1932

Abstract

Risk analysis of species invasions links biology and economics, is increasingly mandated by international and national policies, and enables improved management of invasive species. Biological invasions proceed through a series of transition probabilities (i.e., introduction, establishment, spread, and impact), and each of these presents opportunities for management. Recent research advances have improved estimates of probability and associated uncertainty. Improvements have come from species-specific trait-based risk assessments (of estimates of introduction, establishment, spread, and impact probabilities, especially from pathways of commerce in living organisms), spatially explicit dispersal models (introduction and spread, especially from transportation pathways), and species distribution models (establishment, spread, and impact). Results of these forecasting models combined with improved and cheaper surveillance technologies and practices [e.g., environmental DNA (eDNA), drones, citizen science] enable more efficient management by focusing surveillance, prevention, eradication, and control efforts on the highest-risk species and locations. Bioeconomic models account for the interacting dynamics within and between ecological and economic systems, and allow decision makers to better understand the financial consequences of alternative management strategies. In general, recent research advances demonstrate that prevention is the policy with the greatest long-term net benefit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-110615-085532
2016-10-17
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/energy/41/1/annurev-environ-110615-085532.html?itemId=/content/journals/10.1146/annurev-environ-110615-085532&mimeType=html&fmt=ahah

Literature Cited

  1. Elton CS.1.  1958. The Ecology of Invasions by Animals and Plants Chicago: Chicago Univ. Press [Google Scholar]
  2. Sax DF, Stachowicz JJ, Gaines SD. 2.  2005. Species Invasions: Insights into Ecology, Evolution, and Biogeography Sunderland, MA: Sinauer [Google Scholar]
  3. Lockwood JL, Hoopes MF, Marchetti MP. 3.  2013. Invasion Ecology West Sussex, UK: Wiley [Google Scholar]
  4. Crosby AW.4.  1986. Ecological Imperialism: The Biological Expansion of Europe, 900–1900 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  5. Coates P.5.  2006. American Perceptions of Immigrant and Invasive Species: Strangers on the Land Berkeley/Los Angeles: Univ. Calif. Press [Google Scholar]
  6. Thomas CD, Palmer G. 6.  2015. Non-native plants add to the British flora without negative consequences for native diversity. PNAS 112:144387–92 [Google Scholar]
  7. Hulme PE, Pauchard A, Pyšek P, Vilà M, Alba C. 7.  et al. 2015. Challenging the view that invasive non-native plants are not a significant threat to the floristic diversity of Great Britain. PNAS 112:23E2988–89 [Google Scholar]
  8. Pearce F.8.  2015. The New Wild: Why Invasive Species Will Be Nature's Salvation Boston, MA: Beacon [Google Scholar]
  9. Lodge DM, Shrader-Frechette K. 9.  2003. Nonindigenous species: ecological explanation, environmental ethics, and public policy. Conserv. Biol. 17:131–37 [Google Scholar]
  10. Head L, Larson BM, Hobbs R, Atchison J, Gill N. 10.  et al. 2015. Living with invasive plants in the Anthropocene: the importance of understanding practice and experience. Conserv. Soc. 13:3311–18 [Google Scholar]
  11. Clinton WJ.11.  1999. Executive Order 13112. Fed. Reg. Vol. 64, No. 25, Feb. 8. https://www.gpo.gov/fdsys/pkg/FR-1999-02-08/pdf/99-3184.pdf [Google Scholar]
  12. 12. UN Environ. Program 1992. Convention on Biological Diversity. https://www.cbd.int/doc/legal/cbd-en.pdf [Google Scholar]
  13. 13. Millenn. Ecosyst. Assess 2005. Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island [Google Scholar]
  14. Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G. 14.  et al. 2012. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector-Borne Zoonotic Dis 12:6435–47 [Google Scholar]
  15. Jenkins PT.15.  2012. Invasive animals and wildlife pathogens in the United States: the economic case for more risk assessments and regulation. Biol. Invasions 15:2243–48 [Google Scholar]
  16. Firn J, Maggini R, Chadès I, Nicol S, Walters B. 16.  et al. 2015. Priority threat management of invasive animals to protect biodiversity under climate change. Glob. Change Biol. 21:113917–30 [Google Scholar]
  17. Pretty J.17.  2008. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. B 363:1491447–65 [Google Scholar]
  18. Deines AM, Wittmann ME, Deines JM, Lodge DM. 18.  2016. Tradeoffs among ecosystem services associated with global tilapia introductions. Rev. Fish. Sci. Aquac. 24:2178–91 [Google Scholar]
  19. Liebhold A, Berec L, Epanchin-Niell R, Tobin PC, Kean J. 19.  et al. 2016. Eradication of invasive insect populations: from concepts to applications. Annu. Rev. Entomol. 61:335–52 [Google Scholar]
  20. Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G. 20.  2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc. R. Soc. Lond. B 269:15082407–13 [Google Scholar]
  21. Lodge DM.21.  1993. Biological invasions: lessons for ecology. Trends Ecol. Evol. 8:4133–37 [Google Scholar]
  22. 22. Comm. Environ. Nat. Resour 1999. Ecological risk assessment in the federal government. Rep. CENR/5–99/001, Exec. Off. Pres., Natl. Sci. Technol. Counc., Washington, DC [Google Scholar]
  23. Polasky S.23.  2010. A model of prevention, detection, and control for invasive species. Globalization and Bioinvasions: Ecology, Economics, Management and Policy C Perrings, H Mooney, M Williamson 100–9 Oxford, UK: Oxford Univ. Press [Google Scholar]
  24. 24. US Environ. Prot. Agency 1992. Framework for ecological risk assessment. Rep. EPA/630/R-92/001, US Environ. Prot. Agency, Washington, DC [Google Scholar]
  25. 25. US Environ. Prot, Agency 1998. Guidelines for ecological risk assessment Rep. EPA/630/R-95/002F, US Environ. Prot. Agency, Off. Res. Dev., Washington, DC [Google Scholar]
  26. 26. Natl. Res. Counc 2011. A Risk-Characterization Framework for Decision-Making at the Food and Drug Administration. Washington, DC: Natl. Acad. [Google Scholar]
  27. 27. World Health Organ./Food Agric. Organ. UN 2006. Food safety risk analysis: a guide for national food safety authorities. FAO Food Nutrition Pap. 87. Rome, Italy [Google Scholar]
  28. Koplan JP, Butler-Jones D, Tsang T, Yu W. 28.  2013. Public health lessons from severe acute respiratory syndrome a decade later. Emerg. Infect. Dis. 19:6861–63 [Google Scholar]
  29. Dhama K, Malik YS, Malik SVS, Singh RK. 29.  2015. Ebola from emergence to epidemic: the virus and the disease, global preparedness and perspectives. J. Infect. Dev. Ctries. 9:05441–55 [Google Scholar]
  30. Jenkins PT.30.  2013. Invasive animals and wildlife pathogens in the United States: the economic case for more risk assessments and regulation. Biol. Invasions 15:2243–48 [Google Scholar]
  31. Kolar CS, Lodge DM. 31.  2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298:55961233–36 [Google Scholar]
  32. Keller RP, Lodge DM, Finnoff DC. 32.  2007. Risk assessment for invasive species produces net bioeconomic benefits. PNAS 104:1203–7 [Google Scholar]
  33. Burnett K, Pongkijvorasin S, Roumasset J. 33.  2012. Species invasion as catastrophe: the case of the brown tree snake. Environ. Resour. Econ. 51:2241–54 [Google Scholar]
  34. Bailey SA, Deneau MG, Jean L, Wiley CJ, Leung B, MacIsaac HJ. 34.  2011. Evaluating efficacy of an environmental policy to prevent biological invasions. Environ. Sci. Technol. 45:72554–61 [Google Scholar]
  35. Haack RA, Britton KO, Brockerhoff EG, Cavey JF, Garrett LJ. 35.  et al. 2014. Effectiveness of the international phytosanitary standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLOS ONE 9:5e96611 [Google Scholar]
  36. Jerde CL, Mahon AR, Chadderton WL, Lodge DM. 36.  2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4:2150–57 [Google Scholar]
  37. Kappes PJ, Jones HP. 37.  2014. Integrating seabird restoration and mammal eradication programs on islands to maximize conservation gains. Biodivers. Conserv. 23:2503–9 [Google Scholar]
  38. Williams SL, Grosholz ED. 38.  2008. The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuar. Coasts 31:13–20 [Google Scholar]
  39. Fergusson IF.39.  2011. World trade organization negotiations: the Doha development agenda CRS Rep. for Congress, RL32060, Congr. Res. Serv., Washington, DC [Google Scholar]
  40. 40. World Trade Organ 2001. Doha WTO Ministerial 2001: Ministerial Declaration WT/MIN(01)/DEC/1, World Trade Organ., Geneva, Switz. https://www.wto.org/english/thewto_e/minist_e/min01_e/mindecl_e.htm [Google Scholar]
  41. 41. Eur. Union 2015. EU textual proposal: trade and sustainable development. Dir. General Trade Eur. Comm., Brussels, Belg. http://trade.ec.europa.eu/doclib/docs/2015/november/tradoc_153923.pdf
  42. 42. Int. Marit. Organ 2004. International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM). BWM/CONF/36, Annex, Int. Marit. Organ., London, UK [Google Scholar]
  43. 43. Int. Marit. Organ. Mar. Environ. Prot. Comm 2011. 2011 Guidelines for the control and management of ships’ biofouling to minimize the transfer of invasive aquatic species. Annex 26, Resolution MEPC.207(62). Int. Marit. Organ., London, UK. http://www.imo.org/blast/blastDataHelper.asp?data_id=30766 [Google Scholar]
  44. 44. Conv. Biol. Divers. Secr 2013. Quick guides to the Aichi biodiversity targets, version 2 Conv. Biol. Divers. Secr., Montreal, Can. [Google Scholar]
  45. 45. Conv. Biol. Divers 2002. COP 6 decision VI/23. Alien species that threaten ecosystems, habitats or species. Conv. Biol. Divers., Montreal, Can. [Google Scholar]
  46. 46. Conv. Biol. Divers 2014. COP 12 decision XII/16. Invasive alien species: management of risks associated with introduction of alien species as pets, aquarium and terrarium species, and as live bait and live food, and related issues Conv. Biol. Divers., Montreal, Can. [Google Scholar]
  47. 47. Inter-Agency Liaison Group Invasive Alien Species 2015. Report of the inter-agency liaison group on invasive alien species on its 6th meeting. Int. Marit. Organ., London, UK
  48. Eckersley R.48.  2004. The big chill: the WTO and multilateral environmental agreements. Glob. Environ. Polit. 4:224–50 [Google Scholar]
  49. Brasier C.49.  2005. Preventing invasive pathogens: deficiencies in the system. Plantsman Mar:54–57 [Google Scholar]
  50. Kerr WA.50.  2003. Science-based rules of trade: a mantra for some, an anathema for others. Estey Cent. J. Int. Law Trade Policy 04:286–97 [Google Scholar]
  51. 51. Eur. Union 2014. Regulation (EU) No 1143/2014 of the European parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Eur. Parliam., Strasbourg, France. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AJOL_2014_317_R_0003 [Google Scholar]
  52. Baker HG.52.  1965. Characteristics and modes of origin of weeds. The Genetics of Colonizing Species: Proceedings of the First International Union of Biological Sciences Symposia on General Biology HG Baker, GL Stebbins 147–68 New York: Academic [Google Scholar]
  53. Baker HG.53.  1974. The evolution of weeds. Annu. Rev. Ecol. Syst. 5:1–24 [Google Scholar]
  54. Mandrak NE, Cudmore B, Chapman PM. 54.  2013. National detailed-level risk assessment guidelines: assessing the biological risk of aquatic invasive species in Canada. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/092 Fish. Oceans Can., Ottawa, Can. [Google Scholar]
  55. Gordon DR, Onderdonk DA, Fox AM, Stocker RK. 55.  2008. Consistent accuracy of the Australian weed risk assessment system across varied geographies. Divers. Distrib. 14:2234–42 [Google Scholar]
  56. Mandrak NE.56.  1989. Potential invasion of the Great Lakes by fish species associated with climatic warming. J. Gt. Lakes Res. 15:2306–16 [Google Scholar]
  57. Keller RP, Drake JM, Lodge DM. 57.  2007. Fecundity as a basis for risk assessment of nonindigenous freshwater molluscs. Conserv. Biol. 21:1191–200 [Google Scholar]
  58. Kumschick S, Richardson DM. 58.  2013. Species-based risk assessments for biological invasions: advances and challenges. Divers. Distrib. 19:91095–105 [Google Scholar]
  59. Pheloung PC, Williams PA, Halloy SR. 59.  1999. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J. Environ. Manag. 57:4239–51 [Google Scholar]
  60. Gantz C, Gordon D, Jerde C, Keller R, Chadderton W. 60.  et al. 2015. Managing the introduction and spread of non-native aquatic plants in the Laurentian Great Lakes: a regional risk assessment approach. Manag. Biol. Invasions 6:145–55 [Google Scholar]
  61. Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P. 61.  et al. 2011. TRY—a global database of plant traits. Glob. Change Biol. 17:92905–35 [Google Scholar]
  62. Frimpong EA, Angermeier PL. 62.  2009. Fish traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34:10487–95 [Google Scholar]
  63. Howeth JG, Gantz CA, Angermeier PL, Frimpong EA, Hoff M. 63.  et al. 2016. Predicting invasiveness of species in trade: climate match, trophic guild and fecundity influence establishment and impact of non-native freshwater fishes. Divers. Distrib. 22:148–60 [Google Scholar]
  64. Froese R, Pauly D. 64.  2015. FishBase Kiel, Germany: Leibniz Inst. Mar. Sci http://www.fishbase.org [Google Scholar]
  65. 65. Bur. Rural Sci 2009. CLIMATCH free-access internet-based software. Dep. Agric., Fish. For., Bur. Rural Sci., Canberra [Google Scholar]
  66. Hulme PE.66.  2012. Weed risk assessment: a way forward or a waste of time?. J. Appl. Ecol. 49:110–19 [Google Scholar]
  67. Springborn M, Romagosa CM, Keller RP. 67.  2011. The value of nonindigenous species risk assessment in international trade. Ecol. Econ. 70:112145–53 [Google Scholar]
  68. Springborn MR, Keller RP, Elwood S, Romagosa CM, Zambrana-Torrelio C, Daszak P. 68.  2015. Integrating invasion and disease in the risk assessment of live bird trade. Divers. Distrib. 21:1101–10 [Google Scholar]
  69. Keller RP, Perrings C. 69.  2011. International policy options for reducing the environmental impacts of invasive species. BioScience 61:121005–12 [Google Scholar]
  70. Kot M, Lewis MA, van den Driessche P. 70.  1996. Dispersal data and the spread of invading organisms. Ecology 77:72027–42 [Google Scholar]
  71. Essl F, Bacher S, Blackburn TM, Booy O, Brundu G. 71.  et al. 2015. Crossing frontiers in tackling pathways of biological invasions. BioScience 65:769–82 [Google Scholar]
  72. Hufnagel L, Brockmann D, Geisel T. 72.  2004. Forecast and control of epidemics in a globalized world. PNAS 101:4215124–29 [Google Scholar]
  73. Drake JM, Lodge DM. 73.  2004. Global hot spots of biological invasions: evaluating options for ballast-water management. Proc. R. Soc. B 271:1539575–80 [Google Scholar]
  74. Schofield PJ.74.  2010. Update on geographic spread of invasive lionfishes (Pterois volitans [Linnaeus, 1758] and P. miles [Bennett, 1828]) in the Western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Aquat. Invasions 5:Suppl. 1S117–22 [Google Scholar]
  75. Johnston MW, Purkis SJ. 75.  2015. A coordinated and sustained international strategy is required to turn the tide on the Atlantic lionfish invasion. Mar. Ecol. Prog. Ser. 533:219–35 [Google Scholar]
  76. Johnston MW, Purkis SJ. 76.  2015. Hurricanes accelerated the Florida-Bahamas lionfish invasion. Glob. Change Biol. 21:62249–60 [Google Scholar]
  77. Tobin PC, Whitmire SL, Johnson DM, Bjørnstad ON, Liebhold AM. 77.  2007. Invasion speed is affected by geographical variation in the strength of Allee effects. Ecol. Lett. 10:136–43 [Google Scholar]
  78. Bossenbroek JM, Johnson LE, Peters B, Lodge DM. 78.  2007. Forecasting the expansion of zebra mussels in the United States. Conserv. Biol. 21:3800–10 [Google Scholar]
  79. Gomes MFC, Pastore y Piontti A, Rossi L, Chao D, Longini I. 79.  et al. 2014. Assessing the international spreading risk associated with the 2014 West African Ebola outbreak. PLOS Curr. Outbreaks 6 doi:10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5 [Google Scholar]
  80. Seebens H, Gastner MT, Blasius B. 80.  2013. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 16:6782–90 [Google Scholar]
  81. Xu J, Wickramarathne TL, Chawla NV, Grey EK, Steinhaeuser K. 81.  et al. 2014. Improving management of aquatic invasions by integrating shipping network, ecological, and environmental data: data mining for social good. Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. Aug. 24–27 1699–708 New York: ACM [Google Scholar]
  82. Keller RP, Drake JM, Drew MB, Lodge DM. 82.  2011. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Divers. Distrib. 17:93–102 [Google Scholar]
  83. Costello C, Springborn M, McAusland C, Solow A. 83.  2007. Unintended biological invasions: Does risk vary by trading partner?. J. Environ. Econ. Manag. 54:3262–76 [Google Scholar]
  84. Betancur-R R, Hines A, Acero P A, Ortí G, Wilbur AE, Freshwater DW. 84.  2011. Reconstructing the lionfish invasion: insights into Greater Caribbean biogeography. J. Biogeogr. 38:71281–93 [Google Scholar]
  85. Johnston MW, Purkis SJ. 85.  2011. Spatial analysis of the invasion of lionfish in the Western Atlantic and Caribbean. Mar. Pollut. Bull. 62:61218–26 [Google Scholar]
  86. Kovacs KF, Haight RG, McCullough DG, Mercader RJ, Siegert NW, Liebhold AM. 86.  2010. Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecol. Econ. 69:3569–78 [Google Scholar]
  87. Koch FH, Yemshanov D, Haack RA, Magarey RD. 87.  2014. Using a network model to assess risk of forest pest spread via recreational travel. PLOS ONE 9:7e102105 [Google Scholar]
  88. Tobin PC, Blackburn LM. 88.  2007. Slow the spread: a national program to manage the gypsy moth. Gen. Tech. Rep. NRS-6, US Dep. Agric., For. Serv., North. Res. Stn., Newtown Square, PA [Google Scholar]
  89. Ricciardi A.89.  2006. Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity. Divers. Distrib. 12:4425–33 [Google Scholar]
  90. Rothlisberger J, Lodge D. 90.  2013. The Laurentian Great Lakes as a beachhead and a gathering place for biological invasions. Aquat. Invasions 8:4361–74 [Google Scholar]
  91. Sieracki JL, Bossenbroek JM, Chadderton WL. 91.  2014. A spatial modeling approach to predicting the secondary spread of invasive species due to ballast water discharge. PLOS ONE 9:12e114217 [Google Scholar]
  92. Bobeldyk AM, Bossenbroek JM, Evans-White MA, Lodge DM, Lamberti GA. 92.  2005. Secondary spread of zebra mussels (Dreissena polymorpha) in coupled lake-stream systems. Ecoscience 12:3339–46 [Google Scholar]
  93. MacIsaac HJ, Borbely JVM, Muirhead JR, Graniero PA. 93.  2004. Backcasting and forecasting biological invasions of inland lakes. Ecol. Appl. 14:3773–83 [Google Scholar]
  94. Johnstone M, Smith H, Holmlund E, Modley M, DeBolt E, Rohne K. 94.  2014. Boat Inspection and Decontamination for Aquatic Invasive Species Prevention: Recommendations for the Adirondack Region Keene Valley, NY: Adirond. Park Invasive Plant Program/Paul Smith's College/Lake Champlain Basin Program/IGA Lake George Assoc. [Google Scholar]
  95. Rothlisberger JD, Chadderton WL, McNulty J, Lodge DM. 95.  2010. Aquatic invasive species transport via trailered boats: what is being moved, who is moving it, and what can be done. Fisheries 35:3121–32 [Google Scholar]
  96. Morandi M, Manning N, Bossenbroek J, Jerde C. 96.  2015. Assessing the influence of different inland lake management strategies on human-mediated invasive species spread. Manag. Biol. Invasions 6:157–69 [Google Scholar]
  97. Stewart-Koster B, Olden JD, Johnson PTJ. 97.  2015. Integrating landscape connectivity and habitat suitability to guide offensive and defensive invasive species management. J. Appl. Ecol. 52:2366–78 [Google Scholar]
  98. Tucker AJ, Chadderton WL, Jerde CL, Renshaw MA, Uy K. 98.  et al. 2016. A sensitive environmental DNA (eDNA) assay leads to new insight on Ruffe (Gymnocephalus cernua) spread in North America. Biol. Invasions. doi:10.1007/s10530-016-1209-z [Google Scholar]
  99. Beletsky D, Saylor JH, Schwab DJ. 99.  1999. Mean circulation in the great lakes. J. Gt. Lakes Res. 25:178–93 [Google Scholar]
  100. Beletsky D, Beletsky R, Rutherford ES, Sieracki J, Bossenbroek JM. 100.  et al. 2016. Predicting spread of aquatic invasive species by lake currents. J. Gt. Lakes Res In press [Google Scholar]
  101. Sieracki JL.101.  2014. Spatial modeling as a decision-making tool for invasive species management in the Great Lakes. PhD Thesis, Univ. Toledo, Toledo, Ohio [Google Scholar]
  102. Peters JA, Lodge DM. 102.  2009. Invasive species policy at the regional level: a multiple weak links problem. Fisheries 34:8373–80 [Google Scholar]
  103. Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ. 103.  et al. 2012. Global change, global trade, and the next wave of plant invasions. Front. Ecol. Environ. 10:120–28 [Google Scholar]
  104. Sepulveda A, Ray A, Al-Chokhachy R, Muhlfeld C, Gresswell R. 104.  et al. 2012. Aquatic invasive species: lessons from cancer research. Am. Sci. 100:234–42 [Google Scholar]
  105. Fox JC, Buckley YM, Panetta FD, Bourgoin J, Pullar D. 105.  2009. Surveillance protocols for management of invasive plants: modelling Chilean needle grass (Nassella neesiana) in Australia. Divers. Distrib. 15:4577–89 [Google Scholar]
  106. Vander Zanden MJ, Hansen GJA, Higgins SN, Kornis MS. 106.  2010. A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the Laurentian Great Lakes. J. Gt. Lakes Res. 36:1199–205 [Google Scholar]
  107. Jerde CL, Chadderton WL, Mahon AR, Renshaw MA, Corush J. 107.  et al. 2013. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can. J. Fish. Aquat. Sci. 70:4522–26 [Google Scholar]
  108. Wittmann ME, Chandra S, Boyd K, Jerde CL. 108.  2015. Implementing invasive species control: a case study of multi-jurisdictional coordination at Lake Tahoe, USA. Manag. Biol. Invasions 6:4319–28 [Google Scholar]
  109. Goldstein EA, Lawton C, Sheehy E, Butler F. 109.  2014. Locating species range frontiers: a cost and efficiency comparison of citizen science and hair-tube survey methods for use in tracking an invasive squirrel. Wildl. Res. 41:164–75 [Google Scholar]
  110. Waits LP, Paetkau D. 110.  2005. Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J. Wildl. Manag. 69:41419–33 [Google Scholar]
  111. Rodgers TW, Mock KE. 111.  2015. Drinking water as a source of environmental DNA for the detection of terrestrial wildlife species. Conserv. Genet. Resour. 7:3693–96 [Google Scholar]
  112. Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC. 112.  2014. Review: the detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51:51450–59 [Google Scholar]
  113. Egan SP, Grey E, Olds B, Feder JL, Ruggiero ST. 113.  et al. 2015. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy. Environ. Sci. Technol. 49:74113–21 [Google Scholar]
  114. Simmons M, Tucker A, Chadderton WL, Jerde CL, Mahon AR. 114.  2015. Active and passive environmental DNA surveillance of aquatic invasive species. Can. J. Fish. Aquat. Sci. 73:176–83 [Google Scholar]
  115. Dayoub F, Dunbabin M, Corke P. 115.  2015. Robotic detection and tracking of crown-of-thorns starfish Presented at IEEE/RSJ Int. Conf. Intell. Robots Syst., Sept. 28–Oct. 2, Hamburg, Ger. [Google Scholar]
  116. Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC. 116.  2007. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61:2–3237–45 [Google Scholar]
  117. Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C. 117.  et al. 2015. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15:3543–56 [Google Scholar]
  118. Lahoz-Monfort JJ, Guillera-Arroita G, Tingley R. 118.  2015. Statistical approaches to account for false-positive errors in environmental DNA samples. Mol. Ecol. Resour. 16:673–85 [Google Scholar]
  119. Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM. 119.  2011. Use of niche models in invasive species risk assessments. Biol. Invasions 13:122785–97 [Google Scholar]
  120. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E. 120.  et al. 2011. Ecological Niches and Geographic Distributions (Monographs in Population Biology 49) Princeton, NJ: Princeton Univ. Press [Google Scholar]
  121. Drake JM.121.  2015. Range bagging: a new method for ecological niche modelling from presence-only data. J. R. Soc. Interface 12:10720150086 [Google Scholar]
  122. Elith J, Leathwick JR. 122.  2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:1677–97 [Google Scholar]
  123. Stockwell DRB, Peterson AT. 123.  2002. Effects of sample size on accuracy of species distribution models. Ecol. Model. 148:11–13 [Google Scholar]
  124. Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C. 124.  et al. 2012. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39:122119–31 [Google Scholar]
  125. Phillips SJ, Anderson RP, Schapire RE. 125.  2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:3–4231–59 [Google Scholar]
  126. Franklin J.126.  2009. Mapping Species Distributions: Spatial Inference and Prediction Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  127. Booth TH, Nix HA, Busby JR, Hutchinson MF. 127.  2014. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 20:11–9 [Google Scholar]
  128. Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M. 128.  2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob. Change Biol. 11:122234–50 [Google Scholar]
  129. Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE. 129.  et al. 2011. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20:6789–802 [Google Scholar]
  130. Kulhanek SA, Leung B, Ricciardi A. 130.  2011. Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol. Appl. 21:1203–13 [Google Scholar]
  131. Giljohann KM, Hauser CE, Williams NSG, Moore JL. 131.  2011. Optimizing invasive species control across space: willow invasion management in the Australian Alps. J. Appl. Ecol. 48:51286–94 [Google Scholar]
  132. Hastie T, Fithian W. 132.  2013. Inference from presence-only data; the ongoing controversy. Ecography 36:8864–67 [Google Scholar]
  133. Parravicini V, Azzurro E, Kulbicki M, Belmaker J. 133.  2015. Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecol. Lett. 18:3246–53 [Google Scholar]
  134. Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A. 134.  2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335:60741344–48 [Google Scholar]
  135. Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W. 135.  2010. Predicting potential distributions of invasive species: Where to go from here?. Divers. Distrib. 16:3331–42 [Google Scholar]
  136. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H. 136.  et al. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24:3276–92 [Google Scholar]
  137. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J. 137.  et al. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. Camb. Philos. Soc. 88:115–30 [Google Scholar]
  138. Wenger SJ, Olden JD. 138.  2012. Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods Ecol. Evol. 3:2260–67 [Google Scholar]
  139. Larson ER, Gallagher RV, Beaumont LJ, Olden JD. 139.  2014. Generalized “avatar” niche shifts improve distribution models for invasive species. Divers. Distrib. 20:111296–306 [Google Scholar]
  140. Cudmore B, Mandrak NE, Jones LA, Dettmers JM, Conover G. 140.  et al. 2016. Binational ecological risk assessment of grass carp (Ctenopharyngodon idella) in the Great Lakes basin DFO Can. Sci. Advis. Sec. Res. Doc. 2015/nnn. In press [Google Scholar]
  141. Wittmann ME, Jerde CL, Howeth JG, Maher SP, Deines AM. 141.  et al. 2014. Grass carp in the Great Lakes region: establishment potential, expert perceptions, and re-evaluation of experimental evidence of ecological impact. Can. J. Fish. Aquat. Sci. 71:7992–99 [Google Scholar]
  142. Wittmann ME, Barnes MA, Jerde CL, Jones LA, Lodge DM. 142.  2016. Confronting species distribution model predictions with species functional traits. Ecol Evol 6:873–79 [Google Scholar]
  143. Courtenay WR Jr., Williams JD. 143.  2004. Snakeheads (Pisces, Channidae)—a biological synopsis and risk assessment US Geol. Survey Circ. 1251, US Geol. Survey, US Dep. Inter., Denver, CO [Google Scholar]
  144. Amanov AA.144.  1974. Morphology and mode of life in the Amur snakehead (Ophiocephalus argus warpachowskii) in Chimkurgan reservoir. J. Ichthyol. 14:713–17 [Google Scholar]
  145. Domisch S, Amatulli G, Jetz W. 145.  2015. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data. 2:150073 [Google Scholar]
  146. Jeschke JM, Bacher S, Blackburn TM, Dick JTA, Essl F. 146.  et al. 2014. Defining the impact of non-native species. Conserv. Biol. 28:51188–94 [Google Scholar]
  147. Colautti RI, Bailey SA, van Overdijk CDA, Amundsen K, MacIsaac HJ. 147.  2006. Characterised and projected costs of nonindigenous species in Canada. Biol. Invasions 8:145–59 [Google Scholar]
  148. Xu H, Ding H, Li M, Qiang S, Guo J. 148.  et al. 2006. The distribution and economic losses of alien species invasion to china. Biol. Invasions 8:71495–500 [Google Scholar]
  149. Nghiem LTP, Soliman T, Yeo DCJ, Tan HTW, Evans TA. 149.  et al. 2013. Economic and environmental impacts of harmful non-indigenous species in Southeast Asia. PLOS ONE 8:8e7–1255 [Google Scholar]
  150. Holmes TP, Aukema JE, Von Holle B, Liebhold A, Sills E. 150.  2009. Economic impacts of invasive species in forests: past, present, and future. Ann. N. Y. Acad. Sci. 1162:118–38 [Google Scholar]
  151. Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ. 151.  2010. Historical accumulation of nonindigenous forest pests in the continental United States. BioScience 60:11886–97 [Google Scholar]
  152. Wells L, McLain AL. 152.  1973. Lake Michigan: man's effects on native fish stocks and other biota. Tech. Rep. 20, Gt. Lakes Fish. Comm., US Geol. Survey, US Dep. Inter., Ann Arbor, MI [Google Scholar]
  153. He JX, Bence JR, Roseman EF, Fielder DG, Ebener MP. 153.  2016. Using time-varying asymptotic length and body condition of top piscivores to indicate ecosystem regime shift in the main basin of Lake Huron: a Bayesian hierarchical modeling approach. Can. J. Fish. Aquat. Sci. 73:1092–103 [Google Scholar]
  154. Finnoff D, McIntosh C, Shogren JF, Sims C, Warziniack T. 154.  2010. Invasive species and endogenous risk. Annu. Rev. Resour. Econ. 2:177–100 [Google Scholar]
  155. Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO. 155.  et al. 2011. Economic impacts of non-native forest insects in the continental United States. PLOS ONE 6:9e24587 [Google Scholar]
  156. Rothlisberger JD, Finnoff DC, Cooke RM, Lodge DM. 156.  2012. Ship-borne nonindigenous species diminish Great Lakes ecosystem services. Ecosystems 15:31–15 [Google Scholar]
  157. Cuddington K, Fortin M-J, Gerber LR, Hastings A, Liebhold A. 157.  et al. 2013. Process-based models are required to manage ecological systems in a changing world. Ecosphere 4:21–12 [Google Scholar]
  158. 158. FAO/Int. Plant Prot. Conv 2004. International standards for phytosanitary measures: pest risk analysis for quarantine pests including analysis of environmental risks. ISPM No. 11, Rev. 1, FAO, Rome, Italy [Google Scholar]
  159. MacLeod A, Head J, Gaunt A. 159.  2004. An assessment of the potential economic impact of Thrips palmi on horticulture in England and the significance of a successful eradication campaign. Crop Prot. 23:7601–10 [Google Scholar]
  160. Breukers A, Mourits M, van der Werf W, Oude Lansink A. 160.  2008. Costs and benefits of controlling quarantine diseases: a bio-economic modeling approach. Agric. Econ. 38:2137–49 [Google Scholar]
  161. Soliman T, Mourits MCM, Oude Lansink AGJM, van der Werf W. 161.  2010. Economic impact assessment in pest risk analysis. Crop Prot. 29:6517–24 [Google Scholar]
  162. Holland J.162.  2007. Tools for Institutional, Political, and Social Analysis of Policy Reform: A Sourcebook for Development Practitioners Washington, DC: World Bank [Google Scholar]
  163. Pendell DL, Leatherman J, Schroeder TC, Alward GS. 163.  2007. The economic impacts of a foot-and-mouth disease outbreak: a regional analysis. J. Agric. Appl. Econ. 39:Suppl. s119–33 [Google Scholar]
  164. Juliá R, Holland DW, Guenthner J. 164.  2007. Assessing the economic impact of invasive species: the case of yellow starthistle (Centaurea solsitialis L.) in the rangelands of Idaho, USA. J. Environ. Manag. 85:4876–82 [Google Scholar]
  165. Wirth FF, Davis KJ, Wilson SB. 165.  2004. Florida nursery sales and economic impacts of 14 potentially invasive landscape plant species. J. Environ. Hortic. 22:112–16 [Google Scholar]
  166. Arthur M.166.  2006. An economic analysis of quarantine: the economies of Australia's ban on New Zealand apple imports. Presented at 2006 Conf., N. Z. Agric. Resour. Econ. Soc., Nelson, N. Z. [Google Scholar]
  167. Surkov IV, Oude Lansink AGJM, van der Werf W. 167.  2009. The optimal amount and allocation of sampling effort for plant health inspection. Eur. Rev. Agric. Econ. 36:295–320 [Google Scholar]
  168. Finnoff DC, Shogren JF, Leung B, Lodge DM. 168.  2007. Take a risk: preferring prevention over control of biological invaders. Ecol. Econ. 62:2216–22 [Google Scholar]
  169. Haight RG, Polasky S. 169.  2010. Optimal control of an invasive species with imperfect information about the level of infestation. Resour. Energy Econ. 32:4519–33 [Google Scholar]
  170. Berck P, Robinson S, Goldman G. 170.  1991. The use of computable general equilibrium models to assess water policies. . In The Economics and Management of Water and Drainage in Agriculture, ed. A Dinar, D Zilberman 489–509 New York: Springer [Google Scholar]
  171. Warziniack T, Finnoff D, Bossenbroek J, Shogren JF, Lodge D. 171.  2011. Stepping stones for biological invasion: a bioeconomic model of transferable risk. Environ. Resour. Econ. 50:4605–27 [Google Scholar]
  172. Warziniack TW, Finnoff D, Shogren JF. 172.  2013. Public economics of hitchhiking species and tourism-based risk to ecosystem services. Resour. Energy Econ. 35:3277–94 [Google Scholar]
  173. McDermott SM, Irwin RE, Taylor BW. 173.  2013. Using economic instruments to develop effective management of invasive species: insights from a bioeconomic model. Ecol. Appl. 23:51086–100 [Google Scholar]
  174. Shogren JF.174.  2000. Risk reduction strategies against the “explosive invader.”. The Economics of Biological Invasions C Perrings, M Williamson, S Dalmazzone 56–69 Glasgow, UK: Edward Elgar [Google Scholar]
  175. Holmes TP, Liebhold AM, Kovacs KF, Von Holle B. 175.  2010. A spatial-dynamic value transfer model of economic losses from a biological invasion. Ecol. Econ. 70:186–95 [Google Scholar]
  176. Zhang H, Rutherford ES, Mason DM, Breck JT, Wittmann ME. 176.  et al. 2016. Forecasting the impacts of silver and bighead carp on the Lake Erie food web. Trans. Am. Fish. Soc. 145:1136–62 [Google Scholar]
  177. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H. 177.  et al. 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7:14–11 [Google Scholar]
  178. Villa F, Bagstad KJ, Voigt B, Johnson GW, Portela R. 178.  et al. 2014. A methodology for adaptable and robust ecosystem services assessment. PLOS ONE 9:3e91001 [Google Scholar]
  179. Polasky S, Nelson E, Pennington D, Johnson KA. 179.  2011. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota. Environ. Resour. Econ. 48:2219–42 [Google Scholar]
  180. Finnoff D, Shogren JF, Leung B, Lodge D. 180.  2005. The importance of bioeconomic feedback in invasive species management. Ecol. Econ. 52:3367–81 [Google Scholar]
  181. 181. US Congr., Off. Technol. Assess 1993. Harmful non-indigenous species in the United States. OTA-F-565, US Gov. Print. Off., Washington, DC [Google Scholar]
  182. 182. Comm. Ships’ Ballast Oper., Mar. Board, Comm. Eng. Tech. Syst., Natl. Res. Counc. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships’ Ballast Water Washington, DC: Natl. Acad. [Google Scholar]
  183. Whitledge GW, Weber MM, DeMartini J, Oldenburg J, Roberts D. 183.  et al. 2015. An evaluation Zequanox® efficacy and application strategies for targeted control of zebra mussels in shallow-water habitats in lakes. Manag. Biol. Invasions 6:171–82 [Google Scholar]
  184. Muirhead JR, Leung B, van Overdijk C, Kelly DW, Nandakumar K. 184.  et al. 2006. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers. Distrib. 12:171–79 [Google Scholar]
  185. Barnes MA, Jerde CL, Keller D, Chadderton WL, Howeth JG, Lodge DM. 185.  2013. Viability of aquatic plant fragments following desiccation. Invasive Plant Sci. Manag. 6:2320–25 [Google Scholar]
  186. Barnes MA, Jerde CL, Wittmann ME, Chadderton WL, Ding J. 186.  et al. 2014. Geographic selection bias of occurrence data influences transferability of invasive Hydrilla verticillata distribution models. Ecol. Evol. 4:122584–93 [Google Scholar]
  187. Langeland KA.187.  1996. Hydrilla verticillata (LF) Royle (Hydrocharitaceae), “the perfect aquatic weed.”. Castanea 61:293–304 [Google Scholar]
  188. Myers JH, Simberloff D, Kuris AM, Carey JR. 188.  2000. Eradication revisited: dealing with exotic species. Trends Ecol. Evol. 15:8316–20 [Google Scholar]
  189. Simberloff D.189.  2013. Invasive Species: What Everyone Needs to Know New York: Oxford Univ. Press [Google Scholar]
  190. Webber BL, Raghu S, Edwards OR. 190.  2015. Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat?. PNAS 112:3410565–67 [Google Scholar]
  191. Esvelt KM, Smidler AL, Catteruccia F, Church GM. 191.  2014. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3:e03401 [Google Scholar]
  192. Burgman MA.192.  2005. Risks and Decisions for Conservation and Environmental Management Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  193. Cooke RM.193.  2015. Messaging climate change uncertainty. Nat. Clim. Change 5:18–10 [Google Scholar]
  194. Link JS, Mason D, Lederhouse T, Gaichas S, Hartley T. 194.  et al. 2015. Report from the joint OAR-NMFS modeling uncertainty workshop. NOAA Tech. Memo. NMFS-F/SPO-153, US Dep. Commer., Natl. Ocean. Atmos. Adm., Silver Spring, MD [Google Scholar]
  195. Olson LJ, Roy S. 195.  2005. On prevention and control of an uncertain biological invasion. Appl. Econ. Perspect. Policy 27:3491–97 [Google Scholar]
  196. Sutherland WJ, Burgman M. 196.  2015. Policy advice: Use experts wisely. Nature 526:7573317–18 [Google Scholar]
  197. Cooke RM.197.  1991. Experts in Uncertainty: Opinion and Subjective Probability in Science New York: Oxford Univ. Press [Google Scholar]
  198. Wittmann ME, Cooke RM, Rothlisberger JD, Rutherford ES, Zhang H. 198.  et al. 2015. Use of structured expert judgment to forecast invasions by bighead and silver carp in Lake Erie. Conserv. Biol. 29:1187–97 [Google Scholar]
  199. Wittmann ME, Cooke RM, Rothlisberger JD, Lodge DM. 199.  2014. Using structured expert judgment to assess invasive species prevention: Asian carp and the Mississippi–Great Lakes hydrologic connection. Environ. Sci. Technol. 48:42150–56 [Google Scholar]
  200. Romine JG, Jensen NR, Parsley MJ, Gaugush RF, Severson TJ. 200.  et al. 2015. Response of bighead carp and silver carp to repeated water gun operation in an enclosed shallow pond. N. Am. J. Fish. Manag. 35:3440–53 [Google Scholar]
  201. Vetter BJ, Cupp AR, Fredricks KT, Gaikowski MP, Mensinger AF. 201.  2015. Acoustical deterrence of Silver Carp (Hypophthalmichthys molitrix). Biol. Invasions 17:123383–92 [Google Scholar]
  202. Schwieterman JP.202.  2015. Environmental reviews and case studies: stopping the Asian carp and other nuisance species: cost projections for separating the Great Lakes and Mississippi River Basins using U.S. Army Corps of Engineers inputs. Environ. Pract. 17:04291–301 [Google Scholar]
  203. Zielinski DP, Sorensen PW. 203.  2016. Bubble curtain deflection screen diverts the movement of both Asian and common carp. N. Am. J. Fish. Manag. 36:2267–76 [Google Scholar]
  204. Donaldson MR, Amberg J, Adhikari S, Cupp A, Jensen N. 204.  et al. 2016. Carbon dioxide as a tool to deter the movement of invasive bigheaded carps. Trans. Am. Fish. Soc. 145:3657–70 [Google Scholar]
  205. Fackler P, Pacifici K. 205.  2014. Addressing structural and observational uncertainty in resource management. J. Environ. Manag. 133:27–36 [Google Scholar]
  206. Hall SS.206.  2011. Scientists on trial: at fault?. Nat. News 477:7364264–69 [Google Scholar]
  207. Lempert RJ, Popper SW, Bankes SC. 207.  2010. Robust decision making: coping with uncertainty. Futurist 44:147–48 [Google Scholar]
  208. Davidson AD, Hewitt CL, Kashian DR. 208.  2015. Understanding acceptable level of risk: incorporating the economic cost of under-managing invasive species. PLOS ONE 10:11e0141958 [Google Scholar]
  209. Klenk NL, Meehan K, Pinel SL, Mendez F, Lima PT, Kammen DM. 209.  2015. Stakeholders in climate science: beyond lip service?. Science 350:6262743–44 [Google Scholar]
  210. Hoff MH.210.  2014. Standard operating procedures: rapid screening of species risk of establishment and impact in the U.S. U.S. Fish Wildl. Serv., Washington, DC
  211. 211. Off. Sci. Advis 2012. Peer review of scientific information. U.S. Fish Wildl. Serv.: Washington, DC. https://www.fws.gov/science/pdf/RAMPPeerReview20150831.pdf [Google Scholar]
/content/journals/10.1146/annurev-environ-110615-085532
Loading
/content/journals/10.1146/annurev-environ-110615-085532
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error