipp PH, Lefebvre PA et al. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–69
    [Google Scholar]
  21. 21.  Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB et al. 2010. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99:125–61
    [Google Scholar]
  22. 22.  Wang KC, Dickinson RE 2012. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev. Geophys. 50:RG2005
    [Google Scholar]
  23. 23.  Schlesinger WH, Jasechko S 2014. Transpiration in the global water cycle. Agric. For. Meteorol. 189:115–17
    [Google Scholar]
  24. 24.  Zhang L, Dawes WR, Walker GR 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37:701–8
    [Google Scholar]
  25. 25.  Sterling SM, Ducharne A, Polcher J 2013. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 3:385–90
    [Google Scholar]
  26. 26.  Coe MT, Latrubesse EM, Ferreira ME, Amsler ML 2011. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105:119–31
    [Google Scholar]
  27. 27.  Lathuillière MJ, Johnson MS, Donner SD 2012. Water use by terrestrial ecosystems: temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil. Environ. Res. Lett. 7:024024
    [Google Scholar]
  28. 28.  Giambelluca TW, Mudd RG, Liu W, Ziegler AD, Kobayashi N et al. 2016. Evapotranspiration of rubber (Hevea brasiliensis) cultivated at two plantation sites in Southeast Asia. Water Resour. Res. 52:660–79
    [Google Scholar]
  29. 29.  van Dijk AIJM, Keenan RJ 2007. Planted forests and water in perspective. Forest Ecol. Manag. 251:1–9
    [Google Scholar]
  30. 30.  Giambelluca TW, Ziegler AD, Nullet MA, Truong DM, Tran LT 2003. Transpiration in a small tropical forest patch. Agric. For. Meteorol. 117:1–22
    [Google Scholar]
  31. 31.  Kunert N, Aparecido LMT, Wolff S, Higuchi N, dos Santos J et al. 2017. A revised hydrological model for the Central Amazon: the importance of emergent canopy trees in the forest water budget. Agric. For. Meteorol. 239:47–57
    [Google Scholar]
  32. 32.  Trenberth KE, Fasullo JT, Kiehl J 2009. Earth's global energy budget. Bull. Am. Meteorol. Soc. 90:311–23
    [Google Scholar]
  33. 33.  Restrepo-Coupe N, da Rocha HR, Hutyra LR, da Araujo AC, Borma LS et al. 2013. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. For. Meteorol. 182–183:128–44
    [Google Scholar]
  34. 34.  Delon C, Druilhet A, Delmas R, Durand P 2000. Dynamic and thermodynamic structure of the lower troposphere above rain forest and wet savanna during the EXPRESSO campaign. J. Geophys. Res. Atmos. 105:14823–40
    [Google Scholar]
  35. 35.  Roy SB, Avissar R 2002. Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res. Atmos. 107:D20LBA 4–112
    [Google Scholar]
  36. 36.  Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J et al. 2011. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109:117–61
    [Google Scholar]
  37. 37.  Artaxo P, Rizzo LV, Brito JF, Barbosa HMJ, Arana A et al. 2013. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discuss 165:203–35
    [Google Scholar]
  38. 38.  Poschl U, Martin ST, Sinha B, Chen Q, Gunthe SS et al. 2010. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329:1513–16
    [Google Scholar]
  39. 39.  Martin ST, Andreae MO, Artaxo P, Baumgardner D, Chen Q et al. 2010. Sources and properties of Amazonian aerosol particles. Rev. Geophys. 48:RG2002
    [Google Scholar]
  40. 40.  Reddington CL, Butt EW, Ridley DA, Artaxo P, Morgan WT et al. 2015. Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nat. Geosci. 8:768–71
    [Google Scholar]
  41. 41.  Negri AJ, Adler RF, Xu LM, Surratt J 2004. The impact of Amazonian deforestation on dry season rainfall. J. Climate 17:1306–19
    [Google Scholar]
  42. 42.  Alkama R, Cescatti A 2016. Biophysical climate impacts of recent changes in global forest cover. Science 351:600–4
    [Google Scholar]
  43. 43.  Davin EL, de Noblet-Ducoudre N, Friedlingstein P 2007. Impact of land cover change on surface climate: relevance of the radiative forcing concept. Geophys. Res. Lett. 34:L13702
    [Google Scholar]
  44. 44.  Ban-Weiss GA, Bala G, Cao L, Pongratz J, Caldeira K 2011. Climate forcing and response to idealized changes in surface latent and sensible heat. Environ. Res. Lett. 6:034032
    [Google Scholar]
  45. 45.  Davin EL, de Noblet-Ducoudre N 2010. Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J. Climate 23:97–112
    [Google Scholar]
  46. 46.  Bright RM, Davin E, O'Halloran T, Pongratz J, Zhao KG, Cescatti A 2017. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Chang. 7:296–302
    [Google Scholar]
  47. 47.  Dias M, Rutledge S, Kabat P, Dias PLS, Nobre C et al. 2002. Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon Region. J. Geophys. Res. Atmos. 107:LBA 39–118
    [Google Scholar]
  48. 48.  Pielke RA 2001. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys. 39:151–77
    [Google Scholar]
  49. 49.  Roy SB, Weaver CP, Nolan DS, Avissar R 2003. A preferred scale for landscape forced mesoscale circulations?. J. Geophys. Res. Atmos. 108:8854
    [Google Scholar]
  50. 50.  Da Silva RR, Avissar R 2006. The hydrometeorology of a deforested region of the Amazon basin. J. Hydrometeorol. 7:1028–42
    [Google Scholar]
  51. 51.  Roy SB 2009. Mesoscale vegetation-atmosphere feedbacks in Amazonia. J. Geophys. Res. Atmos. 114:D20111
    [Google Scholar]
  52. 52.  Saad SI, da Rocha HR, Dias M, Rosolem R 2010. Can the deforestation breeze change the rainfall in Amazonia? A case study for the BR-163 Highway region. Earth Interact 14:1–25
    [Google Scholar]
  53. 53.  Garcia-Carreras L, Parker DJ 2011. How does local tropical deforestation affect rainfall?. Geophys. Res. Lett. 38:L19802
    [Google Scholar]
  54. 54.  Garcia-Carreras L, Parker DJ, Marsham JH 2011. What is the mechanism for the modification of convective cloud distributions by land surface-induced flows?. J. Atmos. Sci. 68:619–34
    [Google Scholar]
  55. 55.  Esau IN, Lyons TJ 2002. Effect of sharp vegetation boundary on the convective atmospheric boundary layer. Agric. For. Meteorol. 114:3–13
    [Google Scholar]
  56. 56.  Avissar R, Schmidt T 1998. An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci. 55:2666–89
    [Google Scholar]
  57. 57.  Raasch S, Harbusch G 2001. An analysis of secondary circirculations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Bound. Layer Meteor. 101:31–59
    [Google Scholar]
  58. 58.  Patton EG, Sullivan PP, Moeng CH 2005. The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci. 62:2078–97
    [Google Scholar]
  59. 59.  Prabha TV, Karipot A, Binford MW 2007. Characteristics of secondary circulations over an inhomogeneous surface simulated with large-eddy simulation. Bound. Layer Meteor. 123:239–61
    [Google Scholar]
  60. 60.  Suhring M, Maronga B, Herbort F, Raasch S 2014. On the effect of surface heat-flux heterogeneities on the mixed-layer-top entrainment. Bound. Layer Meteor. 151:531–56
    [Google Scholar]
  61. 61.  Weaver CP, Avissar R 2001. Atmospheric disturbances caused by human modification of the landscape. Bull. Am. Meteorol. Soc. 82:269–81
    [Google Scholar]
  62. 62.  Baldi M, Dalu GA, Pielke RA 2008. Vertical velocities and available potential energy generated by landscape variability—theory. J. Appl. Meteorol. Climatol. 47:397–410
    [Google Scholar]
  63. 63.  Weaver CP 2004. Coupling between large-scale atmospheric processes and mesoscale land-atmosphere interactions in the US Southern Great Plains during summer. Part I: Case studies. J. Hydrometeorol. 5:1223–46
    [Google Scholar]
  64. 64.  Wang JF, Bras RL, Eltahir EAB 2000. The impact of observed deforestation on the mesoscale distribution of rainfall and clouds in Amazonia. J. Hydrometeorol. 1:267–86
    [Google Scholar]
  65. 65.  Hartley AJ, Parker DJ, Garcia-Carreras L, Webster S 2016. Simulation of vegetation feedbacks on local and regional scale precipitation in West Africa. Agric. For. Meteorol. 222:59–70
    [Google Scholar]
  66. 66.  Adler B, Kalthoff N, Gantner L 2011. Initiation of deep convection caused by land-surface inhomogeneities in West Africa: a modelled case study. Meteorol. Atmos. Phys. 112:15–27
    [Google Scholar]
  67. 67.  Garcia-Carreras L, Parker DJ, Taylor CM, Reeves CE, Murphy JG 2010. Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res. Atmos. 115:D03102
    [Google Scholar]
  68. 68.  Doran JC, Shaw WJ, Hubbe JM 1995. Boundary-layer characteristics over areas of inhomogeneous surface fluxes. J. Appl. Meteorol. 34:559–71
    [Google Scholar]
  69. 69.  Souza EP, Renno NO, Dias M 2000. Convective circulations induced by surface heterogeneities. J. Atmos. Sci. 57:2915–22
    [Google Scholar]
  70. 70.  Chagnon FJF, Bras RL, Wang J 2004. Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett. 31:L24212
    [Google Scholar]
  71. 71.  Cutrim E, Martin DW, Rabin R 1995. Enhancement of cumulus clouds over deforested lands in Amazonia. Bull. Am. Meteorol. Soc. 76:1801–5
    [Google Scholar]
  72. 72.  Wang JF, Chagnon FJF, Williams ER, Betts AK, Renno NO et al. 2009. Impact of deforestation in the Amazon basin on cloud climatology. PNAS 106:3670–74
    [Google Scholar]
  73. 73.  Durieux L, Machado LAT, Laurent H 2003. The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sens. Environ. 86:132–40
    [Google Scholar]
  74. 74.  Rabin RM, Stadler S, Wetzel PJ, Stensrud DJ, Gregory M 1990. Observed effects of landscape variability on convective clouds. Bull. Am. Meteorol. Soc. 71:272–80
    [Google Scholar]
  75. 75.  Sato T, Kimura F, Hasegawa AS 2007. Vegetation and topographic control of cloud activity over arid/semiarid Asia. J. Geophys. Res. Atmos. 112:D24109
    [Google Scholar]
  76. 76.  Nair US, Lawton RO, Welch RM, Pielke RA 2003. Impact of land use on Costa Rican tropical montane cloud forests: sensitivity of cumulus cloud field characteristics to lowland deforestation. J. Geophys. Res. Atmos. 108:D74206
    [Google Scholar]
  77. 77.  Teuling AJ, Taylor CM, Meirink JF, Melsen LA, Miralles DG et al. 2017. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. 8:14065
    [Google Scholar]
  78. 78.  Ray DK, Nair US, Welch RM, Han QY, Zeng J et al. 2003. Effects of land use in Southwest Australia: 1. Observations of cumulus cloudiness and energy fluxes. J. Geophys. Res. Atmos. 108:4414
    [Google Scholar]
  79. 79.  Garcia-Carreras L, Marsham JH, Spracklen DV 2017. Observations of increased cloud cover over irrigated agriculture in an arid environment. J. Hydrometeorol. 18:2161–72
    [Google Scholar]
  80. 80.  Heiblum RH, Koren I, Feingold G 2014. On the link between Amazonian forest properties and shallow cumulus cloud fields. Atmos. Chem. Phys. 14:6063–74
    [Google Scholar]
  81. 81.  Saha MV, Scanlon TM, D'Odorico P 2016. Suppression of rainfall by fires in African drylands. Geophys. Res. Lett. 43:8527–33
    [Google Scholar]
  82. 82.  Saha MV, D'Odorico P, Scanlon TM 2017. Albedo changes after fire as an explanation of fire-induced rainfall suppression. Geophys. Res. Lett. 44:3916–23
    [Google Scholar]
  83. 83.  Chagnon FJF, Bras RL 2005. Contemporary climate change in the Amazon. Geophys. Res. Lett. 32:L13703
    [Google Scholar]
  84. 84.  Knox R, Bisht G, Wang JF, Bras R 2011. Precipitation variability over the forest-to-nonforest transition in southwestern Amazonia. J. Climate 24:2368–77
    [Google Scholar]
  85. 85.  Funatsu BM, Dubreuil V, Claud C, Arvor D, Gan MA 2012. Convective activity in Mato Grosso state (Brazil) from microwave satellite observations: comparisons between AMSU and TRMM data sets. J. Geophys. Res. Atmos. 117:D16109
    [Google Scholar]
  86. 86.  Debortoli NS, Dubreuil V, Hirota M, Rodrigues S, Lindoso DP, Nabucet J 2017. Detecting deforestation impacts in Southern Amazonia rainfall using rain gauges. Int. J. Climatol. 37:2889–900
    [Google Scholar]
  87. 87.  Lawton RO, Nair US, Pielke RA, Welch RM 2001. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–87
    [Google Scholar]
  88. 88.  Khanna J, Medvigy D 2014. Strong control of surface roughness variations on the simulated dry season regional atmospheric response to contemporary deforestation in Rondonia, Brazil. J. Geophys. Res. Atmos. 119:13067–78
    [Google Scholar]
  89. 89.  Khanna J, Medvigy D, Fueglistaler S, Walko R 2017. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Chang. 7:200–204
    [Google Scholar]
  90. 90.  Tosca MG, Diner DJ, Garay MJ, Kalashnikova OV 2015. Human-caused fires limit convection in tropical Africa: first temporal observations and attribution. Geophys. Res. Lett. 42:6492–501
    [Google Scholar]
  91. 91.  Hodnebrog O, Myhre G, Forster PM, Sillmann J, Samset BH 2016. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat. Commun. 7:11236
    [Google Scholar]
  92. 92.  Kolusu SR, Marsham JH, Mulcahy J, Johnson B, Dunning C et al. 2015. Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts. Atmos. Chem. Phys. 15:12251–66
    [Google Scholar]
  93. 93.  Zhang Y, Fu R, Yu HB, Qian Y, Dickinson R et al. 2009. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia. Geophys. Res. Lett. 36:L10814
    [Google Scholar]
  94. 94.  Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP et al. 2004. Smoking rain clouds over the Amazon. Science 303:1337–42
    [Google Scholar]
  95. 95.  Taylor CM, de Jeu RAM, Guichard F, Harris PP, Dorigo WA 2012. Afternoon rain more likely over drier soils. Nature 489:423–26
    [Google Scholar]
  96. 96.  Taylor CM, Birch CE, Parker DJ, Dixon N, Guichard F et al. 2013. Modeling soil moisture-precipitation feedback in the Sahel: importance of spatial scale versus convective parameterization. Geophys. Res. Lett. 40:6213–18
    [Google Scholar]
  97. 97.  Stephens GL, L'Ecuyer T, Forbes R, Gettelman A, Golaz JC et al. 2010. Dreary state of precipitation in global models. J. Geophys. Res. Atmos. 115:D24211
    [Google Scholar]
  98. 98.  Dubreuil V, Funatsu BM, Michot V, Nasuti S, Debortoli N et al. 2017. Local rainfall trends and their perceptions by Amazonian communities. Clim. Change 143:461–72
    [Google Scholar]
  99. 99.  Meijaard E, Abram NK, Wells JA, Pellier AS, Ancrenaz M et al. 2013. People's perceptions about the importance of forests on Borneo. PLOS ONE 8:e73008
    [Google Scholar]
  100. 100.  Sodhi NS, Lee TM, Sekercioglu CH, Webb EL, Prawiradilaga DM et al. 2010. Local people value environmental services provided by forested parks. Biodivers. Conserv. 19:1175–88
    [Google Scholar]
  101. 101.  Gimeno L, Dominguez F, Nieto R, Trigo R, Drumond A et al. 2016. Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Resour. 41:117–41
    [Google Scholar]
  102. 102.  Shukla J, Mintz Y 1982. Influence of land-surface evapo-transpiration on the Earth's climate. Science 215:1498–501
    [Google Scholar]
  103. 103.  van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC 2010. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46:W09525
    [Google Scholar]
  104. 104.  Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K et al. 2012. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 50:RG4003
    [Google Scholar]
  105. 105.  Zemp DC, Schleussner CF, Barbosa HMJ, van der Ent RJ, Donges JF et al. 2014. On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 14:13337–59
    [Google Scholar]
  106. 106.  Sujith K, Saha SK, Pokhrel S, Hazra A, Chaudhari HS 2017. The dominant modes of recycled monsoon rainfall over India. J. Hydrometeorol. 18:2647–57
    [Google Scholar]
  107. 107.  Sori R, Nieto R, Vicente-Serrano SM, Drumond A, Gimeno L 2017. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dynam. 8:653–75
    [Google Scholar]
  108. 108.  Spracklen DV, Arnold SR, Taylor CM 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–85
    [Google Scholar]
  109. 109.  Kanae S, Oki T, Musiake K 2001. Impact of deforestation on regional precipitation over the Indochina Peninsula. J. Hydrometeorol. 2:51–70
    [Google Scholar]
  110. 110.  McAlpine CA, Johnson A, Salazar A, Syktus J, Wilson K et al. 2018. Forest loss and Borneo's climate. Environ. Res. Lett. 13:4044009
    [Google Scholar]
  111. 111.  Fernandes K, Giannini A, Verchot L, Baethgen W, Pinedo-Vasquez M 2015. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations. Geophys. Res. Lett. 42:6793–801
    [Google Scholar]
  112. 112.  Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciacao YMT et al. 2006. Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Climate 19:1490–512
    [Google Scholar]
  113. 113.  Depaiva E, Clarke RT 1995. Time trends in rainfall records in Amazonia. Bull. Am. Meteorol. Soc. 76:2203–9
    [Google Scholar]
  114. 114.  Chu PS, Yu ZP, Hastenrath S 1994. Detecting climate-change concurrent with deforestation in the Amazon Basin—Which way has it gone?. Bull. Am. Meteorol. Soc. 75:579–83
    [Google Scholar]
  115. 115.  Panday PK, Coe MT, Macedo MN, Lefebvre P, Castanho A 2015. Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J. Hydrol. 523:822–29
    [Google Scholar]
  116. 116.  Chen TC, Yoon JH, St. Croix KJ, Takle ES 2001. Suppressing impacts of the Amazonian deforestation by the global circulation change. Bull. Am. Meteorol. Soc. 82:2209–16
    [Google Scholar]
  117. 117.  Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schongart J et al. 2013. Intensification of the Amazon hydrological cycle over the last two decades. Geophys. Res. Lett. 40:1729–33
    [Google Scholar]
  118. 118.  Bell JP, Tompkins AM, Bouka-Biona C, Sanda IS 2015. A process-based investigation into the impact of the Congo basin deforestation on surface climate. J. Geophys. Res. Atmos. 120:5721–39
    [Google Scholar]
  119. 119.  Li Y, Zhao MS, Mildrexler DJ, Motesharrei S, Mu QZ et al. 2016. Potential and actual impacts of deforestation and afforestation on land surface temperature. J. Geophys. Res. Atmos. 121:14372–86
    [Google Scholar]
  120. 120.  Sabajo CR, le Maire G, June T, Meijide A, Roupsard O, Knohl A 2017. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia. Biogeosciences 14:4619–35
    [Google Scholar]
  121. 121.  Akkermans T, Thiery W, Van Lipzig NPM 2014. The regional climate impact of a realistic future deforestation scenario in the Congo Basin. J. Climate 27:2714–34
    [Google Scholar]
  122. 122.  Perugini L, Caporaso L, Marconi S, Cescatti A, Quesada B et al. 2017. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 12:053002
    [Google Scholar]
  123. 123.  Badger AM, Dirmeyer PA 2016. Diagnosing nonlinearities in the local and remote responses to partial Amazon deforestation. J. Geophys. Res. Atmos. 121:9033–47
    [Google Scholar]
  124. 124.  van der Molen MK, Dolman AJ, Waterloo MJ, Bruijnzeel LA 2006. Climate is affected more by maritime than by continental land use change: a multiple scale analysis. Glob. Planet. Change 54:128–49
    [Google Scholar]
  125. 125.  Takahashi A, Kumagai T, Kanamori H, Fujinami H, Hiyama T, Hara M 2017. Impact of tropical deforestation and forest degradation on precipitation over Borneo Island. J. Hydrometeorol. 18:2907–22
    [Google Scholar]
  126. 126.  Paul S, Ghosh S, Oglesby R, Pathak A, Chandrasekharan A, Ramsankaran R 2016. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 6:32177
    [Google Scholar]
  127. 127.  Yamashima R, Matsumoto J, Takata K, Takahashi HG 2015. Impact of historical land-use changes on the Indian summer monsoon onset. Int. J. Climatol. 35:2419–30
    [Google Scholar]
  128. 128.  Spera SA, Galford GL, Coe MT, Macedo MN, Mustard JF 2016. Land-use change affects water recycling in Brazil's last agricultural frontier. Glob. Change Biol. 22:3405–13
    [Google Scholar]
  129. 129.  Arantes AE, Ferreira LG, Coe MT 2016. The seasonal carbon and water balances of the Cerrado environment of Brazil: past, present, and future influences of land cover and land use. ISPRS-J. Photogramm. Remote Sens. 117:66–78
    [Google Scholar]
  130. 130.  Boers N, Marwan N, Barbosa HMJ, Kurths J 2017. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7:41489
    [Google Scholar]
  131. 131.  Tosca MG, Randerson JT, Zender CS, Flanner MG, Rasch PJ 2010. Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?. Atmos. Chem. Phys. 10:3515–28
    [Google Scholar]
  132. 132.  Lee D, Sud YC, Oreopoulos L, Kim KM, Lau WK, Kang IS 2014. Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia. Atmos. Chem. Phys. 14:6853–66
    [Google Scholar]
  133. 133.  Gu Y, Liou KN, Jiang JH, Fu R, Lu S, Xue Y 2017. A GCM investigation of impact of aerosols on the precipitation in Amazon during the dry to wet transition. Clim. Dyn. 48:2393–404
    [Google Scholar]
  134. 134.  Werth D, Avissar R 2002. The local and global effects of Amazon deforestation. J. Geophys. Res. Atmos. 107:D208087
    [Google Scholar]
  135. 135.  Medvigy D, Walko RL, Otte MJ, Avissar R 2013. Simulated changes in Northwest US climate in response to Amazon deforestation. J. Climate 26:9115–36
    [Google Scholar]
  136. 136.  Voldoire A, Royer JF 2005. Climate sensitivity to tropical land surface changes with coupled versus prescribed SSTs. Clim. Dyn. 24:843–62
    [Google Scholar]
  137. 137.  Findell KL, Knutson TR, Milly PCD 2006. Weak simulated extratropical responses to complete tropical deforestation. J. Climate 19:2835–50
    [Google Scholar]
  138. 138.  Badger AM, Dirmeyer PA 2016. Remote tropical and sub-tropical responses to Amazon deforestation. Clim. Dyn. 46:3057–66
    [Google Scholar]
  139. 139.  Foley JA, DeFries R, Asner GP, Barford C, Bonan G et al. 2005. Global consequences of land use. Science 309:570–74
    [Google Scholar]
  140. 140.  Ramankutty N, Evan AT, Monfreda C, Foley JA 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycle 22:GB1003
    [Google Scholar]
  141. 141.  Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850–53
    [Google Scholar]
  142. 142.  Davidson EA, de Araujo AC, Artaxo P, Balch JK, Brown IF et al. 2012. The Amazon basin in transition. Nature 481:321–28
    [Google Scholar]
  143. 143.  Salazar A, Baldi G, Hirota M, Syktus J, McAlpine C 2015. Land use and land cover change impacts on the regional climate of non-Amazonian South America: a review. Glob. Planet. Change 128:103–19
    [Google Scholar]
  144. 144.  Soares BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA et al. 2006. Modelling conservation in the Amazon basin. Nature 440:520–23
    [Google Scholar]
  145. 145.  Giambelluca TW 2002. Hydrology of altered tropical forest. Hydrol. Process. 16:1665–69
    [Google Scholar]
  146. 146.  Warren-Thomas E, Dolman PM, Edwards DP 2015. Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity. Conserv. Lett. 8:230–41
    [Google Scholar]
  147. 147.  Quesada B, Arneth A, de Noblet-Ducoudre N 2017. Atmospheric, radiative, and hydrologic effects of future land use and land cover changes: a global and multimodel climate picture. J. Geophys. Res. Atmos. 122:5113–31
    [Google Scholar]
  148. 148.  Wright JS, Fu R, Worden JR, Chakraborty S, Clinton NE et al. 2017. Rainforest-initiated wet season onset over the southern Amazon. PNAS 114:8481–86
    [Google Scholar]
  149. 149.  Quesada B, Devaraju N, de Noblet-Ducoudre N, Arneth A 2017. Reduction of monsoon rainfall in response to past and future land use and land cover changes. Geophys. Res. Lett. 44:1041–50
    [Google Scholar]
  150. 150.  Sy S, de Noblet-Ducoudre N, Quesada B, Sy I, Dieye AM et al. 2017. Land-surface characteristics and climate in West Africa: models’ biases and impacts of historical anthropogenically-induced deforestation. Sustainability 9:1917
    [Google Scholar]
  151. 151.  Wang GL, Yu M, Xue YK 2016. Modeling the potential contribution of land cover changes to the late twentieth century Sahel drought using a regional climate model: impact of lateral boundary conditions. Clim. Dyn. 47:3457–77
    [Google Scholar]
  152. 152.  Medvigy D, Walko RL, Avissar R 2011. Effects of deforestation on spatiotemporal distributions of precipitation in South America. J. Climate 24:2147–63
    [Google Scholar]
  153. 153.  Vanden Broucke S, Van Lipzig N 2017. Do convection-permitting models improve the representation of the impact of LUC?. Clim. Dyn. 49:2749–63
    [Google Scholar]
  154. 154.  Badger AM, Dirmeyer PA 2015. Climate response to Amazon forest replacement by heterogeneous crop cover. Hydrol. Earth Syst. Sci. 19:4547–57
    [Google Scholar]
  155. 155.  Nobre P, Malagutti M, Urbano DF, de Almeida RAF, Giarolla E 2009. Amazon deforestation and climate change in a coupled model simulation. J. Climate 22:5686–97
    [Google Scholar]
  156. 156.  Sheil D, Murdiyarso D 2009. How forests attract rain: an examination of a new hypothesis. Bioscience 59:341–47
    [Google Scholar]
  157. 157.  Makarieva AM, Gorshkov VG 2007. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology Earth Syst. Sci. 11:1013–33
    [Google Scholar]
  158. 158.  Zemp DC, Schleussner CF, Barbosa HMJ, Rammig A 2017. Deforestation effects on Amazon forest resilience. Geophys. Res. Lett. 44:6182–90
    [Google Scholar]
  159. 159.  Zemp DC, Schleussner CF, Barbosa HMJ, Hirota M, Montade V et al. 2017. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8:14681
    [Google Scholar]
  160. 160.  Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, ter Steege H et al. 2017. Seasonal drought limits tree species across the Neotropics. Ecography 40:618–29
    [Google Scholar]
  161. 161.  Esquivel-Muelbert A, Galbraith D, Dexter KG, Baker TR, Lewis SL et al. 2017. Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances. Sci. Rep. 7:8334
    [Google Scholar]
  162. 162.  Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE et al. 2014. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. PNAS 111:6347–52
    [Google Scholar]
  163. 163.  Le Page Y, Morton D, Hartin C, Bond-Lamberty B, Pereira JMC et al. 2017. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst. Dynam. 8:1237–46
    [Google Scholar]
  164. 164.  Wang XF, Edwards RL, Auler AS, Cheng H, Kong XG et al. 2017. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541:204–7
    [Google Scholar]
  165. 165.  Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L 2004. Increasing biomass in Amazonian forest plots. Philos. Trans. R. Soc. Lond. B 359:353–65
    [Google Scholar]
  166. 166.  Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR et al. 2009. Increasing carbon storage in intact African tropical forests. Nature 457:1003
    [Google Scholar]
  167. 167.  Qie L, Lewis SL, Sullivan MJP, Lopez-Gonzalez G, Pickavance GC et al. 2017. Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. Nature Commun 8:1966
    [Google Scholar]
  168. 168.  Halladay K, Good P 2017. Non-linear interactions between CO2 radiative and physiological effects on Amazonian evapotranspiration in an Earth system model. Clim. Dyn. 49:2471–90
    [Google Scholar]
  169. 169.  Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW et al. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–27
    [Google Scholar]
  170. 170.  Kooperman GJ, Chen Y, Hoffman FM, Koven CD, Lindsay K et al. 2018. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8:434–40
    [Google Scholar]
  171. 171.  Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519:344–48
    [Google Scholar]
  172. 172.  Pitman AJ, Lorenz R 2016. Scale dependence of the simulated impact of Amazonian deforestation on regional climate. Environ. Res. Lett. 11:094025
    [Google Scholar]
  173. 173.  Mathon V, Laurent H, Lebel T 2002. Mesoscale convective system rainfall in the Sahel. J. Appl. Meteorol. 41:1081–92
    [Google Scholar]
  174. 174.  Marsham JH, Dixon NS, Garcia-Carreras L, Lister GMS, Parker DJ et al. 2013. The role of moist convection in the West African monsoon system: insights from continental-scale convection-permitting simulations. Geophys. Res. Lett. 40:1843–49
    [Google Scholar]
  175. 175.  Birch CE, Parker DJ, O'Leary A, Marsham JH, Taylor CM et al. 2013. Impact of soil moisture and convectively generated waves on the initiation of a West African mesoscale convective system. Q. J. R. Meteorol. Soc. 139:1712–30
    [Google Scholar]
  176. 176.  Coe MT, Brando PM, Deegan LA, Macedo MN, Neill C, Silvério DV 2017. The forests of the Amazon and Cerrado moderate regional climate and are the key to the future. Trop. Conserv. Sci. 10:1940082917720671
    [Google Scholar]
  177. 177.  Gullison RE, Frumhoff PC, Canadell JG, Field CB, Nepstad DC et al. 2007. Tropical forests and climate policy. Science 316:985–86
    [Google Scholar]
  178. 178.  Bagley JE, Desai AR, Dirmeyer PA, Foley JA 2012. Effects of land cover change on moisture availability and potential crop yield in the world's breadbaskets. Environ. Res. Lett. 7:014009
    [Google Scholar]
  179. 179.  Oliveira LJC, Costa MH, Soares BS, Coe MT 2013. Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ. Res. Lett. 8:024021
    [Google Scholar]
  180. 180.  Ahmed KF, Wang GL, You LZ, Anyah R, Zhang CR, Burnicki A 2017. Projecting regional climate and cropland changes using a linked biogeophysical-socioeconomic modeling framework: 2. Transient dynamics. J. Adv. Model. Earth Syst. 9:377–88
    [Google Scholar]
  181. 181.  Cohn A 2017. Leveraging climate regulation by ecosystems for agriculture to promote ecosystem stewardship. Trop. Conserv. Sci. 10:1940082917720672
    [Google Scholar]
  182. 182.  Syktus JI, McAlpine CA 2016. More than carbon sequestration: biophysical climate benefits of restored savanna woodlands. Sci. Rep. 6:29194
    [Google Scholar]
  183. 183.  Wulfmeyer V, Branch O, Warrach-Sagi K, Bauer HS, Schwitalla T, Becker K 2014. The impact of plantations on weather and climate in coastal desert regions. J. Appl. Meteorol. Climatol. 53:1143–69
    [Google Scholar]
  184. 184.  Marengo JA, Espinoza JC 2016. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36:1033–50
    [Google Scholar]
  185. 185.  Bagley JE, Desai AR, Harding KJ, Snyder PK, Foley JA 2014. Drought and deforestation: Has land cover change influenced recent precipitation extremes in the Amazon?. J. Climate 27:345–61
    [Google Scholar]
  186. 186.  Findell KL, Berg A, Gentine P, Krasting JP, Lintner BR et al. 2017. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 8:989
    [Google Scholar]
  187. 187.  Dirmeyer PA, Brubaker KL, DelSole T 2009. Import and export of atmospheric water vapor between nations. J. Hydrol. 365:11–22
    [Google Scholar]
  188. 188.  Keys PW, van der Ent RJ, Gordon LJ, Hoff H, Nikoli R, Savenije HHG 2012. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9:733–46
    [Google Scholar]
  189. 189.  Bright RM 2015. Metrics for biogeophysical climate forcings from land use and land cover changes and their inclusion in life cycle assessment: a critical review. Environ. Sci. Technol. 49:3291–303
    [Google Scholar]
  190. 190.  West PC, Narisma GT, Barford CC, Kucharik CJ, Foley JA 2011. An alternative approach for quantifying climate regulation by ecosystems. Front. Ecol. Environ. 9:126–33
    [Google Scholar]
  191. 191.  Halder S, Saha SK, Dirmeyer PA, Chase TN, Goswami BN 2016. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrol. Earth Syst. Sci. 20:1765–84
    [Google Scholar]
  192. 192.  Polcher J, Laval K 1994. The impact of African and Amazonian deforestation on tropical climate. J. Hydrol. 155:389–405
    [Google Scholar]
  193. 193.  Nogherotto R, Coppola E, Giorgi F, Mariotti L 2013. Impact of Congo Basin deforestation on the African monsoon. Atmos. Sci. Lett. 14:45–51
    [Google Scholar]
  194. 194.  Varejao-Silva MA, Franchito SH, Rao VB 1998. A coupled biosphere-atmosphere climate model suitable for studies of climatic change due to land surface alterations. J. Climate 11:1749–67
    [Google Scholar]
  195. 195.  Semazzi FHM, Song Y 2001. A GCM study of climate change induced by deforestation in Africa. Clim. Res. 17:169–82
    [Google Scholar]
  196. 196.  Osborne TM, Lawrence DM, Slingo JM, Challinor AJ, Wheeler TR 2004. Influence of vegetation on the local climate and hydrology in the tropics: sensitivity to soil parameters. Clim. Dyn. 23:45–61
    [Google Scholar]
  197. 197.  Paeth H, Born K, Girmes R, Podzun R, Jacob D 2009. Regional climate change in tropical and Northern Africa due to greenhouse forcing and land use changes. J. Climate 22:114–32
    [Google Scholar]
  198. 198.  Saleska SR, da Rocha HR, Huete AR, Nobre AD, Artaxo P, Shimabukuro YE 2013. LBA-ECO CD-32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999–2006. Data set. Distrib. Active Archive Cent., Oak Ridge Nat. Lab. Oak Ridge, TN: http://dx.doi.org/10.3334/ORNLDAAC/1174
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-environ-102017-030136
Loading
/content/journals/10.1146/annurev-environ-102017-030136
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error