1932

Abstract

Life on Earth comes in many forms, but all life-forms share a common element in carbon. It is the basic building block of biology, and by trapping radiation it also plays an important role in maintaining the Earth's atmosphere at a temperature hospitable to life. Like all matter, carbon can neither be created nor destroyed, but instead is continuously exchanged between ecosystems and the environment through a complex combination of physics and biology. In recent decades, these exchanges have led to an increased accumulation of carbon on the land surface: the terrestrial carbon sink. Over the past 10 years (2007–2016) the sink has removed an estimated 3.61 Pg C year−1 from the atmosphere, which amounts to 33.7% of total anthropogenic emissions from industrial activity and land-use change. This sink constitutes a valuable ecosystem service, which has significantly slowed the rate of climate change. Here, we review current understanding of the underlying biological processes that govern the terrestrial carbon sink and their dependence on climate, atmospheric composition, and human interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102017-030204
2018-10-17
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/energy/43/1/annurev-environ-102017-030204.html?itemId=/content/journals/10.1146/annurev-environ-102017-030204&mimeType=html&fmt=ahah

Literature Cited

  1. 1. The Core Writing Team, Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W 2014. IPCC Climate Change 2014: Synthesis Report. Contributions of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Geneva: IPCC
  2. 2.  Laisk A, Nedbal L, Govindjee 2009. Photosynthesis in Silico 29 Dordrecht, Neth.: Springer
  3. 3.  Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J et al. 2018. Global carbon budget 2017. Earth Syst. Sci. Data 10:1405–48
    [Google Scholar]
  4. 4.  Chapin FS, Matson PA, Vitousek PM 2011. Principles of Terrestrial Ecosystem Ecology New York: Springer
  5. 5.  Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE et al. 2011. A large and persistent carbon sink in the world's forests. Science 333:6045988–93
    [Google Scholar]
  6. 6.  Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:740970–72
    [Google Scholar]
  7. 7.  Rayner PJ, Stavert A, Scholze M, Ahlström A, Allison CE, Law RM 2015. Recent changes in the global and regional carbon cycle: analysis of first-order diagnostics. Biogeosciences 12:835–44
    [Google Scholar]
  8. 8.  Keenan TF, Prentice IC, Canadell JG, Williams CA, Wang H et al. 2016. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7:13428
    [Google Scholar]
  9. 9.  Shevliakova E, Stouffer RJ, Malyshev S, Krasting JP, Hurtt GC, Pacala SW 2013. Historical warming reduced due to enhanced land carbon uptake. PNAS 110:4216730–35
    [Google Scholar]
  10. 10.  Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM et al. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:71041–50
    [Google Scholar]
  11. 11.  Randerson JT, Chapin FS III, Harden JW, Neff JC, Harmon ME 2002. Net ecosystem production: a comprehensive measure of net carbon accumulation by ecosystems. Ecol. Appl. 12:4937–47
    [Google Scholar]
  12. 12.  Van Der Werf GR, Randerson JT, Giglio L, Van Leeuwen TT, Chen Y et al. 2017. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9:2697–720
    [Google Scholar]
  13. 13.  Austin AT, Méndez MS, Ballaré CL 2016. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. PNAS 113:164392–97
    [Google Scholar]
  14. 14.  Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P et al. 2016. The global methane budget 2000–2012. Earth Syst. Sci. Data 8:2697–751
    [Google Scholar]
  15. 15.  Sindelarova K, Granier C, Bouarar I, Guenther A, Tilmes S et al. 2014. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 14:179317–41
    [Google Scholar]
  16. 16.  Li M, Peng C, Wang M, Xue W, Zhang K et al. 2017. The carbon flux of global rivers: a re-evaluation of amount and spatial patterns. Ecol. Indic. 80:Sept.40–51
    [Google Scholar]
  17. 17.  Iavorivska L, Boyer EW, DeWalle DR 2016. Atmospheric deposition of organic carbon via precipitation. Atmos. Environ. 146:153–63
    [Google Scholar]
  18. 18.  Sobral M, Silvius KM, Overman H, Oliveira LFB, Raab TK, Fragoso JMV 2017. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1:111670–76
    [Google Scholar]
  19. 19.  Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG et al. 2013. Three decades of global methane sources and sinks. Nat. Geosci. 6:10813–23
    [Google Scholar]
  20. 20.  Wohlfahrt G, Gu L 2015. The many meanings of gross photosynthesis and their implication for photosynthesis research from leaf to globe. Plant Cell Environ 38:122500–7
    [Google Scholar]
  21. 21.  Trumbore S 2009. Radiocarbon and soil carbon dynamics. Annu. Rev. Earth Planet. Sci. 37:147–66
    [Google Scholar]
  22. 22.  Luo Y, Keenan TF, Smith M 2015. Predictability of the terrestrial carbon cycle. Glob. Chang. Biol. 21:51737–51
    [Google Scholar]
  23. 23.  Odum EP 1969. The strategy of ecosystem development. Science 164:262–70
    [Google Scholar]
  24. 24.  Matamala R, Jastrow JD, Miller RM, Garten CT 2008. Temporal changes in C and N stocks of restored prairie: implications for C sequestration strategies. Ecol. Appl. 18:61470–88
    [Google Scholar]
  25. 25.  Wang YP, Chen BC, Wieder WR, Leite M, Medlyn BE et al. 2014. Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition. Biogeosciences 11:71817–31
    [Google Scholar]
  26. 26.  Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M et al. 2014. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514:7521213–17
    [Google Scholar]
  27. 27.  Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R et al. 2014. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. PNAS 111:93280–85
    [Google Scholar]
  28. 28.  Luo Y, Weng E 2011. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol. Evol. 26:296–104
    [Google Scholar]
  29. 29.  Brook BW, Ellis EC, Perring MP, Mackay AW, Blomqvist L 2013. Does the terrestrial biosphere have planetary tipping points?. Trends Ecol. Evol. 28:7396–401
    [Google Scholar]
  30. 30.  Pastorello GZ, Papale D, Chu H, Trotta C, Agarwal DA et al. 2017. A new data set to keep a sharper eye on land-air exchanges. Eos 98: https://doi.org/10.1029/2017EO071597
    [Crossref] [Google Scholar]
  31. 31.  Welp LR, Patra PK, Rödenbeck C, Nemani R, Bi J et al. 2016. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmos. Chem. Phys. 16:149047–66
    [Google Scholar]
  32. 32.  Keeling RF, Graven HD, Welp LR, Resplandy L, Bi J et al. 2017. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. PNAS 114:10361–66
    [Google Scholar]
  33. 33.  Schimel D, Stephens BB, Fisher JB 2015. Effect of increasing CO2 on the terrestrial carbon cycle. PNAS 112:2436–41
    [Google Scholar]
  34. 34.  Weng ES, Malyshev S, Lichstein JW, Farrior CE, Dybzinski R et al. 2015. Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences 12:92655–94
    [Google Scholar]
  35. 35.  Wang H, Prentice IC, Keenan TF, Davis TW, Wright IJ et al. 2017. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3:9734–41
    [Google Scholar]
  36. 36.  Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG et al. 2007. Global and regional drivers of accelerating CO2 emissions. PNAS 104:2410288–93
    [Google Scholar]
  37. 37.  Arneth A, Sitch S, Pongratz J, Stocker BD, Ciais P et al. 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 10:279–84
    [Google Scholar]
  38. 38.  Lovenduski NS, Bonan GB 2017. Reducing uncertainty in projections of terrestrial carbon uptake. Environ. Res. Lett. 12:4101001
    [Google Scholar]
  39. 39.  Campbell JE, Berry JA, Seibt U, Smith SJ, Montzka SA et al. 2017. Large historical growth in global terrestrial gross primary production. Nature 544:764884–87
    [Google Scholar]
  40. 40.  Ciais P, Rayner P, Chevallier F, Bousquet P, Logan M et al. 2010. Atmospheric inversions for estimating CO2 fluxes: methods and perspectives. Clim. Change 103:1–269–92
    [Google Scholar]
  41. 41.  Bagley JE, Jeong S, Cui X, Newman S, Zhang J et al. 2017. Assessment of an atmospheric transport model for annual inverse estimates of California greenhouse gas emissions. J. Geophys. Res. 122:31901–18
    [Google Scholar]
  42. 42.  Pacala SW, Breidenich C, Brewer PG, Fung IY, Gunson MR et al. 2010. Verifying Greenhouse Gas Emissions Washington, DC: Nat. Acad. Press
  43. 43.  Subramanian R, Williams LL, Vaughn TL, Zimmerle D, Roscioli JR et al. 2015. Methane emissions from natural gas compressor stations in the transmission and storage sector: measurements and comparisons with the EPA greenhouse gas reporting program protocol. Environ. Sci. Technol. 49:53252–61
    [Google Scholar]
  44. 44.  Andrews AE, Kofler JD, Trudeau ME, Williams JC, Neff DH et al. 2014. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos. Meas. Tech. 7:2647–87
    [Google Scholar]
  45. 45.  Miller SM, Michalak AM 2017. Constraining sector-specific CO2 and CH4 emissions in the US. Atmos. Chem. Phys. 17:63963–85
    [Google Scholar]
  46. 46.  Fang Y, Michalak AM 2015. Atmospheric observations inform CO2 flux responses to enviroclimatic drivers. Glob. Biogeochem. Cycles 29:5555–66
    [Google Scholar]
  47. 47.  Miller SM, Commane R, Melton JR, Andrews AE, Benmergui J et al. 2016. Evaluation of wetland methane emissions across North America using atmospheric data and inverse modeling. Biogeosciences 13:41329–39
    [Google Scholar]
  48. 48.  Michalak AM, Randazzo NA, Chevallier F 2017. Diagnostic methods for atmospheric inversions of long-lived greenhouse gases. Atmos. Chem. Phys. 17:127405–21
    [Google Scholar]
  49. 49.  Broquet G, Chevallier F, Bréon FM, Kadygrov N, Alemanno M et al. 2013. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements: reliability of the uncertainty estimates. Atmos. Chem. Phys. 13:179039–56
    [Google Scholar]
  50. 50.  Schimel D, Pavlick R, Fisher JB, Asner GP, Saatchi S et al. 2015. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Chang. Biol. 21:51762–76
    [Google Scholar]
  51. 51.  Barnes ML, Breshears DD, Law DJ, Van Leeuwen WJD, Monson RK et al. 2017. Beyond greenness: detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data. PLOS ONE 12:12e0189539
    [Google Scholar]
  52. 52.  Konings AG, Yu Y, Xu L, Yang Y, Schimel DS, Saatchi SS 2017. Active microwave observations of diurnal and seasonal variations of canopy water content across the humid African tropical forests. Geophys. Res. Lett. 44:52290–99
    [Google Scholar]
  53. 53.  Sun Y, Frankenberg C, Wood JD, Schimel DS, Jung M et al. 2017. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358:6360
    [Google Scholar]
  54. 54.  Jetz W, Cavender-Bares J, Pavlick R, Schimel D, Davis FW et al. 2016. Monitoring plant functional diversity from space. Nat. Plants 2:316024
    [Google Scholar]
  55. 55.  Fisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC et al. 2018. Vegetation demographics in Earth System Models: a review of progress and priorities. Glob. Chang. Biol. 24:135–54
    [Google Scholar]
  56. 56.  Migliavacca M, Perez-Priego O, Rossini M, El-Madany TS, Moreno G et al. 2017. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytol 214:31078–91
    [Google Scholar]
  57. 57.  Anderson K, Gaston KJ 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11:3138–46
    [Google Scholar]
  58. 58.  Kunz M, Lavric JV, Gerbig C, Tans P, Neff D et al. 2018. COCAP: a carbon dioxide analyser for small unmanned aircraft systems. Atmos. Meas. Tech. 11:31833–49
    [Google Scholar]
  59. 59.  Klosterman S, Melaas E, Wang J, Martinez A, Frederick S et al. 2018. Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography. Agric. For. Meteorol. 248:Oct. 2017397–407
    [Google Scholar]
  60. 60.  Sankey T, Donager J, McVay J, Sankey JB 2017. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. 195:30–43
    [Google Scholar]
  61. 61.  Van Der Meij B, Kooistra L, Suomalainen J, Barel JM, De Deyn GB 2017. Remote sensing of plant trait responses to field-based plant-soil feedback using UAV-based optical sensors. Biogeosciences 14:3733–49
    [Google Scholar]
  62. 62.  Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB et al. 2017. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355:6323385–89
    [Google Scholar]
  63. 63.  Kampe TU 2010. NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure. J. Appl. Remote Sens. 4:143510
    [Google Scholar]
  64. 64.  Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Chen M et al. 2018. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Sci. Data 5:1–24
    [Google Scholar]
  65. 65.  Keenan TF, Darby B, Felts E, Sonnentag O, Friedl MA et al. 2014. Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. Ecol. Appl. 24:61478–89
    [Google Scholar]
  66. 66.  Baldocchi D 2008. “Breathing” of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56:11–26
    [Google Scholar]
  67. 67.  Novick KA, Biederman JA, Desai AR, Litvak ME, Moore DJP et al. 2018. The AmeriFlux network: a coalition of the willing. Agric. For. Meteorol. 249:15444–56
    [Google Scholar]
  68. 68.  Metzger S, Durden D, Sturtevant C, Luo H, Pingintha-Durden N et al. 2017. eddy4R 0.2.0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on R, Git, Docker, and HDF5. Geosci. Model Dev. 10:93189–206
    [Google Scholar]
  69. 69.  Dai S-Q, Li H, Xiong J, Ma J, Guo H-Q et al. 2018. Assessing the extent and impact of online data sharing in eddy covariance flux research. J. Geophys. Res. Biogeosci. 123:129–37
    [Google Scholar]
  70. 70.  Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M et al. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:5993834–38
    [Google Scholar]
  71. 71.  Jung M, Reichstein M, Schwalm CR, Huntingford C, Sitch S et al. 2017. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541:7638516–20
    [Google Scholar]
  72. 72.  Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD et al. 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116:1–16
    [Google Scholar]
  73. 73.  Wang X, Wang C, Bond-Lamberty B 2017. Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: a global synthesis. Agric. For. Meteorol. 247:July93–103
    [Google Scholar]
  74. 74.  Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E et al. 2013. A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric. For. Meteorol. 171–172:137–52
    [Google Scholar]
  75. 75.  Aubinet M 2008. Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem. Ecol. Appl. 18:61368–78
    [Google Scholar]
  76. 76.  Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS et al. 2016. Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534:7609680–83
    [Google Scholar]
  77. 77.  Fisher JB, Huntzinger DN, Schwalm CR, Sitch S 2014. Modeling the terrestrial biosphere. Annu. Rev. Environ. Resour. 39:91–123
    [Google Scholar]
  78. 78.  Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6:8751–58
    [Google Scholar]
  79. 79.  Post H, Vrugt JA, Fox A, Vereecken H, Hendricks Franssen HJ 2017. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites. J. Geophys. Res. Biogeosci. 122:3661–89
    [Google Scholar]
  80. 80.  Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC et al. 2015. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5:6528–34
    [Google Scholar]
  81. 81.  Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A et al. 2014. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27:2511–26
    [Google Scholar]
  82. 82.  Prentice IC, Liang X, Medlyn BE, Wang YP 2015. Reliable, robust and realistic: the three R's of next-generation land-surface modelling. Atmos. Chem. Phys. 15:105987–6005
    [Google Scholar]
  83. 83.  Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB et al. 2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341:61501085–89
    [Google Scholar]
  84. 84.  Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C et al. 2013. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494:7437341–44
    [Google Scholar]
  85. 85.  Gloor M, Sarmiento JL, Gruber N 2010. What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction?. Atmos. Chem. Phys. 10:167739–51
    [Google Scholar]
  86. 86.  Le Quéré C, Andrew RM, Canadell JG, Sitch S, Ivar Korsbakken J et al. 2016. Global carbon budget 2016. Earth Syst. Sci. Data 8:2605–49
    [Google Scholar]
  87. 87.  Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET et al. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. PNAS 104:4718866–70
    [Google Scholar]
  88. 88.  Schwalm CR, Huntinzger DN, Fisher JB, Michalak AM, Bowman K et al. 2015. Toward “optimal” integration of terrestrial biosphere model ensembles. Geophys. Res. Lett. 42:4418–28
    [Google Scholar]
  89. 89.  Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA et al. 2013. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5:1165–85
    [Google Scholar]
  90. 90.  King AW, Andres RJ, Davis KJ, Hafer M, Hayes DJ et al. 2015. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009. Biogeosciences 12:2399–414
    [Google Scholar]
  91. 91.  Luyssaert S, Abril G, Andres R, Bastviken D, Bellassen V et al. 2012. The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005. Biogeosciences 9:83357–80
    [Google Scholar]
  92. 92.  Dolman AJ, Shvidenko A, Schepaschenko D, Ciais P, Tchebakova N et al. 2012. An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences 9:5323–40
    [Google Scholar]
  93. 93.  Thompson RL, Patra PK, Chevallier F, Maksyutov S, Law RM et al. 2016. Top-down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 7:10724
    [Google Scholar]
  94. 94.  Calle L, Canadell JG, Patra P, Ciais P, Ichii K et al. 2016. Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environ. Res. Lett. 11:7074011
    [Google Scholar]
  95. 95.  Patra PK, Canadell JG, Houghton RA, Piao SL, Oh NH et al. 2013. The carbon budget of South Asia. Biogeosciences 10:1513–27
    [Google Scholar]
  96. 96.  Cervarich M, Shu S, Jain AK, Arneth A, Canadell J et al. 2016. The terrestrial carbon budget of South and Southeast Asia. Environ. Res. Lett. 11:101–11
    [Google Scholar]
  97. 97.  Piao SL, Ito A, Li SG, Huang Y, Ciais P et al. 2012. The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences 9:93571–86
    [Google Scholar]
  98. 98.  Valentini R, Arneth A, Bombelli A, Castaldi S, Cazzolla Gatti R et al. 2014. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences 11:2381–407
    [Google Scholar]
  99. 99.  Haverd V, Raupach MR, Briggs PR, Canadell JG, Davis SJ et al. 2013. The Australian terrestrial carbon budget. Biogeosciences 10:2851–69
    [Google Scholar]
  100. 100.  Gloor M, Gatti L, Brienen R, Feldpausch TR, Phillips OL et al. 2012. The carbon balance of South America: a review of the status, decadal trends and main determinants. Biogeosciences 9:125407–30
    [Google Scholar]
  101. 101.  Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519:7543344–48
    [Google Scholar]
  102. 102.  Enting IG, Rayner PJ, Ciais P 2012. Carbon cycle uncertainty in regional carbon cycle assessment and processes (RECCAP). Biogeosciences 9:82889–904
    [Google Scholar]
  103. 103.  Peylin P, Law RM, Gurney KR, Chevallier F, Jacobson AR et al. 2013. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10:106699–720
    [Google Scholar]
  104. 104.  Baldocchi D, Ryu Y, Keenan T 2016. Terrestrial carbon cycle variability. F1000Research 5:2371
    [Google Scholar]
  105. 105.  Liu J, Bowman KW, Schimel DS, Parazoo NC, Jiang Z et al. 2017. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358:63605690
    [Google Scholar]
  106. 106.  Kim JS, Kug JS, Yoon JH, Jeong SJ 2016. Increased atmospheric CO2 growth rate during El Niño driven by reduced terrestrial productivity in the CMIP5 ESMs. J. Clim. 29:248783–805
    [Google Scholar]
  107. 107.  Tian H, Lu C, Ciais P, Michalak AM, Canadell JG et al. 2016. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531:7593225–28
    [Google Scholar]
  108. 108.  Bellassen V, Viovy N, Luyssaert S, Le Maire G, Schelhaas MJ, Ciais P 2011. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob. Chang. Biol. 17:3274–92
    [Google Scholar]
  109. 109.  Williams CA, Collatz GJ, Masek JG, Goward S 2012. Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochem. Cycles 26:GB1005
    [Google Scholar]
  110. 110.  Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR et al. 2009. Increasing carbon storage in intact African tropical forests. Nature 457:72321003–6
    [Google Scholar]
  111. 111.  Salzer MW, Hughes MK, Bunn AG, Kipfmueller KF 2009. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. PNAS 106:4820348–53
    [Google Scholar]
  112. 112.  McMahon SM, Parker GG, Miller DR 2010. Evidence for a recent increase in forest growth. PNAS 107:83611–15
    [Google Scholar]
  113. 113.  Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. PNAS 107:4519368–73
    [Google Scholar]
  114. 114.  Cole CT, Anderson JE, Lindroth RL, Waller DM 2010. Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides). Glob. Chang. Biol. 16:2186–97
    [Google Scholar]
  115. 115.  van der Sleen P, Groenendijk P, Vlam M, Anten NPR, Boom A et al. 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8:24–28
    [Google Scholar]
  116. 116.  Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B et al. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. PNAS 104:3514014–19
    [Google Scholar]
  117. 117.  Thomas RQ, Canham CD, Weathers KC, Goodale CL 2009. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3:13–17
    [Google Scholar]
  118. 118.  Wang R, Goll D, Balkanski Y, Hauglustaine D, Boucher O et al. 2017. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob. Change Biol. 23:4854–72
    [Google Scholar]
  119. 119.  Friedl MA, Gray JM, Melaas EK, Richardson AD, Hufkens K et al. 2014. A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ. Res. Lett. 9:5054006
    [Google Scholar]
  120. 120.  Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G et al. 2014. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4:7598–604
    [Google Scholar]
  121. 121.  Piao S, Liu Z, Wang T, Peng S, Ciais P et al. 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7:5359–63
    [Google Scholar]
  122. 122.  Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D, Houghton RA 2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358:6360230–34
    [Google Scholar]
  123. 123.  Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519:7543344–48
    [Google Scholar]
  124. 124.  Birdsey R, Pregitzer K, Lucier A 2006. Forest carbon management in the United States: 1600–2100. J. Environ. Qual. 35:41461–69
    [Google Scholar]
  125. 125.  Erb K-H, Kastner T, Luyssaert S, Houghton RA, Kuemmerle T et al. 2013. Bias in the attribution of forest carbon sinks. Nat. Clim. Change 3:854–56
    [Google Scholar]
  126. 126.  Körner C 2017. A matter of tree longevity. Science 355:6321130–31
    [Google Scholar]
  127. 127.  Anderegg WRL, Kane JM, Anderegg LDL 2012. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3:130–36
    [Google Scholar]
  128. 128.  Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D, Houghton RA 2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358:6360230–34
    [Google Scholar]
  129. 129.  Hufkens K, Keenan TF, Flanagan LB, Scott RL, Bernacchi CJ et al. 2016. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat. Clim. Change 6:7710–14
    [Google Scholar]
  130. 130.  Sanderman J, Amundson R 2008. A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 89:3309–27
    [Google Scholar]
  131. 131.  Knapp AK, Smith MD 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291:5503481–84
    [Google Scholar]
  132. 132.  Biederman JA, Scott RL, Goulden ML, Vargas R, Litvak ME et al. 2016. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Glob. Change Biol. 22:51867–79
    [Google Scholar]
  133. 133.  Mueller KE, Blumenthal DM, Pendall E, Carrillo Y, Dijkstra FA et al. 2016. Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecol. Lett. 19:8956–66
    [Google Scholar]
  134. 134.  Reich PB, Hobbie SE 2012. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat. Clim. Change 3:278
    [Google Scholar]
  135. 135.  Ainsworth EA, Long SP 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–72
    [Google Scholar]
  136. 136.  Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA et al. 2011. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:7359202–5
    [Google Scholar]
  137. 137.  Luo YQ, Hui DF, Zhang DQ 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:153–63
    [Google Scholar]
  138. 138.  Pellegrini AFA, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP et al. 2017. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:7687194–98
    [Google Scholar]
  139. 139.  Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA 2002. Charcoal carbon in U.S. agricultural soils. Soil Sci. Soc. Am. J. 66:41249–55
    [Google Scholar]
  140. 140.  Klumpp K, Fontaine S, Attard E, Le Roux X, Gleixner G, Soussana J-F 2009. Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. J. Ecol. 97:5876–85
    [Google Scholar]
  141. 141.  Owensby CE, Ham JM, Auen LM 2006. Fluxes of CO2 from grazed and ungrazed tallgrass prairie. Rangel. Ecol. Manag. 59:2111–27
    [Google Scholar]
  142. 142.  Conant RT, Cerri CEP, Osborne BB, Paustian K 2017. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27:2662–68
    [Google Scholar]
  143. 143.  Naito AT, Cairns DM 2011. Patterns and processes of global shrub expansion. Prog. Phys. Geogr. 35:4423–42
    [Google Scholar]
  144. 144.  Gray JM, Frolking S, Kort EA, Ray DK, Kucharik CJ et al. 2014. Direct human influence on atmospheric CO2 seasonality from increased cropland productivity. Nature 515:7527398–401
    [Google Scholar]
  145. 145.  Zeng N, Zhao F, Collatz GJ, Kalnay E, Salawitch RJ et al. 2014. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 515:394–97
    [Google Scholar]
  146. 146.  Post WM, Kwon KC 2000. Soil carbon sequestration and land-use change: processes and potential. Glob. Change Biol. 6:3317–27
    [Google Scholar]
  147. 147.  Del Grosso SJ, Baranski M 2016. USDA agriculture and forestry greenhouse gas inventory 1990–2013 Off. Chief Economist, Tech. Bull. 1943, US Dep. Agric. https://www.usda.gov/oce/climate_change/AFGG_Inventory/USDA_GHG_Inventory_1990-2013_9_19_16_reduced.pdf
  148. 148.  Sanderman J, Hengl T, Fiske GJ 2017. Soil carbon debt of 12,000 years of human land use. PNAS 114:369575–80
    [Google Scholar]
  149. 149.  Cardinael R, Chevallier T, Cambou A, Béral C, Barthès BG et al. 2017. Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agric. Ecosyst. Environ. 236:243–55
    [Google Scholar]
  150. 150.  Chapin FS III, Matson PA, Vitousek P 2012. Principles of Terrestrial Ecosystem Ecology New York: Springer. , 2nd ed..
  151. 151.  Overland JE, Wang M, Walsh JE, Stroeve JC 2014. Future arctic climate changes: adaptation and mitigation time scales. Earth's Future 2:268–74
    [Google Scholar]
  152. 152.  Mao J, Ribes A, Yan B, Shi X, Thornton PE et al. 2016. Human-induced greening of the northern extratropical land surface. Nat. Clim. Change 6:10959–63
    [Google Scholar]
  153. 153.  Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5:9887–91
    [Google Scholar]
  154. 154.  McGuire AD, Koven C, Lawrence DM, Clein JS, Xia J et al. 2016. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Glob. Biogeochem. Cycles 30:71015–37
    [Google Scholar]
  155. 155.  Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB et al. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:8701–14
    [Google Scholar]
  156. 156.  Anthony KMW, Zimov SA, Grosse G, Jones MC, Anthony PM et al. 2014. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511:452–56
    [Google Scholar]
  157. 157.  McGuire AD, Christensen TR, Hayes D, Heroult A, Euskirchen E et al. 2012. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9:83185–204
    [Google Scholar]
  158. 158.  Ukkola AM, Prentice IC, Keenan TF, van Dijk AIJM, Viney NR et al. 2015. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6:175–78
    [Google Scholar]
  159. 159.  Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G et al. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6:111023–27
    [Google Scholar]
  160. 160.  Poulter B, Frank D, Ciais P, Myneni RB, Andela N et al. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:7502600–3
    [Google Scholar]
  161. 161.  Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A et al. 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348:6237895–99
    [Google Scholar]
  162. 162.  Niu S, Fu Z, Luo Y, Stoy PC, Keenan TF et al. 2017. Interannual variability of ecosystem carbon exchange: from observation to prediction. Glob. Ecol. Biogeogr. 26:111225–37
    [Google Scholar]
  163. 163.  Wang W, Ciais P, Nemani RR, Canadell JG, Piao S et al. 2013. Variations in atmospheric CO2 growth rates coupled with tropical temperature. PNAS 110:3213061–66
    [Google Scholar]
  164. 164.  Wang X, Piao S, Ciais P, Friedlingstein P, Myneni RB et al. 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506:7487212–15
    [Google Scholar]
  165. 165.  Keenan TF, Baker I, Barr A, Ciais P, Davis K et al. 2012. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Glob. Change Biol. 18:61971–87
    [Google Scholar]
  166. 166.  Niu S, Luo Y, Dietze MC, Keenan TF, Shi Z et al. 2014. The role of data assimilation in predictive ecology. Ecosphere 5:565
    [Google Scholar]
  167. 167.  Grassi G, House J, Dentener F, Federici S, Den Elzen M, Penman J 2017. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7:3220–26
    [Google Scholar]
  168. 168.  Fuss S, Jones CD, Kraxner F, Peters GP, Smith P et al. 2016. Research priorities for negative emissions. Environ. Res. Lett. 11:11115007
    [Google Scholar]
  169. 169.  Houghton RA, Byers B, Nassikas AA 2015. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Change 5:121022–23
    [Google Scholar]
  170. 170.  Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G et al. 2017. Natural climate solutions. PNAS 114:4411645–50
    [Google Scholar]
  171. 171.  Mackey B, Prentice IC, Steffen W, House JI, Lindenmayer D et al. 2013. Untangling the confusion around land carbon science and climate change mitigation policy. Nat. Clim. Change 3:6552–57
    [Google Scholar]
  172. 172.  Cox PM, Huntingford C, Williamson MS 2018. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 553:319–23
    [Google Scholar]
  173. 173.  Leduc M, Damon Matthews H, De Elía R 2016. Regional estimates of the transient climate response to cumulative CO2 emissions. Nat. Clim. Change 6:5474–78
    [Google Scholar]
  174. 174.  Boer GJ, Arora V 2009. Temperature and concentration feedbacks in the carbon cycle. Geophys. Res. Lett. 36:21–6
    [Google Scholar]
  175. 175.  Bonan GB 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:58821444–49
    [Google Scholar]
  176. 176.  Bonan GB, Doney SC 2018. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359:63758328
    [Google Scholar]
  177. 177.  Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT et al. 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:637180–83
    [Google Scholar]
  178. 178.  Coleman DC, Crossley DA, Hendrix PF 2004. Fundamentals of Soil Ecology Cambridge, MA: Elsevier
  179. 179.  Peñuelas J, Ciais P, Canadell JG, Janssens IA, Fernández-Martínez M et al. 2017. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1:101438–45
    [Google Scholar]
  180. 180.  Jones CD, Ciais P, Davis SJ, Friedlingstein P, Gasser T et al. 2016. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11:995012
    [Google Scholar]
  181. 181.  Jackson RB, Canadell JG, Fuss S, Milne J, Nakicenovic N, Tavoni M 2017. Focus on negative emissions. Environ. Res. Lett. 12:11
    [Google Scholar]
  182. 182.  Field CB, Mach KJ 2017. Rightsizing carbon dioxide removal. Science 356:6339706–7
    [Google Scholar]
  183. 183.  Williams JH, Haley B, Kahrl F, Moore J, Jones AD et al. 2014. Pathways to Deep Decarbonization in The United States. The U.S. Report of the Deep Decarbonization Pathways Project of the Sustainable Development Solutions Network and The Institute for Sustainable Development and International Relations San Francisco: Energy Environ. Econ. Inc. https://ethree.com/publications/index_US2050.php
/content/journals/10.1146/annurev-environ-102017-030204
Loading
/content/journals/10.1146/annurev-environ-102017-030204
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error