1932

Abstract

The assessment literature on climate change solutions to date has emphasized technologies and options based on cost-effectiveness analysis. However, many solutions to climate change mitigation misalign with such analytical frameworks. Here, we examine demand-side solutions, a crucial class of mitigation options that go beyond technological specification and cost-benefit analysis. To do so, we synthesize demand-side mitigation options in the urban, building, transport, and agricultural sectors. We also highlight the specific nature of demand-side solutions in the context of development. We then discuss key analytical considerations to integrate demand-side options into overarching assessments on mitigation. Such a framework would include infrastructure solutions that interact with endogenous preference formation. Both hard infrastructures, such as the built environment, and soft infrastructures, such as habits and norms, shape behavior and as a consequence offer significant potential for reducing overall energy demand and greenhouse gas emissions. We conclude that systemic infrastructural and behavioral change will likely be a necessary component of a transition to a low-carbon society.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-110615-085428
2016-10-17
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/energy/41/1/annurev-environ-110615-085428.html?itemId=/content/journals/10.1146/annurev-environ-110615-085428&mimeType=html&fmt=ahah

Literature Cited

  1. Stocker T, Qin D, Plattner G-K, Tignor M, Allen SK. 1.  et al. 2014. Climate Change 2013: The Physical Science Basis Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  2. Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD. 2.  et al. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  3. Edenhofer O, Pichs-Madruga R, Sokona Y, Kadner S, Minx J. 3.  et al. 2014. Technical summary. See Ref.62 31–107
  4. Anderson K.4.  2015. Duality in climate science. Nat. Geosci. 812898–900 [Google Scholar]
  5. Le Quéré C, Moriarty R, Andrew R, Peters G, Ciais P. 5.  et al. 2015. Global carbon budget 2014. Earth Syst. Sci. Data 7147–85 [Google Scholar]
  6. Creutzig F.6.  2014. Economic and ecological views on climate change mitigation with bioenergy and negative emissions. Glob. Change Biol. Bioenergy 814–10 [Google Scholar]
  7. Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM. 7.  et al. 2014. Betting on negative emissions. Nat. Clim. Change 410850–53 [Google Scholar]
  8. Stephens JC.8.  2015. Carbon capture and storage: a controversial climate mitigation approach. Int. Spect. 50174–84 [Google Scholar]
  9. Wilson C, Grubler A, Gallagher KS, Nemet GF. 9.  2012. Marginalization of end-use technologies in energy innovation for climate protection. Nat. Clim. Change 211780–88 [Google Scholar]
  10. Corbera E, Calvet-Mir L, Hughes H, Paterson M. 10.  2016. Patterns of authorship in the IPCC Working Group III report. Nat. Clim. Change 6194–99 [Google Scholar]
  11. Sovacool BK, Ryan S, Stern P, Janda K, Rochlin G. 11.  et al. 2015. Integrating social science in energy research. Energy Res. Soc. Sci. 695–99 [Google Scholar]
  12. Middlemiss L, Parrish BD. 12.  2010. Building capacity for low-carbon communities: the role of grassroots initiatives. Energy Policy 38127559–66 [Google Scholar]
  13. Azevedo IM.13.  2014. Consumer end-use energy efficiency and rebound effects. Annu. Rev. Environ. Resour. 39393–418 [Google Scholar]
  14. Socolow RH.14.  1976. Failures of discourse. Bull. Am. Acad. Arts Sci. 29:611–32 [Google Scholar]
  15. Spaargaren G.15.  2011. Theories of practices: agency, technology, and culture: exploring the relevance of practice theories for the governance of sustainable consumption practices in the new world-order. Glob. Environ. Change 213813–22 [Google Scholar]
  16. Tribe LH, Schelling CS, Voss J. 16.  1976. When Values Conflict: Essays on Environmental Analysis, Discourse, and Decision. Cambridge, MA: Ballinger [Google Scholar]
  17. Roy J, Dowd A, Muller A, Pal S, Prata N. 17.  2012. Lifestyles, well-being and energy. See Ref. 69 1527–48
  18. Seto K, Dhakal S, Bigio AG, Blanco H, Delgado GC. 18.  et al. 2014. Human settlements, infrastructure, and spatial planning. See Ref. 62 923–1000
  19. e Silva J, Golob T, Goulias K. 19.  2006. Effects of land use characteristics on residence and employment location and travel behavior of urban adult workers. Transp. Res. Rec. 1977:121–31 [Google Scholar]
  20. Vega A, Reynolds-Feighan A. 20.  2009. A methodological framework for the study of residential location and travel-to-work mode choice under central and suburban employment destination patterns. Transp. Res. Part A Policy Pract. 434401–19 [Google Scholar]
  21. Brownstone D, Golob TF. 21.  2009. The impact of residential density on vehicle usage and energy consumption. J. Urban Econ. 65191–98 [Google Scholar]
  22. Chatman D.22.  2003. How density and mixed uses at the workplace affect personal commercial travel and commute mode choice. Transp. Res. Rec. 1831:193–201 [Google Scholar]
  23. Creutzig F.23.  2014. How fuel prices determine public transport infrastructure, modal shares and urban form. Urban Clim. 10:63–76 [Google Scholar]
  24. Ewing R, Handy S. 24.  2009. Measuring the unmeasurable: urban design qualities related to walkability. J.Urban Des. 14165–84 [Google Scholar]
  25. Barrington-Leigh C, Millard-Ball A. 25.  2015. A century of sprawl in the United States. PNAS 112278244–49 [Google Scholar]
  26. Khattak AJ, Rodriguez D. 26.  2005. Travel behavior in neo-traditional neighborhood developments: a case study in USA. Transp. Res. Part A Policy Pract. 396481–500 [Google Scholar]
  27. Rickwood P.27.  2009. Residential operational energy use. Urban Policy Res 272137–55 [Google Scholar]
  28. Creutzig F, Baiocchi G, Bierkandt R, Pichler P-P, Seto KC. 28.  2015. Global typology of urban energy use and potentials for an urbanization mitigation wedge. PNAS 112206283–88 [Google Scholar]
  29. Tiebout CM.29.  1956. A pure theory of local expenditures. J. Polit. Econ. 64:5416–24 [Google Scholar]
  30. Glaeser EL, Kahn ME. 30.  2004. Sprawl and urban growth. Handbook of Urban and Regional Economics 4 JV Henderson, JF Thisse 2481–527 New York: Elsevier [Google Scholar]
  31. Ewing R, Cervero R. 31.  2010. Travel and the built environment: a meta-analysis. J. Am. Plan. Assoc. 763265–94 [Google Scholar]
  32. Creutzig F.32.  2015. Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36:3341–60 [Google Scholar]
  33. Grimes-Casey HG, Keoleian GA, Willcox B. 33.  2009. Carbon emission targets for driving sustainable mobility with US light-duty vehicles. Environ. Sci. Technol. 433585–90 [Google Scholar]
  34. Hodges T, Potter J. 34.  2010. Transportation's Role in Reducing U.S. Greenhouse Gas Emissions 1, 2 Washington, DC: US Dep. Transp. Cent. Clim. Change Environ. Forecast. [Google Scholar]
  35. Sims R, Schaeffer R, Creutzig F, Cruz-Nunez X, D'Agosto M. 35.  et al. 2014. Transport. See Ref. 62 599–670
  36. Creutzig F, Jochem P, Edelenbosch OY, Mattauch L, Vuuren DP. 36.  et al. 2015. Transport: A roadblock to climate change mitigation?. Science 350:6263911–12 [Google Scholar]
  37. Nykvist B, Whitmarsh L. 37.  2008. A multi-level analysis of sustainable mobility transitions: niche development in the UK and Sweden. Technol. Forecast. Soc. Change 7591373–87 [Google Scholar]
  38. Vivier J, Pourbaix J. 38.  2005. Mobility in Cities Database Recommendations and Analysis Brussels: Int. Assoc. Public Transp. (UITP) [Google Scholar]
  39. Ewing R, Bartholomew K, Winkelman S, Walters J, Chen D. 39.  2009. Growing cooler: the evidence on urban development and climate change. Renew. Resour. J. 2546–13 [Google Scholar]
  40. Echenique MH, Hargreaves AJ, Mitchell G, Namdeo A. 40.  2012. Growing cities sustainably: Does urban form really matter?. J. Am. Plan. Assoc. 782121–37 [Google Scholar]
  41. Salon D, Boarnet MG, Handy S, Spears S, Tal G. 41.  2012. How do local actions affect VMT? A critical review of the empirical evidence. Transp. Res. Part D Transp. Environ. 177495–508 [Google Scholar]
  42. Eliasson J.42.  2008. Lessons from the Stockholm congestion charging trial. Transp. Policy 156395–404 [Google Scholar]
  43. 43. TFL (Transp. Lond.) 2007. Central London Congestion Charging: Impacts Monitoring. Fifth Annual Report London:TFL [Google Scholar]
  44. Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O. 44.  et al. 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 37497051930–43 [Google Scholar]
  45. Creutzig F, He D. 45.  2009. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. Transp. Res. Part D: Transp. Environ. 142120–31 [Google Scholar]
  46. Creutzig F, Mühlhoff R, Römer J. 46.  2012. Decarbonizing urban transport in European cities: Four cases show possibly high co-benefits. Environ. Res. Lett. 74044042 [Google Scholar]
  47. Lefèvre B.47.  2009. Long-term energy consumptions of urban transportation: a prospective simulation of “transport-land uses” policies in Bangalore. Energy Policy 373940–53 [Google Scholar]
  48. Viguié V, Hallegatte S. 48.  2012. Trade-offs and synergies in urban climate policies. Nat. Clim. Change 25334–37 [Google Scholar]
  49. Mattauch L, Ridgway M, Creutzig F. 49.  2015. Happy or liberal? Making sense of behavior in transport policy design. Transp. Res. Part D: Transp. Environ 45:64–83 [Google Scholar]
  50. Bamberg S, Rölle D, Weber C, Fujii S, Kitamura R. 50.  2003. What does a one-month free bus ticket do to habitual drivers? An experimental analysis of habit and attitude change. Transportation 30181–95 [Google Scholar]
  51. Pedersen T, Friman M, Kristensson P. 51.  2011. Affective forecasting: predicting and experiencing satisfaction with public transportation. J. Appl. Soc. Psychol. 4181926–46 [Google Scholar]
  52. Larrick RP, Soll JB. 52.  2008. The MPG illusion. Science 32058831593–94 [Google Scholar]
  53. Avineri E, Waygood OD. 53.  2013. Applying valence framing to enhance the effect of information on transport-related carbon dioxide emissions. Transp. Res. Part A: Policy Pract. 48:31–38 [Google Scholar]
  54. Goetzke F, Rave T. 54.  2011. Bicycle use in Germany: explaining differences between municipalities with social network effects. Urban Stud. 482427–37 [Google Scholar]
  55. Moriarty P, Honnery D. 55.  2012. Reducing personal mobility for climate change mitigation. Handbook of Climate Change Mitigation W-Y Chen, J Seiner, T Suzuki, M Lackner 1944–79 New York: Springer [Google Scholar]
  56. Bento AM, Hughes JE, Kaffine D. 56.  2013. Carpooling and driver responses to fuel price changes: evidence from traffic flows in Los Angeles. J. Urban Econ. 7741–56 [Google Scholar]
  57. Dewan KK, Ahmad I. 57.  2007. Carpooling: a step to reduce congestion (a case study of Delhi). Eng. Lett. 14161–66 [Google Scholar]
  58. Cairns S, Sloman L, Newson C, Anable J, Kirkbride A, Goodwin P. 58.  2008. Smarter choices: assessing the potential to achieve traffic reduction using “soft measures.”. Transp. Rev. 285593–618 [Google Scholar]
  59. Sager J, Apte JS, Lemoine DM, Kammen DM. 59.  2011. Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals. Environ. Res. Lett. 62024018 [Google Scholar]
  60. Peeters P, Dubois G. 60.  2010. Tourism travel under climate change mitigation constraints. J. Transp. Geogr. 183447–57 [Google Scholar]
  61. 61. UNWTO (UN World Tour. Organ.), UNEP (UN Environ. Progr.) 2008. Climate Change and Tourism: Responding to Global Challenges Madrid/Paris: UNWTO/UNEP [Google Scholar]
  62. 62.  Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S. et al. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  63. Ürge-Vorsatz D, Eyre N, Graham D, Harvey D, Hertwich E. 63.  et al. 2012. Energy end-use: buildings. See Ref. 69 649–760
  64. Lu A, Bamford N, Charters WWS, Robinson J. 64.  1999. Optimising embodied energy in commercial office development Presented at COBRA 1999—The Challenge of Change: Construction and Building for the New Millennium, Salford, The University of Salford, 1–2 Sept. [Google Scholar]
  65. Herring H.65.  2006. Energy efficiency—a critical view. Energy 31110–20 [Google Scholar]
  66. Sanquist TF, Orr H, Shui B, Bittner AC. 66.  2012. Lifestyle factors in U.S. residential electricity consumption. Energy Policy 42354–64 [Google Scholar]
  67. Oikonomou V, Becchis F, Steg L, Russolillo D. 67.  2009. Energy saving and energy efficiency concepts for policy making. Energy Policy 37114787–96 [Google Scholar]
  68. Ürge-Vorsatz D, Novikova A, Sharmina M. 68.  2009. Counting good: quantifying the co-benefits of improved efficiency in buildings. Eur. Counc. Energy Effic. Econ. Summer Study (ECEEE 2009 Proc.) La Colle-sur-Loup, Fr., 185–95 Stockholm: ECEEE [Google Scholar]
  69. 69. Johansson TB, Patwardhan A, Nakicenovic N, Gomez-Echeverri L 2012. Global Energy Assessment: Toward a Sustainable Future Cambridge, UK/Laxenburg, Austria: Cambridge Univ. Press/Int. Inst. Appl. Syst. Anal [Google Scholar]
  70. Zhang S, Yang X, Jiang Y, Wei Q. 70.  2010. Comparative analysis of energy use in China building sector: current status, existing problems and solutions. Front. Energy Power Eng. China 412–21 [Google Scholar]
  71. Batty WJ, Al-Hinai H, Probert SD. 71.  1991. Natural-cooling techniques for residential buildings in hot climates. Appl. Energy 394301–37 [Google Scholar]
  72. Zhaojian L, Qingpeng JYW. 72.  2007. Survey and analysis on influence of environment parameters and residents’ behaviours on air conditioning energy consumption in a residential building. J. Heat. Vent. Air Cond. 8:2015.02.02 http://www.hvacjournal.cn/Category_709/N_2079.aspx [Google Scholar]
  73. Grinshpon M.73.  2011. A Comparison of Residential Energy Consumption Between the United States and China Beijing: Tsinghua Univ. [Google Scholar]
  74. Xiao XJ, Lin LBR, Zhu ZYX. 74.  2011. Research on the operation energy consumption and the renewable energy systems of several demonstration public buildings in China. Proc. World Sustain. Build. Conf., SB11 Helsinki, Oct18–211–10 [Google Scholar]
  75. Dietz T, Gardner GT, Gilligan J, Stern PC, Vandenbergh MP. 75.  2009. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. PNAS 1064418452–56 [Google Scholar]
  76. Fujino J, Hibino G, Ehara T, Matsuoka Y, Masui T, Kainuma M. 76.  2008. Back-casting analysis for 70% emission reduction in Japan by 2050. Clim. Policy 8Suppl. 1S108–24 [Google Scholar]
  77. Eyre N, Anable C, Brand R, Layberry R, Strachan N. 77.  2010. The way we live from now on: lifestyle and energy consumption. Energy 2050: Making the Transition to a Secure Low-Carbon Energy System PEkins, J Skea, M Winskel 258–93 London: Earthscan [Google Scholar]
  78. Wei Y-M, Liu L-C, Fan Y, Wu G. 78.  2007. The impact of lifestyle on energy use and CO2 emission: an empirical analysis of China's residents. Energy Policy 351247–57 [Google Scholar]
  79. Sukla PR, Dhar S, Mahapatra D. 79.  2008. Low-carbon society scenarios for India. Clim. Policy 8Suppl. 1S156–76 [Google Scholar]
  80. Jaboyedoff P, Roulet C-A, Dorer V, Weber A, Pfeiffer A. 80.  2004. Energy in air-handling units—results of the airless European project. Energy Build. 364391–99 [Google Scholar]
  81. Lin Z, Deng S. 81.  2004. A study on the characteristics of nighttime bedroom cooling load in tropics and subtropics. Build. Environ. 3991101–14 [Google Scholar]
  82. Murakami S, Levine MD, Yoshino H, Inoue T, Ikaga T. 82.  et al. 2009. Overview of energy consumption and GHG mitigation technologies in the building sector of Japan. Energy Effic. 22179–94 [Google Scholar]
  83. Smith CB, Parmenter K. 83.  2007. Electrical energy management in buildings. CRC Handbook of Energy Efficiency and Renewable Energy F Kreith, D Yogi Goswami 305–36 Boca Raton, FL: CRC Press [Google Scholar]
  84. Lucon O, Ürge-Vorsatz D, Ahmed AZ, Akbari H, Bertoldi P, Cabeza LF. 84.  et al. 2014. Buildings. See Ref. 62 671–738
  85. Harris J, Diamond R, Iyer M, Payne C, Blumstein C, Siderius H-P. 85.  2008. Towards a sustainable energy balance: progressive efficiency and the return of energy conservation. Energy Effic. 13175–88 [Google Scholar]
  86. Simanaviciene Z, Volochovic A, Vilke R, Palekiene O, Simanavicius A. 86.  2015. Research review of energy savings changing people's behavior: a case of foreign country. Procedia Soc. Behav. Sci. 191:1996–2001 [Google Scholar]
  87. Ramos A, Gago A, Labandeira X, Linares P. 87.  2015. The role of information for energy efficiency in the residential sector. Energy Econ 52S17–29 [Google Scholar]
  88. D'Oca S, Corgnati SP, Buso T. 88.  2014. Smart meters and energy savings in Italy: determining the effectiveness of persuasive communication in dwellings. Energy Res. Soc. Sci. 7131–42 [Google Scholar]
  89. Nachreiner M, Mack B, Matthies E, Tampe-Mai K. 89.  2015. An analysis of smart metering information systems: a psychological model of self-regulated behavioural change. Energy Res. Soc. Sci. 985–97 [Google Scholar]
  90. Lopes MAR, Antunes CH, Martins N. 90.  2015. Towards more effective behavioural energy policy: an integrative modelling approach to residential energy consumption in Europe. Energy Res. Soc. Sci. 784–98 [Google Scholar]
  91. Janda KB, Wilson F, Bartiaux F, Moezzi M. 91.  2015. Improving efficiency in buildings: conventional and alternative approaches. Global Energy: Issues, Potentials, and Policy Implications P Ekins, M Bradshaw, J Watson 163–88 New York: Oxford Univ. Press [Google Scholar]
  92. Janda KB, Topouzi M. 92.  2015. Telling tales: using stories to remake energy policy. Build. Res. Inf. 434516–33 [Google Scholar]
  93. Wilson C, Dowlatabadi H. 93.  2007. Models of decision making and residential energy use. Annu. Rev. Environ. Resour. 321169 [Google Scholar]
  94. Haberl H.94.  2001. The energetic metabolism of societies: Part II: empirical examples. J. Ind. Ecol. 5271–88 [Google Scholar]
  95. 95. FAO (Food Agric. Organ. UN) 2006. World Agriculture: Towards 2030/2050. Interim Report. Rome: FAO [Google Scholar]
  96. Smith P, Bustamante M, Ahammad H, Clark H, Dong H. 96.  et al. 2014. Agriculture, forestry and other land use (AFOLU). See Ref. 62 811–922
  97. Field CB, Barros VR, Mastrandrea MD, Mach KJ, Abdrabo MAK. 97.  et al. 2014. Summary for policymakers. See Ref. 2 1–32
  98. Haberl H.98.  2015. Competition for land: a sociometabolic perspective. Ecol. Econ. 119:424–31 [Google Scholar]
  99. Smith P, Haberl H, Popp A, Erb K, Lauk C. 99.  et al. 2013. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Glob. Change Biol. 1982285–302 [Google Scholar]
  100. Stehfest E, Bouwman L, van Vuuren DP, den Elzen MGJ, Eickhout B, Kabat P. 100.  2009. Climate benefits of changing diet. Clim. Change 951–283–102 [Google Scholar]
  101. Tukker A, Goldbohm RA, de Koning A, Verheijden M, Kleijn R. 101.  et al. 2011. Environmental impacts of changes to healthier diets in Europe. Ecol. Econ. 70101776–88 [Google Scholar]
  102. Popp A, Lotze-Campen H, Bodirsky B. 102.  2010. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 203451–62 [Google Scholar]
  103. González AD, Frostell B, Carlsson-Kanyama A. 103.  2011. Protein efficiency per unit energy and per unit greenhouse gas emissions: potential contribution of diet choices to climate change mitigation. Food Policy 365562–70 [Google Scholar]
  104. Ewing R, Rong F. 104.  2008. The impact of urban form on US residential energy use. Hous. Policy Debate 1911–30 [Google Scholar]
  105. Mullainathan S, Allcott H. 105.  2010. Behavior and energy policy. Science 32759701204–5 [Google Scholar]
  106. Baiocchi G, Creutzig F, Minx J, Pichler P-P. 106.  2015. A spatial typology of human settlements and their CO2 emissions in England. Glob. Environ. Change 3413–21 [Google Scholar]
  107. 107. World Bank 2014. World Development Indicators 2014 Washington, DC:: World Bank [Google Scholar]
  108. 108. ADB (Asian Dev. Bank) 2012. Asian Development Outlook 2012: Confronting Rising Inequality in Asia Manila, Philipp.: ADB [Google Scholar]
  109. Deaton A.109.  2013. The Great Escape: Health, Wealth, and the Origins of Inequality Princeton, NJ: Princeton Univ. Press [Google Scholar]
  110. Ürge-Vorsatz D, Herrero ST, Dubash NK, Lecocq F. 110.  2014. Measuring the co-benefits of climate change mitigation. Annu. Rev. Environ. Resour. 39549–82 [Google Scholar]
  111. von Stechow C, McCollum D, Riahi K, Minx JC, Kriegler E. 111.  et al. 2015. Integrating global climate change mitigation goals with other sustainability objectives: a synthesis. Annu. Rev. Environ. Resour. 401363–94 [Google Scholar]
  112. Navroz D, Raghunandan D, Sant G, Sreenivas A. 112.  2013. Indian climate change policy: exploring a co-benefits approach. Econ. Polit. Wkly. 482247–61 [Google Scholar]
  113. Khosla R, Dukkipati S, Dubash NK, Sreenivas A, Cohen B. 113.  2015. Toward methodologies for multiple-objective based energy policy. Econ. Polit. Wkly. 504949–59 [Google Scholar]
  114. Fay M, Hallegatte S, Vogt-Schilb A, Rozenberg J, Narloch U, Kerr T. 114.  2015. Decarbonizing Development: Three Steps to a Zero-Carbon Future Washington, DC:: World Bank [Google Scholar]
  115. Pachauri S, Ürge-Vorsatz D, LaBelle M. 115.  2012. Synergies between energy efficiency and energy access policies and strategies. Glob. Policy 32187–97 [Google Scholar]
  116. Mulugetta Y, Urban F. 116.  2010. Deliberating on low carbon development. Energy Policy 38127546–49 [Google Scholar]
  117. Bowen A, Fankhauser S. 117.  2011. The green growth narrative: paradigm shift or just spin?. Glob. Environ. Change 2141157–59 [Google Scholar]
  118. Kumar N.118.  2004. Changing geographic access to and locational efficiency of health services in two Indian districts between 1981 and 1996. Soc. Sci. Med. 58102045–67 [Google Scholar]
  119. Chen H, Jia B, Lau S. 119.  2008. Sustainable urban form for Chinese compact cities: challenges of a rapid urbanized economy. Habitat Int. 32128–40 [Google Scholar]
  120. Perkins A, Hamnett S, Pullen S, Zito R, Trebilcock D. 120.  2009. Transport, housing and urban form: the life cycle energy consumption and emissions of city centre apartments compared with suburban dwellings. Urban Policy Res. 274377–96 [Google Scholar]
  121. Reilly MK, O'Mara MP, Seto KC. 121.  2009. From Bangalore to the Bay Area: comparing transportation and activity accessibility as drivers of urban growth. Landsc. Urban Plan. 92124–33 [Google Scholar]
  122. Zegras C.122.  2010. The built environment and motor vehicle ownership and use: evidence from Santiago de Chile. Urban Stud. 4781793–817 [Google Scholar]
  123. Hou Q, Li S-M. 123.  2011. Transport infrastructure development and changing spatial accessibility in the Greater Pearl River Delta, China, 1990–2020. J. Transp. Geogr. 1961350–60 [Google Scholar]
  124. Adeyinka AM.124.  2013. Spatial distribution, pattern and accessibility of urban population to health facilities in southwestern Nigeria: the case study of Ilesa. Mediterr. J. Soc. Sci. 42425–57 [Google Scholar]
  125. Welsch M, Bazilian M, Howells M, Divan D, Elzinga D. 125.  et al. 2013. Smart and just grids for Sub-Saharan Africa: exploring options. Renew. Sustain. Energy Rev. 20:336–52 [Google Scholar]
  126. Nguyen A-T, Tran Q-B, Tran D-Q, Reiter S. 126.  2011. An investigation on climate responsive design strategies of vernacular housing in Vietnam. Build. Environ. 46102088–106 [Google Scholar]
  127. Dili AS, Naseer MA, Zacharia Varghese T. 127.  2010. Passive control methods of Kerala traditional architecture for a comfortable indoor environment: comparative investigation during various periods of rainy season. Build. Environ. 45102218–30 [Google Scholar]
  128. Pachauri S, Brew-Hammond A, Barnes D, Bouille D, Gitonga S. 128.  et al. 2012. Energy access for development. See Ref. 69 1401–58
  129. Ahmad S, Baiocchi G, Creutzig F. 129.  2015. CO2 emissions from direct energy use of urban households in India. Environ. Sci. Technol. 491911312–20 [Google Scholar]
  130. Cuenot F, Fulton L, Staub J. 130.  2010. The prospect for modal shifts in passenger transport worldwide and impacts on energy use and CO2. Energy Policy 4198–106 [Google Scholar]
  131. Figueroa MJ, Fulton L, Tiwari G. 131.  2013. Avoiding, transforming, transitioning: pathways to sustainable low carbon passenger transport in developing countries. Curr. Opin. Environ. Sustain. 52184–90 [Google Scholar]
  132. Bongardt D, Breithaupt M, Creutzig F. 132.  2010. Beyond the fossil city: towards low carbon transport and green growth Presented at Fifth Reg. Environ. Sustain. Transp. Forum Asia, Bangkok, Aug. 23–25 [Google Scholar]
  133. Bongardt D, Creutzig F, Hüging H, Sakamoto K, Bakker S. 133.  et al. 2013. Low-Carbon Land Transport: Policy Handbook London: Routledge [Google Scholar]
  134. Tiwari G, Jain D. 134.  2012. Accessibility and safety indicators for all road users: case study Delhi BRT. J.Transp. Geogr. 22:87–95 [Google Scholar]
  135. Satterthwaite D, McGranahan G, Tacoli C. 135.  2010. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. B 36515542809–20 [Google Scholar]
  136. Strzepek K, Boehlert B. 136.  2010. Competition for water for the food system. Philos. Trans. R. Soc. B 36515542927–40 [Google Scholar]
  137. Cervero RB.137.  2013. Linking urban transport and land use in developing countries. J. Transp. Land Use 617–24 [Google Scholar]
  138. Creutzig F, Thomas A, Kammen DM, Deakin E. 138.  2011. Transport demand management in Beijing, China: progress and challenges. Low Carbon Transport in Asia Capturing Climate Development Co-Benefits E Zusman, A Srinivasan, S Dhakal London: Earthscan [Google Scholar]
  139. 139. UN-HABITAT (UN Hum. Settl. Progr.) 2013. Planning and Design for Sustainable Urban Mobility: Global Report on Human Settlements 2013 Nairobi, Kenya: UN-HABITAT [Google Scholar]
  140. O'Rourke D, Connolly S. 140.  2003. Just oil? The distribution of environmental and social impacts of oil production and consumption. Annu. Rev. Environ. Resour. 281587–617 [Google Scholar]
  141. Ostrom E.141.  2009. Understanding Institutional Diversity Princeton, NJ: Princeton Univ. Press [Google Scholar]
  142. Allcott H.142.  2011. Social norms and energy conservation. J. Public Econ. 9591082–95 [Google Scholar]
  143. Bowles S.143.  1998. Endogenous preferences: the cultural consequences of markets and other economic institutions. J. Econ. Lit. 36:175–111 [Google Scholar]
  144. Kahneman D.144.  2003. A perspective on judgment and choice: mapping bounded rationality. Am. Psychol. 589697–711 [Google Scholar]
  145. Tversky A, Kahneman D. 145.  1974. Judgment under uncertainty: heuristics and biases. Science 18541571124–31 [Google Scholar]
  146. Fleurbaey M.146.  2009. Beyond GDP: the quest for a measure of social welfare. J. Econ. Lit. 47:41029–75 [Google Scholar]
  147. Siegmeier J.147.  2016. Keeping Pigou on tracks: second-best combinations of carbon pricing and infrastructure provision Work. Pap. 2/2016, 17.02.2016, Mercator Res. Inst., Glob. Commons Clim. Change, Berlin [Google Scholar]
/content/journals/10.1146/annurev-environ-110615-085428
Loading
/content/journals/10.1146/annurev-environ-110615-085428
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error