Peatlands are wetland ecosystems that accumulate dead organic matter (i.e., peat) when plant litter production outpaces peat decay, usually under conditions of frequent or continuous waterlogging. Collectively, global peatlands store vast amounts of carbon (C), equaling if not exceeding the amount of C in the Earth's vegetation; they also encompass a remarkable diversity of forms, from the frozen palsa mires of the northern subarctic to the lush swamp forests of the tropics, each with their own characteristic range of fauna and flora. In this review we explain what peatlands are, how they form, and the contribution that peatland science can make to our understanding of global change. We explore the variety in formation, shape, vegetation type, and chemistry of peatlands across the globe and stress the fundamental features that are common to all peat-forming ecosystems. We consider the impacts that past, present, and future environmental changes, including anthropogenic disturbances, have had and will have on peatland systems, particularly in terms of their important roles in C storage and the provision of ecosystem services. The most widespread uses of peatlands today are for forestry and agriculture, both of which require drainage that results in globally significant emissions of carbon dioxide (CO), a greenhouse gas (GHG). Climatic drying and drainage also increase the risk of peat fires, which are a further source of GHG emissions [CO and methane (CH)] to the atmosphere, as well as causing negative human health and socioeconomic impacts. We conclude our review by explaining the roles that paleoecological, experimental, and modeling studies can play in allowing us to build a more secure understanding of how peatlands function, how they will respond to future climate- and land-management-related disturbances, and how best we can improve their resilience in a changing world.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. 1.  2010. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Letts. 37L13402 [Google Scholar]
  2. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi P. 2.  et al. 2011. A large and persistent carbon sink in the world's forests. Science 333988–93 [Google Scholar]
  3. Grace J.3.  2004. Understanding and managing the global carbon cycle. J. Ecol. 92189–202 [Google Scholar]
  4. Joosten H, Clarke D. 4.  2002. Wise Use of Mires and Peatlands Jyväskylä, Finl: Int. Mire Conserv. Group Int. Peat Soc. [Google Scholar]
  5. Biancalani R, Avagyan A. 5.  2014. Towards Climate Responsible Peatland Management Practices: Part 1 Rome: Food Agric. Org. [Google Scholar]
  6. Smith P, Bustamante M, Ahammad H, Clark H, Dong H. 6.  et al. 2014. Agriculture, Forestry and Other Land Use (AFOLU). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al.811–922 Cambridge, UK; New York: Cambridge Univ. Press [Google Scholar]
  7. Page SE, Rieley JO, Banks CJ. 7.  2011. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17:798–818 [Google Scholar]
  8. Rydin H, Jeglum JK. 8.  2006. The Biology of Peatlands Oxford: Oxford Univ. Press [Google Scholar]
  9. Belyea LR, Clymo RS. 9.  2001. Feedback control of the rate of peat formation. Philos. Trans. R. Soc. B 268:1315–21 [Google Scholar]
  10. Seppälä M.10.  1986. The origin of palsas. Geografisk. Annal. 68A:141–47 [Google Scholar]
  11. Page SE, Rieley JO, Shotyk W, Weiss D. 11.  1999. Interdependence of peat and vegetation in a tropical swamp forest. Philos. Trans. R. Soc. B 3541885–97 [Google Scholar]
  12. Troxler TG.12.  2007. Patterns of phosphorus, nitrogen and δ15N along a peat development gradient in a coastal mire, Panama. J. Trop. Ecol. 23:683–91 [Google Scholar]
  13. Sjögersten S, Cheesman AW, Lopez O, Turner B. 13.  2011. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104:147–63 [Google Scholar]
  14. Phillips S, Rouse G, Bustin R. 14.  1997. Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panama. Palaeogeog. Palaeocol. Palynol. 128:301–38 [Google Scholar]
  15. Aslan A, White WA, Warne GA, Guevara EH. 15.  2003. Holocene evolution of the western Orinoco Delta, Venezuela. Geol. Soc. Am. Bull. 115:479–98 [Google Scholar]
  16. Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J. 16.  2009. Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79140–45 [Google Scholar]
  17. Lähteenoja O, Page SE. 17.  2011. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J. Geophys. Res. Biogeosci. 116G02025 [Google Scholar]
  18. Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Coronado ENH. 18.  et al. 2014. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9:124017 [Google Scholar]
  19. Draper F.19.  2015. Carbon storage and floristic dynamics in Peruvian peatland ecosystems PhD Thesis, Sch. Geogr., Univ. Leeds, Leeds, UK [Google Scholar]
  20. Dargie G.20.  2016. Quantifying and understanding the tropical peatlands of the central Congo basin PhD Thesis, Univ. Leeds, Leeds, UK [Google Scholar]
  21. Hope G.21.  2015. Peat in the mountains of New Guinea. Mires Peat 15:1–21 [Google Scholar]
  22. Salvador F, Monerris J, Rochefort L. 22.  2014. Peatlands of the Peruvian Puna ecoregion: types, characteristics and disturbance. Mires Peat 15:1–17 [Google Scholar]
  23. Taylor DM.23.  1990. Late quaternary pollen records from two Ugandan mires, evidence for environmental changes in the Rukiga Highlands of southwest Uganda. Palaeogeog. Palaeoclim. Palaeoecol. 80:283–300 [Google Scholar]
  24. McKee KL, Faulkner PL. 24.  2000. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize. Atoll Res. Bull. 468:46–58 [Google Scholar]
  25. Middleton BA, McKee KL. 25.  2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J. Ecol. 89:818–28 [Google Scholar]
  26. Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER. 26.  et al. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob. Change Biol. 13:397–411 [Google Scholar]
  27. Sjögersten S, Black CR, Evers S, Hoyos-Santillan J, Wright EL. 27.  et al. 2014. Tropical wetlands: a missing link in the global carbon cycle?. Glob. Biogeochem. Cycles 28:1371–86 [Google Scholar]
  28. Chimner RA, Ewel KC. 28.  2005. A tropical freshwater wetland: II. Production, decomposition and peat formation. Wet. Ecol. Manag. 13:671–84 [Google Scholar]
  29. Brady MA.29.  1997. Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia PhD Thesis, Dep. For., Univ. BC, Vanc., Can. https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0075286 [Google Scholar]
  30. Jenny H, Gessel SP, Bingham FT. 30.  1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68419–32 [Google Scholar]
  31. Olson JS.31.  1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44322–31 [Google Scholar]
  32. Moore TR, Bubier JL, Bledzki L. 32.  2007. Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–63 [Google Scholar]
  33. Clymo RS.33.  1984. The limits to peat bog growth. Philos. Trans. R. Soc. B 303605–54 [Google Scholar]
  34. Belyea LR, Baird AJ. 34.  2006. Beyond the “limits to peat bog growth”: cross-scale feedback in peatland development. Ecol. Mono. 76299–322 [Google Scholar]
  35. Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A. 35.  et al. 2010. A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth Syst. Dyn. 1:1–21 [Google Scholar]
  36. Quillet A, Garneau M, Frolking S. 36.  2013. Sobol’ sensitivity analysis of the Holocene Peat Model: What drives carbon accumulation in peatlands?. J. Geophys. Res.: Biogeosci. 118:203–14 [Google Scholar]
  37. Morris PJ, Baird AJ, Belyea LR. 37.  2012. The DigiBog peatland development model 2: ecohydrological simulations in 2D. Ecohydrology 5256–68 [Google Scholar]
  38. Morris PJ, Baird AJ, Young DM, Swindles GT. 38.  2015. Untangling climate signals from autogenic changes in long-term peatland development. Geophys. Res. Letts. 4210788–97 [Google Scholar]
  39. Heinemeyer A, Croft S, Garnett MH, Gloor M, Holden J. 39.  et al. 2010. The MILLENNIA peat cohort model: predicting past, present and future soil carbon budgets and fluxes under changing climates in peatlands. Clim. Res. 45207–26 [Google Scholar]
  40. Kurnianto S, Warren M, Talbot J, Kauffman B, Murdiyarso D, Frolking S. 40.  2015. Carbon accumulation of tropical peatlands over millennia: a modeling approach. Glob. Change Biol. 21:431–44 [Google Scholar]
  41. Holling CS.41.  1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 41–23 [Google Scholar]
  42. Mietinnen J, Hooijer A, Shi C, Tollenaar D, Vernimmen R. 42.  et al. 2012. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. Glob. Change Biol. Bioenergy 4908–18 [Google Scholar]
  43. Page SE, Hoscilo A, Jauhiainen J, Silvius M, Rieley J. 43.  et al. 2009. Ecological restoration of tropical peatlands in Southeast Asia. Ecosystems 12:888–905 [Google Scholar]
  44. Moore PD.44.  1993. The origin of blanket mire, revisited. . In Climate Change and Human Impact of the Landscape, ed. FM Chambers 217–24 London: Chapman & Hall [Google Scholar]
  45. Speranza A, Hanke J, van Geel B, Fanta J. 45.  2000. Late-Holocene human impact and peat development in the Černá Hora bog, KrkonošeMountains, Czech Republic. Holocene 10:575–85 [Google Scholar]
  46. Solem T.46.  1989. Blanket mire formation at Haramsøy, Møre og Romsdal, western Norway. Boreas 18:221–35 [Google Scholar]
  47. Tipping R.47.  2008. Blanket peat in the Scottish Highlands: timing, cause, spread and the myth of environmental determinism. Biol. Cons. 17:2097–113 [Google Scholar]
  48. Gallego-Sala AV, Charman DJ, Harrison SP, Li G, Prentice IC. 48.  2016. Climate-driven expansion of blanket bogs in Britain during the Holocene. Clim. Past 12:129–36 [Google Scholar]
  49. Coles J, Coles B. 49.  1986. Sweet Track to Glastonbury: The Somerset Levels in Prehistory London: Thames & Hudson [Google Scholar]
  50. Raftery B.50.  1996. Trackway Excavations in the Mountdillon Bogs, Co. Longford, 1985–1991 Dublin, Irel.: Crannóg [Google Scholar]
  51. Stead IM, Bourke JB, Brothwell D. 51.  1986. Lindow Man: The Body in the Bog London: British Mus. [Google Scholar]
  52. Bonsall C, Macklin RG, Anderson DE, Payton RW. 52.  2002. Climate change and the adoption of agriculture in north-west Europe. Europ. J. Archaeol. 59–23 [Google Scholar]
  53. Haberle SG.53.  2007. Prehistoric human impact on rainforest biodiversity in highland New Guinea. Phil. Trans. R. Soc. B 362219–28 [Google Scholar]
  54. Mighall TM, Dumayne-Peaty L, Cranstone D. 54.  2004. A record of atmospheric pollution and vegetation change as recorded in three peat bogs from the northern Pennines Pb-Zn orefield. Env. Archaeol. 913–38 [Google Scholar]
  55. Mighall TM, Timberlake S, Foster IDL, Krupp E, Singh S. 55.  2009. Ancient copper and lead contamination records from a raised bog complex in central Wales, UK. J. Archaeol. Sci. 361504–15 [Google Scholar]
  56. De Dekker K. 56.  2011. Medieval smokestacks: fossil fuels in pre-industrial times. Low-Tech Magazine Sept. 29. http://www.lowtechmagazine.com/2011/09/peat-and-coal-fossil-fuels-in-pre-industrial-times.html [Google Scholar]
  57. Lambert JM, Jennings MA, Smith CT, Green C, Hutchinson JN. 57.  1960. The Making of the Broads London:: R. Geogr. Soc. [Google Scholar]
  58. Laine J, Minkkinen K, Tretin C. 58.  2009. Direct human impacts on the peatland carbon sink. Geophys. Mono. Ser. 184:71–78 [Google Scholar]
  59. Strack M. 59.  2008. Peatlands and Climate Change Jyväskylä, Finl.: Int. Peat Soc. [Google Scholar]
  60. Schrier-Uijl AP, Veraart AJ, Leffelaar PJ, Berendse F, Veenendaal EM. 60.  2011. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102:265–79 [Google Scholar]
  61. Kasimir-Klemedtsson Å, Klemedtsson L, Berglund K, Martikainen P, Silvola J. 61.  et al. 1997. Greenhouse gas emissions from farmed organic soils: a review. Soil Use Man 13:245–50 [Google Scholar]
  62. Joosten H.62.  2009. The global peatland CO2 picture: peatland status and emissions in all countries of the World. Wetlands Int. Draft Rep., Ede, Neth. https://unfccc.int/files/kyoto_protocol/application/pdf/draftpeatlandco2report.pdf [Google Scholar]
  63. Hooijer A, Page SE, Canadell JG, Silvius M, Kwadijk J. 63.  et al. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeoscience 71505–14 [Google Scholar]
  64. Moore S, Evans CD, Page SE, Garnett MH, Jones TG. 64.  et al. 2013. Fluvial organic carbon fluxes reveal deep instability of deforested tropical peatlands. Nature 493660–63 [Google Scholar]
  65. Evans CD, Page SE, Jones T, Moore S, Gauci V. 65.  et al. 2014. Contrasting susceptibility of tropical and high-latitude peats to fluvial loss of stored carbon following drainage. Glob. Biogeochem. Cycles 28:1215–34 [Google Scholar]
  66. Hooijer A, Page SE, Jauhiainen J, Lee WA, Idris A. 66.  et al. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeoscience 91053–71 [Google Scholar]
  67. Couwenberg J, Hooijer A. 67.  2013. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 121 [Google Scholar]
  68. Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A. 68.  et al. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65 [Google Scholar]
  69. Konecny K, Ballhorn U, Navratil P, Jubanski J, Page SE. 69.  et al. 2016. Variable carbon losses for recurrent fires in drained tropical peatlands. Glob. Change Biol. 22:1469–80 [Google Scholar]
  70. Deverel SJ, Leighton DA. 70.  2010. Historic, recent, and future subsidence, Sacramento-San Joaquin Delta, California, USA. San Fran. Est. Watershed Sci. 8. http://escholarship.org/uc/item/7xd4x0xw [Google Scholar]
  71. Drexler JZ, de Fontaine CS, Deverel SJ. 71.  2009. The legacy of wetland drainage on the remaining peat in the Sacramento-San Joaquin Delta, California, USA. Wetlands 29:372–86 [Google Scholar]
  72. Wösten JHM, Ismail AB, van Wijk ALM. 72.  1997. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 7825–36 [Google Scholar]
  73. Querner EP, Jansen PC, van den Akker JJH, Kwakernaak C. 73.  2012. Analysing water level strategies to reduce soil subsidence in Dutch peat meadows. J. Hydrol. 44659–69 [Google Scholar]
  74. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C. 74.  et al. 2008. Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeoscience 51475–91 [Google Scholar]
  75. Turetsky M, Benscoter B, Page SE, Rein G, van der Werf G. 75.  et al. 2015. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 811–14 [Google Scholar]
  76. Page SE, Hooijer A. 76.  2016. In the line of fire: the peatlands of SE Asia. Philos. Trans. R. Soc. B 371:20150176 [Google Scholar]
  77. Rein G, Cleaver N, Ashton C, Pironi P, Torero JL. 77.  2008. The severity of smouldering peat fires and damage to the forest soil. Catena 74304–9 [Google Scholar]
  78. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G. 78.  2009. Soil organic carbon pools in the northern circumpolar permafrost. Glob. Biogeochem. Cycles 23GB2023 [Google Scholar]
  79. Shepherd MJ, Labadz J, Caporn SJ, Crowle A, Goodison R. 79.  et al. 2013. Restoration of Degraded Blanket Bog Natural England Evidence Rev., Number 003. Peterborough: Natural England. http://publications.naturalengland.org.uk/publication/5724822 [Google Scholar]
  80. Rochefort L.80.  2000. Sphagnum: a keystone in habitat restoration. Bryologist 103:503–8 [Google Scholar]
  81. Luchesse M, Waddington JM, Poulin M, Pouliot R, Rochefort L. 81.  et al. 2010. Organic matter accumulation in a restored peatland: evaluating restoration success. Ecol. Eng. 36482–88 [Google Scholar]
  82. Ise T, Dunn AL, Wofsy SC, Moorcroft PR. 82.  2008. High sensitivity of peat decomposition to climate change through water-table feedback. Nat. Geosci. 1763–66 [Google Scholar]
  83. Belyea LR, Malmer N. 83.  2004. Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob. Chan. Biol. 10:1043–52 [Google Scholar]
  84. Swindles GT, Morris PJ, Baird AJ, Blaauw M, Plunkett G. 84.  2012. Ecohydrological feedbacks confound peat-based climate reconstructions. Geophys. Res. Letts. 39L11401 [Google Scholar]
  85. Belyea LR.85.  2009. Nonlinear dynamics of peatlands and potential feedbacks on the climate system. Geophysical Monograph Ser. 184: Carbon Cycling in Northern Peatlands, ed. AJ Baird, LR Belyea, X Comas, AS Reeve, LD Slater, pp. 5–18. Washington, DC: Am. Geophys. Union [Google Scholar]
  86. Cole LES, Bhagwat SA, Willis KJ. 86.  2015. Long-term disturbance dynamics and resilience of tropical peat swamp forests. J. Ecol. 103:16–30 [Google Scholar]
  87. Swindles GT, Morris PJ, Wheeler J, Smith M, Bacon KL. 87.  et al. 2016. Resilience of peatland ecosystem services over millennial timescales: evidence from a degraded British bog. J. Ecol. 104:621–36 [Google Scholar]
  88. Wheeler BD, Shaw SC. 88.  1995. Restoration of Damaged Peatlands London: Dep. Environ. [Google Scholar]
  89. Price J, Rochefort L, Quinty F. 89.  1998. Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover and Sphagnum regeneration. Ecol. Eng. 10:293–312 [Google Scholar]
  90. Price JS, Whitehead GS. 90.  2001. Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21:32–40 [Google Scholar]
  91. Briske DD, Fuhlendorf SD, Smeins FE. 91.  2003. Vegetation dynamics on rangelands: a critique of the current paradigms. J. Appl. Ecol. 40601–14 [Google Scholar]
  92. Bridgham SC, Pastor J, Dewey B, Weltzin JF, Updegraff K. 92.  2008. Rapid carbon response of peatlands to climate change. Ecology 893041–48 [Google Scholar]
  93. Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ. 93.  et al. 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460616–19 [Google Scholar]
  94. Loisel J, Yu Z. 94.  2013. Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska. J. Geophys. Res. Biogeosci. 118:1–13 [Google Scholar]
  95. Kettridge N, Turetsky MR, Sherwood JH, Thompson DK, Miller CA. 95.  et al. 2015. Moderate drop in water table increases peatland vulnerability to post-fire regime shift. Sci. Rep. 58063 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error