1932

Abstract

Global atmospheric methane concentrations have continued to rise in recent years, having already more than doubled since the Industrial Revolution. Further environmental change, especially climate change, in the twenty-first century has the potential to radically alter global methane fluxes. Importantly, changes in temperature, precipitation, and net primary production may induce positive climate feedback effects in dominant natural methane sources such as wetlands, soils, and aquatic ecosystems. Anthropogenic methane sources may also be impacted, with a risk of enhanced emissions from the energy, agriculture, and waste sectors. Here, we review the global sources of methane, the trends in fluxes by source and sector, and their possible evolution in response to future environmental change. We discuss ongoing uncertainties in flux estimation and projection, and highlight the great potential for multisector methane mitigation as part of wider global climate change policy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102017-030154
2018-10-17
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/energy/43/1/annurev-environ-102017-030154.html?itemId=/content/journals/10.1146/annurev-environ-102017-030154&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Reay DS, Smith KA, Hewitt CN 2007. Methane: importance, sources and sinks. Greenhouse Gas Sinks DS Reay, CN Hewitt, KA Grace 143–51 Oxfordshire, UK: CABI Publ.
    [Google Scholar]
  2. 2.  Wuebbles DJ, Hayhoe K 2002. Atmospheric methane and global change. Earth-Sci. Rev. 57:177–210
    [Google Scholar]
  3. 3.  Dlugokencky E, Houweling S, Bruhwiler L, Masarie K, Lang P et al. 2003. Atmospheric methane levels off: Temporary pause or a new steady-state?. Geophys. Res. Lett. 30:19 https://doi.org/10.1029/2003GL018126
    [Crossref] [Google Scholar]
  4. 4.  Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG et al. 2013. Three decades of global methane sources and sinks. Nat. Geosci. 6:813–23
    [Google Scholar]
  5. 5.  Nisbet EG, Dlugokencky EJ, Bousquet P 2014. Methane on the rise—again. Science 343:493–95
    [Google Scholar]
  6. 6.  Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG 2016. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 11:120207
    [Google Scholar]
  7. 7.  Turner AJ, Frankenberg C, Wennberg PO, Jacob DJ 2017. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. PNAS 114:5367–72
    [Google Scholar]
  8. 8.  Myhre G, Shindell D, Bréon F, Collins W, Fuglestvedt J et al. 2013. Anthropogenic and natural radiative forcing. See Ref. 9 659–740
  9. 9. Intergov. Panel Clim. Change. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  10. 10.  Lelieveld J, Crutzen PJ, Dentener FJ 1998. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B 50:128–50
    [Google Scholar]
  11. 11. Intergov. Panel Clim. Change. 1990. Climate Change 1990: The Scientific Basis. Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  12. 12.  Rigby M, Montzka SA, Prinn RG, White JW, Young D et al. 2017. Role of atmospheric oxidation in recent methane growth. PNAS 114:5373–77
    [Google Scholar]
  13. 13.  Holmes CD, Prather MJ, Søvde O, Myhre G 2013. Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions. Atmos. Chem. Phys. 13:285–302
    [Google Scholar]
  14. 14.  Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE 2009. Improved attribution of climate forcing to emissions. Science 326:716–18
    [Google Scholar]
  15. 15.  Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G et al. 2005. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–21
    [Google Scholar]
  16. 16.  Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T et al. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–86
    [Google Scholar]
  17. 17.  Zhu Q, Peng C, Ciais P, Jiang H, Liu J et al. 2017. Inter-annual variation in methane emissions from tropical wetlands triggered by repeated El Niño southern oscillation. Glob. Change Biol. 23:4706–16
    [Google Scholar]
  18. 18. NOAA. 2017. Multivariate ENSO Index (MEI) Earth Syst. Res. Lab. NOAA: https://www.esrl.noaa.gov/psd/enso/mei/
    [Google Scholar]
  19. 19.  Singarayer JS, Valdes PJ, Friedlingstein P, Nelson S, Beerling DJ 2011. Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470:82–85
    [Google Scholar]
  20. 20.  Kennett JP, Cannariato KG, Hendy IL, Behl RJ 2003. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis Washington, DC: Am. Geophys. Union
    [Google Scholar]
  21. 21.  Maslin M, Owen M, Day S, Long D 2004. Linking continental-slope failures and climate change: testing the clathrate gun hypothesis. Geology 32:53–56
    [Google Scholar]
  22. 22.  Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. See Ref. 9 465–570
  23. 23. World Meteorol. Organ. (WMO). 2017. The state of greenhouse gases in the atmosphere based on global observations through 2016 WMO Greenhouse Gas Bull. 13 WMO Geneva:
    [Google Scholar]
  24. 24.  Dlugokencky E, Bruhwiler L, White J, Emmons L, Novelli PC et al. 2009. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 36: https://doi.org/10.1029/2009GL039780
    [Crossref] [Google Scholar]
  25. 25.  Poulter B, Bousquet P, Canadell JG, Ciais P, Peregon A et al. 2017. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 12:094013
    [Google Scholar]
  26. 26.  Worden JR, Bloom AA, Pandey S, Jiang Z, Worden HM et al. 2017. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat. Commun. 8:2227
    [Google Scholar]
  27. 27.  Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D 2011. Global atmospheric methane: budget, changes and dangers. Philos. Trans. R. Soc. Lond. A 369:2058–72
    [Google Scholar]
  28. 28.  Riley WJ, Subin ZM, Lawrence DM, Swenson SC, Torn MS et al. 2011. Barriers to predicting changes in global terrestrial methane fluxes: analysis using CLM4ME, a methane biogeochemistry model integrated in CESM. Biogeosciences 8:1925–53
    [Google Scholar]
  29. 29.  Dunfield PF 2007. The soil methane sink. Greenhouse Gas Sinks D Reay, CN Hewitt, KA Smith, J Grace 152–70 Oxfordshire, UK: CABI Publ.
    [Google Scholar]
  30. 30.  Reay D, Smith P, Van Amstel A 2010. Methane and Climate Change London: Routledge
    [Google Scholar]
  31. 31.  Worden H, Deeter M, Frankenberg C, George M, Nichitiu F et al. 2013. Decadal record of satellite carbon monoxide observations. Atmos. Chem. Phys. 13:837–50
    [Google Scholar]
  32. 32.  Fry M, Schwarzkopf M, Adelman Z, West J 2014. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions. Atmos. Chem. Phys. 14:523–35
    [Google Scholar]
  33. 33.  Naik V, Voulgarakis A, Fiore AM, Horowitz L, Lamarque J-F et al. 2013. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13:5277–98
    [Google Scholar]
  34. 34.  Bodelier PL, Laanbroek HJ 2004. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47:265–77
    [Google Scholar]
  35. 35.  Hütsch BW, Webster CP, Powlson DS 1994. Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biol. Biochem. 26:1613–22
    [Google Scholar]
  36. 36.  Whalen S, Reeburgh W 1990. Consumption of atmospheric methane by tundra soils. Nature 346:160–62
    [Google Scholar]
  37. 37.  Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P et al. 2016. The global methane budget 2000–2012. Earth Syst. Sci. Data 8:697–751
    [Google Scholar]
  38. 38.  Melton J, Wania R, Hodson E, Poulter B, Ringeval B et al. 2013. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10:753–88
    [Google Scholar]
  39. 39.  Bousquet P, Ciais P, Miller J, Dlugokencky E, Hauglustaine D et al. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–43
    [Google Scholar]
  40. 40.  Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C 2010. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327:322–25
    [Google Scholar]
  41. 41.  Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54:2298–314
    [Google Scholar]
  42. 42.  Archer D, Buffett B, Brovkin V 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. PNAS 106:20596–601
    [Google Scholar]
  43. 43.  Keppler F, Hamilton JT, Braß M, Röckmann T 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–91
    [Google Scholar]
  44. 44.  McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS et al. 2008. Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180:124–32
    [Google Scholar]
  45. 45.  Bloom AA, Lee-Taylor J, Madronich S, Messenger DJ, Palmer PI et al. 2010. Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. New Phytol 187:417–25
    [Google Scholar]
  46. 46.  James S, James C 2010. The food cold-chain and climate change. Food Res. Int. 43:1944–56
    [Google Scholar]
  47. 47.  Porter S, Reay D 2015. Addressing food supply chain and consumption inefficiencies: potential for climate change mitigation. Reg. Environ. Change 16:2279–90
    [Google Scholar]
  48. 48. U.S. Environmental Protection Agency (EPA). 2017. Global mitigation of non-CO2 greenhouse gases: 2010–2030 Rep. EPA-430-S-14–001 Off. Atmos. Progr., EPA Washington, DC:
    [Google Scholar]
  49. 49.  Chae K, Jang A, Yim S, Kim IS 2008. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 99:1–6
    [Google Scholar]
  50. 50.  Elsgaard L, Olsen AB, Petersen SO 2016. Temperature response of methane production in liquid manures and co-digestates. Sci. Total Environ. 539:78–84
    [Google Scholar]
  51. 51.  Husted S 1994. Seasonal variation in methane emission from stored slurry and solid manures. J. Environ. Q. 23:585–92
    [Google Scholar]
  52. 52.  Hugelius G, Tarnocai C, Broll G, Canadell JG, Kuhry P, Swanson DK 2013. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5:3–13
    [Google Scholar]
  53. 53.  Meng L, Hess PG, Mahowald NM, Yavitt JB, Riley WJ et al. 2012. Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations. Biogeosciences 9:2793–819
    [Google Scholar]
  54. 54.  Gedney N, Cox P, Huntingford C 2004. Climate feedback from wetland methane emissions. Geophys. Res. Lett. 31:L20503
    [Google Scholar]
  55. 55. Intergov. Panel Clim. Change. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  56. 56.  Singh BK, Bardgett RD, Smith P, Reay DS 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8:779–90
    [Google Scholar]
  57. 57.  Paudel R, Mahowald NM, Hess PG, Meng L, Riley WJ 2016. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC. Environ. Res. Lett. 11:034020
    [Google Scholar]
  58. 58.  Zhu QA, Peng CH, Liu JX, Jiang H, Fang XQ et al. 2016. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Sci. Rep. 6:38020
    [Google Scholar]
  59. 59.  Jauhiainen J, Kerojoki O, Silvennoinen H, Limin S, Vasander H 2014. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ. Res. Lett. 9:105013
    [Google Scholar]
  60. 60.  Zhang Z, Zimmermann NE, Stenke A, Li X, Hodson EL et al. 2017. Emerging role of wetland methane emissions in driving 21st century climate change. PNAS 114:9647–52
    [Google Scholar]
  61. 61.  Watts JD, Kimball JS, Bartsch A, McDonald KC 2014. Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9:075001
    [Google Scholar]
  62. 62.  Dutaur L, Verchot LV 2007. A global inventory of the soil CH4 sink. Glob. Biogeochem. Cycles 21:GB4013
    [Google Scholar]
  63. 63.  Tate KR 2015. Soil methane oxidation and land-use change—from process to mitigation. Soil Biol. Biochem. 80:260–72
    [Google Scholar]
  64. 64.  Le Mer J, Roger P 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37:25–50
    [Google Scholar]
  65. 65.  Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC et al. 2016. Cold season emissions dominate the Arctic tundra methane budget. PNAS 113:40–45
    [Google Scholar]
  66. 66.  Tarnocai C, Canadell J, Schuur E, Kuhry P, Mazhitova G, Zimov S 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23:GB2023
    [Google Scholar]
  67. 67.  Ho A, Erens H, Mujinya BB, Boeckx P, Baert G et al. 2013. Termites facilitate methane oxidation and shape the methanotrophic community. Appl. Environ. Microbiol. 79:7234–40
    [Google Scholar]
  68. 68.  Ojima D, Valentine D, Mosier A, Parton W, Schimel D 1993. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere 26:675–85
    [Google Scholar]
  69. 69.  Curry CL 2007. Modeling the soil consumption of atmospheric methane at the global scale. Glob. Biogeochem. Cycles 21:GB4012
    [Google Scholar]
  70. 70.  Curry C 2009. The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6:2355–67
    [Google Scholar]
  71. 71.  Van Groenigen KJ, Osenberg CW, Hungate BA 2011. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475:214–16
    [Google Scholar]
  72. 72.  Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P et al. 2011. Permafrost carbon-climate feedbacks accelerate global warming. PNAS 108:14769–74
    [Google Scholar]
  73. 73.  Reay DS, Nedwell DB 2004. Methane oxidation in temperate soils: effects of inorganic N. Soil Biol. Biochem. 36:2059–65
    [Google Scholar]
  74. 74.  Liu Y, Stanturf J, Goodrick S 2010. Trends in global wildfire potential in a changing climate. Forest Ecol. Manag. 259:685–97
    [Google Scholar]
  75. 75.  Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM 2013. Global wildland fire season severity in the 21st century. Forest Ecol. Manag. 294:54–61
    [Google Scholar]
  76. 76.  Andreae MO, Merlet P 2001. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 15:955–66
    [Google Scholar]
  77. 77.  Turetsky MR, Benscoter B, Page S, Rein G, Van Der Werf GR, Watts A 2015. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8:11–14
    [Google Scholar]
  78. 78.  Knorr W, Jiang L, Arneth A 2016. Climate, CO2 and human population impacts on global wildfire emissions. Biogeosciences 13:267–82
    [Google Scholar]
  79. 79.  McNamara NP, Gregg R, Oakley S, Stott A, Rahman MT et al. 2015. Soil methane sink capacity response to a long-term wildfire chronosequence in northern Sweden. PLOS ONE 10:e0129892
    [Google Scholar]
  80. 80.  Sullivan BW, Kolb TE, Hart SC, Kaye JP, Hungate BA et al. 2011. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA. Biogeochemistry 104:251–65
    [Google Scholar]
  81. 81. EPA. 2010. Methane and nitrous oxide emissions from natural sources Rep. EPA 430-R-10-001, Off. Atmos. Progr., EPA, Washington, DC
    [Google Scholar]
  82. 82.  Milkov AV 2004. Global estimates of hydrate-bound gas in marine sediments: How much is really out there?. Earth-Sci. Rev. 66:183–97
    [Google Scholar]
  83. 83.  Myhre CL, Ferré B, Platt SM, Silyakova A, Hermansen O et al. 2016. Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophys. Res. Lett. 43:4624–31
    [Google Scholar]
  84. 84.  de Angelis MA, Lee C 1994. Methane production during zooplankton grazing on marine phytoplankton. Limnol. Oceanogr. 39:1298–308
    [Google Scholar]
  85. 85.  Repeta DJ, Ferrón S, Sosa OA, Johnson CG, Repeta LD et al. 2016. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat. Geosci. 9:884–87
    [Google Scholar]
  86. 86.  Damm E, Helmke E, Thoms S, Schauer U, Nöthig E et al. 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7:1099–108
    [Google Scholar]
  87. 87.  Butler JH, Jones RD, Garber JH, Gordon LI 1987. Seasonal distributions and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon. Geochim. Cosmochim. Acta 51:697–706
    [Google Scholar]
  88. 88.  Cotovicz LC, Knoppers BA, Brandini N, Poirier D, Costa Santos SJ, Abril G 2016. Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil). Limnol. Oceanogr. 61:S235–52
    [Google Scholar]
  89. 89.  Leifer I, Judd A 2015. The UK22/4b blowout 20 years on: investigations of continuing methane emissions from sub-seabed to the atmosphere in a North Sea context. Mar. Petroleum Geol. 68:706–17
    [Google Scholar]
  90. 90.  Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW et al. 2011. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:312–15
    [Google Scholar]
  91. 91.  Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–26
    [Google Scholar]
  92. 92.  Reeburgh WS 2007. Oceanic methane biogeochemistry. Chem. Rev. 107:486–513
    [Google Scholar]
  93. 93.  Nauw J, de Haas H, Rehder G 2015. A review of oceanographic and meteorological controls on the North Sea circulation and hydrodynamics with a view to the fate of North Sea methane from well site 22/4b and other seabed sources. Mar. Petroleum Geol. 68:861–82
    [Google Scholar]
  94. 94.  McGinnis DF, Greinert J, Artemov Y, Beaubien S, Wüest A 2006. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?. J. Geophys. Res. Oceans 111:C09007
    [Google Scholar]
  95. 95.  Solomon EA, Kastner M, MacDonald IR, Leifer I 2009. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nat. Geosci. 2:561–65
    [Google Scholar]
  96. 96.  Bange HW, Bartell U, Rapsomanikis S, Andreae MO 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Glob. Biogeochem. Cycles 8:465–80
    [Google Scholar]
  97. 97.  Bakker DC, Bange HW, Gruber N, Johannessen T, Upstill-Goddard RC et al. 2014. Air-sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a changing climate. Ocean-Atmosphere Interactions of Gases and Particles PS Liss, MT Johnson 113–69 London: Springer
    [Google Scholar]
  98. 98.  Borges AV, Champenois W, Gypens N, Delille B, Harlay J 2016. Massive marine methane emissions from near-shore shallow coastal areas. Sci. Rep. 6:27908
    [Google Scholar]
  99. 99.  Barnes J, Ramesh R, Purvaja R, Nirmal Rajkumar A, Senthil Kumar B et al. 2006. Tidal dynamics and rainfall control N2O and CH4 emissions from a pristine mangrove creek. Geophys. Res. Lett. 33:L15405
    [Google Scholar]
  100. 100.  Gelesh L, Marshall K, Boicourt W, Lapham L 2016. Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, USA. Limnol. Oceanogr. 61:S253–66
    [Google Scholar]
  101. 101.  Naqvi S, Bange HW, Farías L, Monteiro P, Scranton M, Zhang J 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7:2159–90
    [Google Scholar]
  102. 102.  Rahmstorf S, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5:475–80
    [Google Scholar]
  103. 103.  Capotondi A, Alexander MA, Bond NA, Curchitser EN, Scott JD 2012. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Oceans 117:C04031
    [Google Scholar]
  104. 104.  Kitidis V, Upstill-Goddard RC, Anderson LG 2010. Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean. Mar. Chem. 121:80–86
    [Google Scholar]
  105. 105.  Kort E, Wofsy S, Daube B, Diao M, Elkins J et al. 2012. Atmospheric observations of Arctic Ocean methane emissions up to 82° north. Nat. Geosci. 5:318–21
    [Google Scholar]
  106. 106.  Maslanik J, Fowler C, Stroeve J, Drobot S, Zwally J et al. 2007. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett. 34:L24501
    [Google Scholar]
  107. 107.  Loose B, McGillis WR, Perovich D, Zappa CJ, Schlosser P 2014. A parameter model of gas exchange for the seasonal sea ice zone. Ocean Sci 10:17–28
    [Google Scholar]
  108. 108.  Thomson J, Rogers WE 2014. Swell and sea in the emerging Arctic Ocean. Geophys. Res. Lett. 41:3136–40
    [Google Scholar]
  109. 109.  Damm E, Rudels B, Schauer U, Mau S, Dieckmann G 2015. Methane excess in Arctic surface water-triggered by sea ice formation and melting. Sci. Rep. 5:16179
    [Google Scholar]
  110. 110.  Parmentier F-JW, Christensen TR, Sørensen LL, Rysgaard S, McGuire AD et al. 2013. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nat. Clim. Change 3:195–202
    [Google Scholar]
  111. 111.  Marín-Moreno H, Minshull TA, Westbrook GK, Sinha B, Sarkar S 2013. The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries. Geophys. Res. Lett. 40:5159–63
    [Google Scholar]
  112. 112.  Westbrook GK, Thatcher KE, Rohling EJ, Piotrowski AM, Pälike H et al. 2009. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys. Res. Lett. 36:L15608
    [Google Scholar]
  113. 113.  Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson Ö 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327:1246–50
    [Google Scholar]
  114. 114.  Dmitrenko IA, Kirillov SA, Tremblay LB, Kassens H, Anisimov OA et al. 2011. Recent changes in shelf hydrography in the Siberian Arctic: potential for subsea permafrost instability. J. Geophys. Res. Oceans 116:C10027
    [Google Scholar]
  115. 115.  Treude T, Boetius A, Knittel K, Wallmann K, Jørgensen BB 2003. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar. Ecol. Prog. Ser. 264:1–14
    [Google Scholar]
  116. 116.  Ruppel C 2011. Methane hydrates and contemporary climate change. Nat. Educ. Knowl. 3:29
    [Google Scholar]
  117. 117.  Bange HW 2006. Nitrous oxide and methane in European coastal waters. Estuar. Coast. Shelf Sci. 70:361–74
    [Google Scholar]
  118. 118.  Skarke A, Ruppel C, Kodis M, Brothers D, Lobecker E 2014. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 7:657–61
    [Google Scholar]
  119. 119.  Knittel K, Boetius A 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63:311–34
    [Google Scholar]
  120. 120.  Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A 2011. Freshwater methane emissions offset the continental carbon sink. Science 331:50
    [Google Scholar]
  121. 121.  Upstill-Goddard RC, Barnes J 2016. Methane emissions from UK estuaries: re-evaluating the estuarine source of tropospheric methane from Europe. Mar. Chem. 180:14–23
    [Google Scholar]
  122. 122.  Tang KW, McGinnis DF, Frindte K, Brüchert V, Grossart H-P 2014. Paradox reconsidered: methane oversaturation in well-oxygenated lake waters. Limnol. Oceanogr. 59:275–84
    [Google Scholar]
  123. 123.  Bastviken D, Cole J, Pace M, Tranvik L 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18:GB4009
    [Google Scholar]
  124. 124.  Tan Z, Zhuang Q 2015. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ. Res. Lett. 10:054016
    [Google Scholar]
  125. 125.  Jankowski T, Livingstone DM, Bührer H, Forster R, Niederhauser P 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51:815–19
    [Google Scholar]
  126. 126.  Sawakuchi HO, Bastviken D, Sawakuchi AO, Krusche AV, Ballester MV, Richey JE 2014. Methane emissions from Amazonian rivers and their contribution to the global methane budget. Glob. Change Biol. 20:2829–40
    [Google Scholar]
  127. 127.  Fearnside PM 2016. Greenhouse gas emissions from Brazil's Amazonian hydroelectric dams. Environ. Res. Lett. 11:011002
    [Google Scholar]
  128. 128.  Pagano T, Bida M, Kenny JE 2014. Trends in levels of allochthonous dissolved organic carbon in natural water: a review of potential mechanisms under a changing climate. Water 6:2862–97
    [Google Scholar]
  129. 129.  Anderson NJ, Bennion H, Lotter AF 2014. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob. Change Biol. 20:2741–51
    [Google Scholar]
  130. 130.  Tapio I, Snelling TJ, Strozzi F, Wallace RJ 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 8:7
    [Google Scholar]
  131. 131.  Hristov AN, Oh J, Lee C, Meinen R, Montes F et al. 2013. Mitigation of greenhouse gas emissions in livestock production: a review of technical options for non-CO2 emissions PJ Gerber, B Henderson, HPS Makkar FAO Animal Prod. Health Pap177 Rome:
    [Google Scholar]
  132. 132.  Negussie E, de Haas Y, Dehareng F, Dewhurst R, Dijkstra J et al. 2017. Large-scale indirect measurements for enteric methane emissions in dairy cattle: a review of proxies and their potential for use in management and breeding decisions. J. Dairy Sci. 100:2433–53
    [Google Scholar]
  133. 133.  Goopy JP, Donaldson A, Hegarty R, Vercoe PE, Haynes F et al. 2014. Low-methane yield sheep have smaller rumens and shorter rumen retention time. Br. J. Nutr. 111:578–85
    [Google Scholar]
  134. 134.  Pinares-Patiño C, Ebrahimi SH, McEwan J, Dodds K, Clark H, Luo D 2011. Is rumen retention time implicated in sheep differences in methane emission. Proc. N. Z. Soc. Anim. Prod. 71:219–22
    [Google Scholar]
  135. 135.  Shi W, Moon CD, Leahy SC, Kang D, Froula J et al. 2014. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res 24:1517–25
    [Google Scholar]
  136. 136.  Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C et al. 2013. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities Rome: Food Agric. Org. U.N.
    [Google Scholar]
  137. 137.  Wolf J, Asrar GR, West TO 2017. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock. Carbon Balance Manag 12:16
    [Google Scholar]
  138. 138. Food Agric. Org. U.N. 2016. FAOSTAT: food and agriculture data. Food Agric. Org. Stat. Div. U.N. Rome: http://www.fao.org/faostat/en/#home
    [Google Scholar]
  139. 139.  Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C 2006. Livestock's Long Shadow: Environmental Issues and Options Rome: Food Agric. Org. U.N.
    [Google Scholar]
  140. 140.  Thornton PK 2010. Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. Lond. B 365:2853–67
    [Google Scholar]
  141. 141.  Clark M, Tilman D 2017. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12:111002
    [Google Scholar]
  142. 142.  Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E et al. 2014. Climate change mitigation through livestock system transitions. PNAS 111:3709–14
    [Google Scholar]
  143. 143.  Popp A, Calvin K, Fujimori S, Havlik P, Humpenöder F et al. 2017. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42:331–45
    [Google Scholar]
  144. 144.  Smith P, Bustamante M, Ahammad H, Clark H, Dong H et al. 2014. Agriculture, forestry and other land use (AFOLU). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al.811–922 Cambridge, UK: Cambridge Univ.
    [Google Scholar]
  145. 145.  Porter JR, Xie L, Challinor A, Cochrane K, Howden S et al. 2014. Food security and food production systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.1–82 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  146. 146. Intergov. Panel Clim. Change. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Prepared by the National Greenhouse Gas Inventories Programme, ed. S Eggleston, L Buendia, K Miwa, T Ngara, K Tanabe Hayama, Jpn: IGES/IPCC
    [Google Scholar]
  147. 147.  Thornton PK, Boone RB, Ramirez-Villegas J 2015. Climate change impacts on livestock CCAFS Work. Pap. 120 CGIAR Res. Program Clim. Change, Agric. Food Secur. (CCAFS) Copenhagen, Den.:
    [Google Scholar]
  148. 148.  Weindl I, Lotze-Campen H, Popp A, Müller C, Havlík P et al. 2015. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environ. Res. Lett. 10:094021
    [Google Scholar]
  149. 149.  Chang J, Ciais P, Viovy N, Soussana J-F, Klumpp K, Sultan B 2017. Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance. Carbon Balance Manag 12:11
    [Google Scholar]
  150. 150.  Lee MA, Davis AP, Chagunda MG, Manning P 2017. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 14:1403–17
    [Google Scholar]
  151. 151.  Knapp J, Laur G, Vadas P, Weiss W, Tricarico J 2014. Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97:3231–61
    [Google Scholar]
  152. 152.  Nardone A, Ronchi B, Lacetera N, Ranieri MS, Bernabucci U 2010. Effects of climate changes on animal production and sustainability of livestock systems. Livestock Sci 130:57–69
    [Google Scholar]
  153. 153.  Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA 2017. Climate change and livestock: impacts, adaptation, and mitigation. Climate Risk Manag 16:145–63
    [Google Scholar]
  154. 154.  Sirohi S, Michaelowa A 2007. Sufferer and cause: Indian livestock and climate change. Clim. Change 85:285–98
    [Google Scholar]
  155. 155.  Saggar S, Tate K, Giltrap D, Singh J 2008. Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: a review. Plant Soil 309:25–42
    [Google Scholar]
  156. 156.  Yan X, Akiyama H, Yagi K, Akimoto H 2009. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles 23:GB2002
    [Google Scholar]
  157. 157.  Smith P, Martino D, Cai Z, Gwary D, Janzen H et al. 2008. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Lond. B 363:789–813
    [Google Scholar]
  158. 158.  Zhao C, Liu B, Piao S, Wang X, Lobell DB et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. PNAS 114:9326–31
    [Google Scholar]
  159. 159.  Schwietzke S, Sherwood OA, Bruhwiler LM, Miller JB, Etiope G et al. 2016. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538:88–91
    [Google Scholar]
  160. 160.  Howarth RW, Santoro R, Ingraffea A 2011. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Change 106:679
    [Google Scholar]
  161. 161.  Patterson J 2012. Exploitation of unconventional fossil fuels: enhanced greenhouse gas emissions. Greenhouse Gases-Emission, Measurement and Management G Lui 147–70 London: InTech
    [Google Scholar]
  162. 162.  Zhou J, Horsley D, Rothwell B 2006. Application of strain-based design for pipelines in permafrost areas. ASME. International Pipeline Conference 1 IPC2006-10054 899–907 http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1596744
    [Google Scholar]
  163. 163.  Pizzolato L, Stephen E, Howell L, Derksen C, Dawson J, Copland L 2014. Changing sea ice conditions and marine transportation activity in Canadian Arctic waters between 1990 and 2012. Clim. Change 123:161–73
    [Google Scholar]
  164. 164.  Gautier DL, Bird KJ, Charpentier RR, Grantz A, Houseknecht DW et al. 2009. Assessment of undiscovered oil and gas in the Arctic. Science 324:1175–79
    [Google Scholar]
  165. 165.  Martín M 2016. Nonconventional fossil energy sources: shale gas and methane hydrates. Alternative Energy Sources and Technologies M Martín 3–16 Cham, Switz.: Springer
    [Google Scholar]
  166. 166.  Chen L, Yamada H, Kanda Y, Sasaki H, Okajima J et al. 2016. Study of methane hydrate as a future energy resource: low emission extraction and power generation. Proc. IOP Conf. Ser. 40:012074
    [Google Scholar]
  167. 167.  Zhao J, Song Y, Lim X-L, Lam W-H 2016. Opportunities and challenges of gas hydrate policies with consideration of environmental impacts. Renew. Sustain. Energy Rev. 70:875–85
    [Google Scholar]
  168. 168.  Zhang Y, Zhai W-D 2015. Shallow-ocean methane leakage and degassing to the atmosphere: triggered by offshore oil-gas and methane hydrate explorations. Front. Mar. Sci. 2:34
    [Google Scholar]
  169. 169.  Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D et al. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4:593–96
    [Google Scholar]
  170. 170.  DelSontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B 2010. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ. Sci. Technol. 44:2419–25
    [Google Scholar]
  171. 171.  Jetter J, Zhao Y, Smith KR, Khan B, Yelverton T et al. 2012. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol. 46:10827–34
    [Google Scholar]
  172. 172.  Porter SD, Reay DS, Higgins P, Bomberg E 2016. A half-century of production-phase greenhouse gas emissions from food loss and waste in the global food supply chain. Sci. Total Environ. 571:721–29
    [Google Scholar]
  173. 173. U.N. Environ. Programme (UNEP). 2017. The Emissions Gap Report 2017 Nairobi, Kenya: UNEP
    [Google Scholar]
  174. 174.  Reilly J, Prinn R, Harnisch J, Fitzmaurice J, Jacoby H et al. 1999. Multi-gas assessment of the Kyoto Protocol. Nature 401:549–55
    [Google Scholar]
  175. 175.  Smith SJ, Mizrahi A 2013. Near-term climate mitigation by short-lived forcers. PNAS 110:14202–6
    [Google Scholar]
  176. 176.  Rogelj J, Schaeffer M, Meinshausen M, Shindell DT, Hare W et al. 2014. Disentangling the effects of CO2 and short-lived climate forcer mitigation. PNAS 111:16325–30
    [Google Scholar]
  177. 177.  Boucher O, Friedlingstein P, Collins B, Shine KP 2009. The indirect global warming potential and global temperature change potential due to methane oxidation. Environ. Res. Lett. 4:044007
    [Google Scholar]
/content/journals/10.1146/annurev-environ-102017-030154
Loading
/content/journals/10.1146/annurev-environ-102017-030154
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error