Here, we identify the extant species of marine megafauna (>45 kg maximum reported mass), provide a conceptual template for the ways in which these species influence the structure and function of ocean ecosystems, and review the published evidence for such influences. Ecological influences of more than 90% of the 338 known species of extant ocean megafauna are unstudied and thus unknown. The most widely known effect of those few species that have been studied is direct prey limitation, which occurs through consumption and risk avoidance behavior. Consumer-prey interactions result in indirect effects that extend through marine ecosystems to other species and ecological processes. Marine megafauna transport energy, nutrients, and other materials vertically and horizontally through the oceans, often over long distances. The functional relationships between these various ecological impacts and megafauna population densities, in the few well-studied cases, are characterized by phase shifts and hysteresis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Gee H.1.  2015. Origin and evolution of vertebrates. Nature520449 [Google Scholar]
  2. Lyons SK, Smith FA, Brown JH. 2.  2004. Of mice, mastodons and men: human-mediated extinctions on four continents. Evol. Ecol. Res. 6339–58 [Google Scholar]
  3. Roman J, Estes JA, Morissette L, Smith C, Costa D. 3.  et al. 2014. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12:377–85 [Google Scholar]
  4. Roman J, McCarthy JJ. 4.  2010. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLOS ONE 51–8 [Google Scholar]
  5. McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR. 5.  2015. Marine defaunation: animal loss in the global ocean. Science 34762191255641 [Google Scholar]
  6. McCauley DJ, Young HS, Dunbar RB, Estes JA, Semmens BX, Micheli F. 6.  2012. Assessing the effects of large mobile predators on ecosystem connectivity. Ecol. Appl. 22:1711–17 [Google Scholar]
  7. McCauley DJ, Young HS, Guevara R, Williams GJ, Power EA. 7.  et al. 2014. Positive and negative effects of a threatened parrotfish on reef ecosystems. Conserv. Biol. 28:1312–21 [Google Scholar]
  8. Post DM, Pace ML, Hairston NG. 8.  2000. Ecosystem size determines food-chain length in lakes. Nature 4051047–49 [Google Scholar]
  9. Langer MC, Ezcurra MD, Bittencourt JS, Novas FE. 9.  2010. The origin and early evolution of dinosaurs. Biol. Rev. 8555–110 [Google Scholar]
  10. 10. IUCN (Int. Union Conserv. Nat.). 2015. The IUCN Red List of threatened species version 2015.4. http://www.iucnredlist.org [Google Scholar]
  11. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J. 11.  et al. 2011. Trophic downgrading of planet Earth. Science 333301–6 [Google Scholar]
  12. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. 12.  2014. Defaunation in the Anthropocene. Science 345401–6 [Google Scholar]
  13. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG. 13.  et al. 2014. Status and ecological effects of the world's largest carnivores. Science 3431241484 [Google Scholar]
  14. Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT. 14.  et al. 2015. Collapse of the world's largest herbivores. Sci. Adv. 1e1400103 [Google Scholar]
  15. Schrope M.15.  2013. Giant squid filmed in its natural environment. Nature. Jan. 14. http://www.nature.com/news/giant-squid-filmed-in-its-natural-environment-1.12202 [Google Scholar]
  16. Hocking DP, Evans AR, Fitzgerald EMG. 16.  2013. Leopard seals (Hydrurga leptonyx) use suction and filter feeding when hunting small prey underwater. Polar Biol 36211–22 [Google Scholar]
  17. Riedman ML, Estes JA. 17.  1990. The sea otter (Enhydra lutris): behavior, ecology, and natural history Biol. Rep. 90, U.S. Fish Wildl. Serv., Washington, DC [Google Scholar]
  18. Darimont CT, Fox CH, Bryan HM, Reimchen TE. 18.  2015. The unique ecology of human predators. Science 349858–60 [Google Scholar]
  19. Menge BA, Sutherland JP. 19.  1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130:730–57 [Google Scholar]
  20. Paine RT.20.  1988. Food webs: road maps of interactions or grist for theoretical development?. Ecology 691648–54 [Google Scholar]
  21. Estes JA, Brashares JS, Power ME. 21.  2013. Predicting and detecting reciprocity between indirect ecological interactions and evolution. Am. Nat. 181Suppl. 1S76–99 [Google Scholar]
  22. Berlow EL, Navarrete SA, Briggs CJ, Power ME, Menge BA. 22.  1999. Quantifying variation in the strengths of species interactions. Ecology 802206–24 [Google Scholar]
  23. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ. 23.  et al. 1996. Challenges in the quest for keystones. BioScience 46609–20 [Google Scholar]
  24. Paine RT.24.  1980. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49666–85 [Google Scholar]
  25. Holt RD.25.  1977. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12:197–229 [Google Scholar]
  26. Schoener TW.26.  1993. On the relative importance of direct versus indirect effects in ecological communities. Mutualism and Community Organization: Behavioral, Theoretical, and Food-Web Approaches H Kawanabe, JE Cohen, K Iwasaki 365–411 Oxford: Oxford Univ. Press [Google Scholar]
  27. Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA. 27.  et al. 2011. Tracking apex marine predator movements in a dynamic ocean. Nature 47586–90 [Google Scholar]
  28. Palumbi SR.28.  1994. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25:547–72 [Google Scholar]
  29. Werner EE, Peacor SD. 29.  2003. A review of trait-mediated indirect interactions in ecological communities. Ecology 841083–100 [Google Scholar]
  30. Heithaus MR, Wirsing AJ, Thompson J, Burkholder D. 30.  2008. A review of lethal and non-lethal effects of predators on adult marine turtles. J. Exp. Mar. Bio. Ecol. 35643–51 [Google Scholar]
  31. Brown JS.31.  1999. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 149–71 [Google Scholar]
  32. Kiszka JJ, Heithaus MR, Wirsing AJ. 32.  2015. Behavioral drivers of the ecological roles and importance of marine mammals. Mar. Ecol. Prog. Ser. 523:267–81 [Google Scholar]
  33. Creel S, Christianson D. 33.  2008. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23:194–201 [Google Scholar]
  34. Heithaus MR, Frid A, Wirsing AJ, Worm B. 34.  2008. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23:202–10 [Google Scholar]
  35. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 35.  2001. Catastrophic shifts in ecosystems. Nature 413:591–96 [Google Scholar]
  36. Burkholder DA, Heithaus MR, Fourqurean JW, Wirsing A, Dill LM. 36.  2013. Patterns of top-down control in a seagrass ecosystem: Could a roving apex predator induce a behaviour-mediated trophic cascade?. J. Anim. Ecol. 821192–202 [Google Scholar]
  37. McCauley DJ, Micheli F, Young HS, Tittensor DP, Brumbaugh DR. 37.  et al. 2010. Acute effects of removing large fish from a near-pristine coral reef. Mar. Biol. 157:2739–50 [Google Scholar]
  38. Hughes T, Rodrigues M, Bellwood D, Ceccarelli D, Hoegh-Guldberg O. 38.  et al. 2007. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17:360–65 [Google Scholar]
  39. Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH. 39.  2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315:1846–50 [Google Scholar]
  40. Englund G, Cooper DS. 40.  2003. Scale effects and extrapolation in ecological experiments. Adv. Ecol. Res. 33161–213 [Google Scholar]
  41. Worm B, Myers RA. 41.  2003. Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology 84162–73 [Google Scholar]
  42. Boudreau SA, Anderson SC, Worm B. 42.  2015. Top-down and bottom-up forces interact at thermal range extremes on American lobster. J. Anim. Ecol. 84840–50 [Google Scholar]
  43. Heithaus MR, Wirsing AJ, Dill LM. 43.  2012. The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar. Freshw. Res. 631039–50 [Google Scholar]
  44. DeMartini EE, Friedlander AM, Holzwarth SR. 44.  2005. Size at sex change in protogynous labroids, prey body size distributions, and apex predator densities at NW Hawaiian atolls. Mar. Ecol. Prog. Ser. 297:259–71 [Google Scholar]
  45. McCauley DJ, Hoffmann E, Young HS, Micheli F. 45.  2012. Night shift: expansion of temporal niche use following reductions in predator density. PLOS ONE 7e38871 [Google Scholar]
  46. Bascompte J, Melián CJ, Sala E. 46.  2005. Interaction strength combinations and the overfishing of a marine food web. PNAS 102:5443–47 [Google Scholar]
  47. Blarney LK, Plagányi ÉE, Branch GM. 47.  2013. Modeling a regime shift in a kelp forest ecosystem caused by a lobster range expansion. Bull. Mar. Sci. 89347–75 [Google Scholar]
  48. Fulton EA, Smith ADM, Johnson CR. 48.  2003. Effect of complexity on marine ecosystem models. Mar. Ecol. Prog. Ser. 253:1–16 [Google Scholar]
  49. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM. 49.  et al. 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29:436–59 [Google Scholar]
  50. Estes JA, Tinker MT, Bodkin JL. 50.  2010. Using ecological function to develop recovery criteria for depleted species: sea otters and kelp forests in the Aleutian archipelago. Conserv. Biol. 24:852–60 [Google Scholar]
  51. Selkoe KA, Blenckner T, Caldwell MR, Crowder LB, Erickson AL. 51.  et al. 2015. Principles for managing marine ecosystems prone to tipping points. Ecosyst. Health Sustain. 11–18 [Google Scholar]
  52. Duggins DO, Simenstad CA, Estes JA. 52.  1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170–73 [Google Scholar]
  53. Reisewitz SE, Estes JA, Simenstad CA. 53.  2006. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago. Oecologia 146:623–31 [Google Scholar]
  54. Markel RW, Shurin JB. 54.  2015. Indirect effects of sea otters on rockfish (Sebastes spp.) in giant kelp forests. Ecology 96:2877–90 [Google Scholar]
  55. Irons DB, Anthony RG, Estes JA. 55.  1986. Foraging strategies of glaucous-winged gulls in a rocky intertidal community. Ecology 671460–74 [Google Scholar]
  56. Anthony RG, Estes JA, Ricca MA, Miles AK, Forsman ED. 56.  2008. Bald eagles and sea otters in the Aleutian archipelago: indirect effects of trophic cascades. Ecology 892725–35 [Google Scholar]
  57. Wilmers CC, Estes JA, Edwards M, Laidre KL, Konar B. 57.  2012. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10:409–15 [Google Scholar]
  58. Vicknair K, Estes JA. 58.  2012. Interactions among sea otters, sea stars, and suspension-feeding invertebrates in the western Aleutian archipelago. Mar. Biol. 159:2641–49 [Google Scholar]
  59. Kvitek ARG, Oliver JS, Degange AR, Anderson BS. 59.  1992. Changes in Alaskan soft-bottom prey communities along a gradient in sea otter predation. Ecology 73413–28 [Google Scholar]
  60. Garshelis DL, Garshelis JA, Kimker AT. 60.  1986. Sea otter time budgets and prey relationships in Alaska. J. Wildl. Manag. 50637–47 [Google Scholar]
  61. Hughes BB, Eby R, Dyke V, Tinker MT, Marks CI, Johnson KS. 61.  2013. Recovery of a top predator mediates negative eutrophic effects on seagrass. PNAS 110:15313–18 [Google Scholar]
  62. Bowen WD.62.  1997. Role of marine mammals in aquatic ecosystems. Mar. Ecol. Prog. Ser. 158267–74 [Google Scholar]
  63. Williams TM, Estes JA, Doak DF, Springer AM. 63.  2004. Killer appetites: assessing the role of predators in ecological communities. Ecology 853373–84 [Google Scholar]
  64. MacLeod R, MacLeod C, Learmonth J, Jepson P, Reid R. 64.  et al. 2007. Mass-dependent predation risk and lethal dolphin-porpoise interactions. Proc. R. Soc. B 2742587–93 [Google Scholar]
  65. MacLeod CD, MacLeod R, Learmonth JA, Cresswell W, Pierece GJ. 65.  2014. Predicting population-level risk effects of predation from the responses of individuals. Ecology 952006–15 [Google Scholar]
  66. Jefferson TA, Stacey PJ, Baird RW. 66.  1991. A review of killer whale interactions with other marine mammals: predation to co-existence. Mammal Rev. 21:151–80 [Google Scholar]
  67. Dill LM, Heithaus MR, Walters CJ. 67.  2003. Behaviorally mediated indirect interactions in marine communities and their conservation implications. Ecology 841151–57 [Google Scholar]
  68. Estes JA, DeMaster DP, Doak DF, Williams TM, Brownell RLJ. 68.  2006. Whales, Whaling and Ocean Ecosystems Berkeley: Univ. Calif. Press [Google Scholar]
  69. Croll DA, Kadula R, Tershy BR. 69.  2006. Ecosystem impacts of the decline of large whales in the North Pacific. See Ref. 68 202–14
  70. Laws RM.70.  1977. Seals and whales of the Southern Ocean. Philos. Trans. R. Soc. B 279:81–96 [Google Scholar]
  71. Ballance LT, Pitman RL, Hewitt RP, Siniff DB, Trivelpiece WZ. 71.  et al. 2006. The removal of large whales from the Southern Ocean. See Ref. 68 215–30
  72. Emslie SD, Patterson WP. 72.  2007. Abrupt recent shift in δ13C and δ15N values in Adélie penguin eggshell in Antarctica. PNAS 104:11666–69 [Google Scholar]
  73. Dewar WK, Bingham RJ, Iverson RL, Nowacek DP, St. Laurent LC, Wiebe PH. 73.  2006. Does the marine biosphere mix the ocean?. J. Mar. Res. 64541–61 [Google Scholar]
  74. Friedlaender A, Weinrich M, Bocconcelli A, Cholewiak D, Thompson M. 74.  et al. 2011. Underwater components of humpback whale bubble-net feeding behaviour. Behaviour 148:575–602 [Google Scholar]
  75. Nelson CH, Johnson KR, Barber JH Jr. 75.  1987. Gray whale and walrus feeding excavation. J. Sediment. Petrol. 57419–30 [Google Scholar]
  76. Barrett-Lennard LG, Matkin CO, Durban JW, Saulitis EL, Ellifrit D. 76.  2011. Predation on gray whales and prolonged feeding on submerged carcasses by transient killer whales at Unimak Island, Alaska. Mar. Ecol. Prog. Ser. 421229–41 [Google Scholar]
  77. Pitman RL, Totterdell JA, Fearnbach H, Ballance LT, Durban JW, Kemps H. 77.  2015. Whale killers: prevalence and ecological implications of killer whale predation on humpback whale calves off Western Australia. Mar. Mammal Sci. 31629–57 [Google Scholar]
  78. Estes JA, Doak DF, Springer AM, Williams TM. 78.  2009. Causes and consequences of marine mammal population declines in southwest Alaska: a food-web perspective. Philos. Trans. R. Soc. B 3641647–58 [Google Scholar]
  79. Springer AM, Estes JA, van Vliet GB, Williams TM, Doak DF. 79.  et al. 2003. Sequential megafaunal collapse in the North Pacific Ocean: An ongoing legacy of industrial whaling?. PNAS 100:12223–28 [Google Scholar]
  80. Estes JA, Steneck RS, Lindberg DR. 80.  2013. Exploring the consequences of species interactions through the assembly and disassembly of food webs: a Pacific-Atlantic comparison. Bull. Mar. Sci. 8911–29 [Google Scholar]
  81. Estes JA, Tinker M, Williams TM, Doak DF. 81.  1998. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473–76 [Google Scholar]
  82. Smith CR.82.  2006. Bigger is better. See Ref. 68 286–300
  83. Lundsten L, Schlining KL, Frasier K, Johnson SB, Kuhnz LA. 83.  et al. 2010. Time-series analysis of six whale-fall communities in Monterey Canyon, California, USA. Deep. Res. 571573–84 [Google Scholar]
  84. Glover AG, Källström B, Smith CR, Dahlgren TG. 84.  2005. World-wide whale worms? A new species of Osedax from the shallow North Atlantic. Proc. R. Soc. B 272:2587–92 [Google Scholar]
  85. Kiel S, Little CTS. 85.  2006. Cold-seep mollusks are older than the general marine mollusk fauna. Science 313:1429–31 [Google Scholar]
  86. Chamberlain CP, Waldbauer JR, Fox-Dobbs K, Newsome SD, Koch PL. 86.  et al. 2005. Pleistocene to recent dietary shifts in California condors. PNAS 102:16707–11 [Google Scholar]
  87. Finkelstein ME, Doak DF, George D, Burnett J, Brandt J. 87.  et al. 2012. Lead poisoning and the deceptive recovery of the critically endangered California condor. PNAS 109:11449–54 [Google Scholar]
  88. Pershing AJ, Christensen LB, Record NR, Sherwood GD, Stetson PB. 88.  2010. The impact of whaling on the ocean carbon cycle: why bigger was better. PLOS ONE 51–9 [Google Scholar]
  89. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L. 89.  et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6701–10 [Google Scholar]
  90. Nicol S, Bowie A, Jarman S, Lannuzel D, Meiners KM, van der Merwe P. 90.  2010. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish 11:203–9 [Google Scholar]
  91. Smetacek V, Klaas C, Strass VH, Assmy P, Montresor M. 91.  et al. 2012. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487313–19 [Google Scholar]
  92. Estes JA.92.  2009. Ecological effects of marine mammals. Encyclopedia of Marine Mammals WF Perrin, B Würsig, JGM Thewissen 357–61 Amsterdam: Elsevier, 2nd ed. [Google Scholar]
  93. Power G, Gregoire J. 93.  1978. Predation by freshwater seals on the fish community of Lower Seal Lake, Quebec. J. Fish. Res. Board Can. 35844–50 [Google Scholar]
  94. Oliver JS.94.  1983. Walrus, Odobenus rosmarus, feeding in the Bering Sea: a benthic perspective. Fish. Bull. 81501–12 [Google Scholar]
  95. Boveng PL, Hiruki LM, Schwartz MK, Bengtson JL. 95.  1998. Population growth of Antarctic fur seals: Limitation by a top predator, the leopard seal?. Ecology 792863–77 [Google Scholar]
  96. Kelaher BP, Tan M, Figueira WF, Gillanders BM, Connell SD. 96.  et al. 2015. Fur seal activity moderates the effects of an Australian marine sanctuary on temperate reef fish. Biol. Conserv. 182:205–14 [Google Scholar]
  97. Connell SD.97.  2002. Effects of a predator and prey on a foraging reef fish: implications for understanding density-dependent growth. J. Fish Biol. 601551–61 [Google Scholar]
  98. Ainley DG, Ballard G. 98.  2012. Non-consumptive factors affecting foraging patterns in Antarctic penguins: a review and synthesis. Polar Biol. 351–13 [Google Scholar]
  99. Preen A.99.  1995. Impacts of dugong foraging on seagrass habitats: observational and experimental evidence for cultivation grazing. Mar. Ecol. Prog. Ser. 124:201–13 [Google Scholar]
  100. Nakaoka M.100.  2005. Plant-animal interactions in seagrass beds: ongoing and future challenges for understanding population and community dynamics. Popul. Ecol. 47167–77 [Google Scholar]
  101. Stirling I.101.  1977. Adaptations of Weddell and ringed seals to exploit the polar fast ice habitat in the absence or presence of surface predators. Adaptations Within Antarctic Ecosystems. Proc. 3rd SCAR Symp. Antarct. Biol. GA Llano 741–48 Washington, DC: Smithson. Inst. [Google Scholar]
  102. Pilfold NW, Derocher AE, Stirling I, Richardson E. 102.  2014. Polar bear predatory behaviour reveals seascape distribution of ringed seal lairs. Popul. Ecol. 56129–38 [Google Scholar]
  103. Heithaus MR.103.  2013. Predators, prey, and the ecological roles of sea turtles. The Biology of Sea Turtles 3 J Wyneken, KJ Lohmann, JA Musick 249–84 Boca Raton, FL: CRC Press [Google Scholar]
  104. León YM, Bjorndal KA. 104.  2002. Selective feeding in the hawksbill turtle, an important predator in coral reef ecosystems. Mar. Ecol. Prog. Ser. 245249–58 [Google Scholar]
  105. Bjorndal KA, Jackson JBC. 105.  2003. Roles of sea turtles in marine ecosystems: reconstructing the past. The Biology of Sea Turtles 2 PL Lutz, JA Musick, J Wyneken 259–71 Boca Raton, FL: CRC Press [Google Scholar]
  106. Bjorndal KA.106.  1997. Foraging ecology and nutrition of sea turtles. The Biology of Sea Turtles Pl Lutz, JA Musick 199–231 Boca Raton, FL: CRC Press [Google Scholar]
  107. Wabnitz CCC, Balazs G, Beavers S, Bjorndal KA, Bolten AB. 107.  et al. 2010. Ecosystem structure and processes at Kaloko Honokōhau, focusing on the role of herbivores, including the green sea turtle Chelonia mydas, in reef resilience. Mar. Ecol. Prog. Ser. 42027–44 [Google Scholar]
  108. Fourqurean JW, Manuel S, Coates KA, Kenworthy WJ, Smith SR. 108.  2010. Effects of excluding sea turtle herbivores from a seagrass bed: overgrazing may have led to loss of seagrass meadows in Bermuda. Mar. Ecol. Prog. Ser. 419:223–32 [Google Scholar]
  109. Lal A, Arthur R, Marbà N, Lill AWT, Alcoverro T. 109.  2010. Implications of conserving an ecosystem modifier: increasing green turtle (Chelonia mydas) densities substantially alters seagrass meadows. Biol. Conserv. 143:2730–38 [Google Scholar]
  110. Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW. 110.  et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–37 [Google Scholar]
  111. Atwood TB, Connolly RM, Ritchie EG, Lovelock CE, Heithaus MR. 111.  et al. 2015. Predators help protect carbon stocks in blue carbon ecosystems. Nat. Clim. Change 51038–45 [Google Scholar]
  112. Christianen MJA, Herman PMJ, Bouma TJ, Lamers LPM, Van MM. 112.  et al. 2015. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proc. R. Soc. B 28120132890 [Google Scholar]
  113. Mcclenachan L, Jackson JBC, Newman MJH. 113.  2006. Conservation implications of historic sea turtle nesting beach loss. Front. Ecol. Environ. 4290–96 [Google Scholar]
  114. Heithaus MR, Alcoverro T, Arthur R, Burkholder DA, Coates KA. 114.  et al. 2014. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 11–6 [Google Scholar]
  115. Jackson JBC.115.  2008. Ecological extinction and evolution in the brave new ocean. PNAS 105Suppl. 111458–65 [Google Scholar]
  116. Richardson AJ, Bakun A, Hays GC, Gibbons MJ. 116.  2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol. Evol. 24:312–22 [Google Scholar]
  117. Hannan LB, Roth JD, Ehrhart LM, Weishampel JF. 117.  2007. Dune vegetation fertilization by nesting sea turtles. Ecology 881053–58 [Google Scholar]
  118. Madden D, Ballestero J, Calvo C, Carlson R, Christians E. 118.  et al. 2008. Sea turtle nesting as a process influencing a sandy beach ecosystem. Biotropica 40758–65 [Google Scholar]
  119. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG. 119.  et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–9 [Google Scholar]
  120. Myers RA, Worm B. 120.  2005. Extinction, survival or recovery of large predatory fishes. Philos. Trans. R. Soc. B. 36013–20 [Google Scholar]
  121. Collette BB, Carpenter KE, Polidoro BA, Juan-Jordá MJ, Boustany A. 121.  et al. 2011. High value and long life—double jeopardy for tunas and billfishes. Science 333291–92 [Google Scholar]
  122. Jennings S, Blanchard JL. 122.  2004. Fish abundance with no fishing: predictions based on macroecological theory. J. Anim. Ecol. 73632–42 [Google Scholar]
  123. Boudreau S, Worm B. 123.  2010. Top-down control of lobster in the Gulf of Maine: insights from local ecological knowledge and research surveys. Mar. Ecol. Prog. Ser. 403181–91 [Google Scholar]
  124. Steneck RS.124.  2006. Is the American lobster, Homarus americanus, overfished? A review of overfishing with an ecologically based perspective. Bull. Mar. Sci. 78607–32 [Google Scholar]
  125. Steneck RS, Leland A, McNaught DC, Vavrinec J. 125.  2013. Ecosystem flips, locks, and feedbacks: the lasting effects of fisheries on Maine's kelp forest ecosystem. Bull. Mar. Sci. 8931–55 [Google Scholar]
  126. Frank KT, Petrie B, Fisher JAD, Leggett WC. 126.  2011. Transient dynamics of an altered large marine ecosystem. Nature 47786–89 [Google Scholar]
  127. Frank KT, Petrie B, Choi JS, Leggett WC. 127.  2005. Trophic cascades in a formerly cod-dominated ecosystem. Science 3081621–23 [Google Scholar]
  128. Casini M, Hjelm J, Molinero JC, Lövgren J, Cardinale M. 128.  et al. 2009. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. PNAS 106:197–202 [Google Scholar]
  129. Collie J, Minto C, Worm B, Bell R. 129.  2013. Predation on pre-recruits can delay rebuilding of depleted cod stocks. Bull. Mar. Sci. 89107–22 [Google Scholar]
  130. Swain DP, Sinclair AF. 130.  2000. Pelagic fishes and the cod recruitment dilemma in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 571321–25 [Google Scholar]
  131. Minto C, Worm B. 131.  2012. Interactions between small pelagic fish and young cod across the North Atlantic. Ecology 932139–54 [Google Scholar]
  132. Filbee-Dexter K, Feehan C, Scheibling R. 132.  2016. Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar. Ecol. Prog. Ser. 543:141–52 [Google Scholar]
  133. Boyce DG, Frank KT, Worm B, Leggett WC. 133.  2015. Spatial patterns and predictors of trophic control in marine ecosystems. Ecol. Lett. 18:1001–11 [Google Scholar]
  134. Bellwood DR, Hoey AS, Choat JH. 134.  2003. Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol. Lett. 6281–85 [Google Scholar]
  135. Bellwood DR, Hoey AS, Hughes TP. 135.  2012. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc. R. Soc. B. 279:1621–29 [Google Scholar]
  136. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK. 136.  2010. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13:1055–71 [Google Scholar]
  137. Tinker MT, Hatfield BB, Harris MD, Ames JA. 137.  2015. Dramatic increase in sea otter mortality from white sharks in California. Mar. Mammal Sci. 32:309–26 [Google Scholar]
  138. Lucas Z, Stobo WT. 138.  2000. Shark-inflicted mortality on a population of harbour seals (Phoca vitulina) at Sable Island, Nova Scotia. J. Zool. 252:405–14 [Google Scholar]
  139. Wirsing AJ, Heithaus MR, Dill LM. 139.  2007. Living on the edge: Dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Anim. Behav. 7493–101 [Google Scholar]
  140. Heithaus MR, Frid A, Wirsing AJ, Dill LM, Fourqurean JW. 140.  et al. 2007. State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. J. Anim. Ecol. 76837–44 [Google Scholar]
  141. Zeidberg LD, Robison BH. 141.  2007. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. PNAS 104:12948–50 [Google Scholar]
  142. Neo ML, Eckman W, Vicentuan K, Teo SL-M, Todd PA. 142.  2015. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181:111–23 [Google Scholar]
  143. Thompson JN.143.  2013. Relentless Evolution Chicago: Univ. Chicago Press [Google Scholar]
  144. Schoener TW.144.  2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331426–29 [Google Scholar]
  145. Palumbi SR.145.  2002. The Evolution Explosion New York: Norton [Google Scholar]
  146. Corkeron PJ, Connor RC. 146.  1999. Why do baleen whales migrate?. Mar. Mammal Sci. 15:1228–45 [Google Scholar]
  147. Estes JA, Steinberg PD. 147.  1988. Predation, herbivory, and kelp evolution. Paleobiology 14:19–36 [Google Scholar]
  148. Steinberg PD, Estes JA, Winter FC. 148.  1995. Evolutionary consequences of food-chain length in kelp forest communities. PNAS 928145–48 [Google Scholar]
  149. Estes JA, Lindberg DR, Wray C. 149.  2005. Evolution of large body size in abalones (Haliotis): patterns and implications. Paleobiology 31591–606 [Google Scholar]
  150. Domning DP.150.  1978. Sirenian evolution in the North Pacific Ocean. Univ. Calif. Publ. Geol. Sci. 118176 [Google Scholar]
  151. Soulé ME, Estes JA, Berger J, Martinez del Rio C. 151.  2003. Ecological effectiveness: conservation goals for interactive species. Conserv. Biol. 17:1238–50 [Google Scholar]
  152. Froese R, Pauly D. 152.  2015. FishBase Kiel, Germany: Leibniz Inst. Mar. Sci. http://www.fishbase.org [Google Scholar]
  153. Estes JA, Duggins DO. 153.  1995. Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecol. Monogr. 6575–100 [Google Scholar]
  154. Garshelis DL, Garshelis JA, Kimker AT. 154.  1986. Sea otter time budgets and prey relationships in Alaska. J. Wildl. Manag. 50637–47 [Google Scholar]
  155. Kvitek RG, Oliver JS, DeGange AR, Anderson BS. 155.  1992. Changes in Alaskan soft-bottom prey communities along a gradient in sea otter predation. Ecology 73413–28 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error