1932

Abstract

Materials production requires a large amount of energy use and is a significant source of greenhouse gas (GHG) emissions, producing approximately 25% of all anthropogenic CO emissions. It produces large volumes of waste both in production and at end-of-life disposal. More efficient use of materials could play a key role in achieving multiple environmental and economic benefits. Material efficiency entails the pursuit of technical strategies, business models, consumer preferences, and policy instruments that would lead to a substantial reduction in the production of new materials required to deliver well-being. Although many opportunities exist, material efficiency is not realized in practice to its full potential. We evaluate the potential for material efficiency improvement, highlight the drivers to realize material efficiency, and anticipate ways forward to realize the potential of dematerializing our lives and the economy to limit the impacts of climate change and remain on a sustainable development path.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-110615-085737
2016-10-17
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/energy/41/1/annurev-environ-110615-085737.html?itemId=/content/journals/10.1146/annurev-environ-110615-085737&mimeType=html&fmt=ahah

Literature Cited

  1. Klee RJ, Graedel TE. 1.  2004. Elemental cycles: a status report on human or natural dominance. Annu. Rev. Energy Env. 29:69–107 [Google Scholar]
  2. 2. International Energy Agency (IEA) 2015. CO2 Emissions from Fuel Combustion Paris: IEA/OECD
  3. Sahni S.3.  2013. Strategies for reducing energy demand from the materials sector PhD thesis, Dep. Mater. Sci. Eng., Mass. Inst. Technol., Cambridge, MA
  4. Bernardini O, Galli R. 4.  1993. Dematerialization: long-term trends in the intensity of use of materials and energy. Futures 25:431–48 [Google Scholar]
  5. Cleveland CJ, Ruth M. 5.  1999. Indications of dematerialization and the material intensity of use. J. Ind. Ecol. 2:315–50 [Google Scholar]
  6. De Bruyn SM, Opschoor JB. 6.  1997. Developments in the throughput-income relationship: theoretical and empirical observations. Ecol. Econ. 20:255–68 [Google Scholar]
  7. Von Weizsäcker E, Hargroves KC, Smith MH, Desha C, Stasinopoulos P. 7.  2009. Factor Five: Transforming the Global Economy through 80% Improvements in Resource Productivity London:Earthscan
  8. Huijbregts MAJ, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks AJ. 8.  et al. 2006. Is cumulative fossil energy demand a useful indicator for the environmental performance of products?. Environ. Sci. Technol. 40:641–48 [Google Scholar]
  9. Worrell E, Meuleman B, Blok K. 9.  1995. Energy savings by efficient application of fertilizer. Resour. Conserv. Recycl. 13:233–50 [Google Scholar]
  10. Worrell E, Faaij APC, Phylipsen GJM, Blok K. 10.  1995. An approach for analysing the potential for material efficiency improvement. Resour. Conserv. Recycl. 13:215–32 [Google Scholar]
  11. Hekkert MP, Gielen D, Worrell E, Turkenburg W. 11.  2001. Wrapping up GHG emissions: an assessment of greenhouse gas emission reduction related to efficient packaging use. J. Ind. Ecol. 5:55–75 [Google Scholar]
  12. Allwood JM, Ashby MF, Gutowski TG, Worrell E. 12.  2011. Material efficiency: a white paper. Resour. Conserv. Recycl. 55:362–81 [Google Scholar]
  13. Worrell E, Bernstein L, Roy J, Price L, Harnisch J. 13.  2009. Industrial energy efficiency and climate change mitigation. Energy Efficiency 2:109–23 [Google Scholar]
  14. Saygin D, Worrell E, Patel MK, Gielen DJ. 14.  2011. Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries. Energy 36:6661–73 [Google Scholar]
  15. Saygin D, Gielen DJ, Draeck M, Worrell E, Patel MK. 15.  2014. Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers. Renew. Sustain. Energy Rev. 40:1153–67 [Google Scholar]
  16. de Coninck H, Benson SM. 16.  2014. Carbon dioxide capture and storage: issues and prospects. Annu. Rev. Environ. Resour. 39:243–70 [Google Scholar]
  17. Pauliuk S, Milford RL, Müller DB, Allwood JM. 17.  2013. The steel scrap age. Environ. Sci. Technol. 47:3448–54 [Google Scholar]
  18. Gutowski TG, Allwood JM, Herrmann C, Sahni S. 18.  2013. A global assessment of manufacturing: economic development, energy use, carbon emissions, and the potential for energy efficiency and materials recycling. Annu. Rev. Environ. Resour. 38:81–106 [Google Scholar]
  19. 19. 2030 Water Resources Group 2009. Charting Our Water Future: Economic Frameworks to Inform Decision-Making Washington, DC: 2030 Water Resour. Group
  20. Stern DI.20.  2004. The rise and fall of the environmental Kuznets curve. World Dev. 32:1419–39 [Google Scholar]
  21. Carson RT.21.  2010. The environmental Kuznets curve: seeking empirical regularity and theoretical structure. Rev. Environ. Econ. Policy 4:3–23 [Google Scholar]
  22. Davis SJ, Caldeira K. 22.  2010. Consumption-based accounting of CO2 emissions. PNAS 1075687–92
  23. Xu M, Li R, Crittenden JC, Chen YS. 23.  2011. CO2 emissions embodied in China's exports from 2002 to 2008: a structural decomposition analysis. Energy Policy 39:7381–88 [Google Scholar]
  24. Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S. 24.  et al. 2015. The material footprint of nations. PNAS 112:6271–76 [Google Scholar]
  25. Müller DB, Liu G, Løvik AN, Modaresi R, Pauliuk S. 25.  et al. 2013. Carbon emissions of infrastructure development. Environ. Sci. Technol. 47:11739–46 [Google Scholar]
  26. Steinberger JK, Krausmann F, Eisenmenger N. 26.  2010. Global patterns of materials use: a socioeconomic and geophysical analysis. Ecol. Econ. 69:1148–58 [Google Scholar]
  27. Broto VC, Allen A, Rapoport E. 27.  2012. Interdisciplinary perspectives on urban metabolism. J. Ind. Ecol. 16:851–61 [Google Scholar]
  28. Kalmykova Y, Rosado L, Patrício J. 28.  2016. Resource consumption drivers and pathways to reduction: economy, policy and lifestyle impact on material flows at the national and urban scale. J. Cleaner Prod. 13270–80
  29. Zhang Y.29.  2013. Urban metabolism: a review of research methodologies. Environ. Pollut. 178:463–73 [Google Scholar]
  30. Pauliuk S, Müller D. 30.  2014. The role of in-use stocks in the social metabolism and in climate change mitigation. Glob. Environ. Change 24:132–42 [Google Scholar]
  31. Liu G, Müller DB. 31.  2015. Centennial evolution of aluminum in-use stocks on our aluminized planet. Environ. Sci. Technol. 47:4882–88 [Google Scholar]
  32. 32. UN Environ. Progr. (UNEP), Int. Res. Panel 2011. Recycling Rates of Metals: A Status Report. Paris:UNEP
  33. Worrell E, Reuter MA. 33.  2014. Handbook of RecyclingState-of-the-Art for Practitioners, Analysts and Scientists Amsterdam: Elsevier [Google Scholar]
  34. Corsten M, Worrell E, Rouw M, van Duin A. 34.  2013. The potential contribution of sustainable waste management to energy use and greenhouse gas emission reduction in the Netherlands. Resour. Conserv. Recycl. 77:13–21 [Google Scholar]
  35. Christis M, Geerken T, Vercalsteren A, Vrancken KC. 35.  2015. Value in sustainable materials management strategies for open economies case of Flanders (Belgium). Resour. Conserv. Recycl. 103:110–124 [Google Scholar]
  36. 36. Intergovernmental Panel on Climate Change 2013. Working Group III—Fifth Assessment Report Cambridge, UK: Cambridge Univ. Press
  37. Gutowski TG, Sahni S, Allwood JM, Ashby MF, Worrell E. 37.  2013. The energy required to produce materials: constraints on energy intensity improvements, parameters of demand. Philos. Trans. R. Soc. A 371:20120003 [Google Scholar]
  38. Harmsen THM, Roes AL, Patel MK. 38.  2013. The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy 50:62–73 [Google Scholar]
  39. van Breevoort P, de Vos R. 39.  2011. Rare metals & renewables. Commod. Now 2011:1–5 [Google Scholar]
  40. Graedel TE, Allwood JM, Birat J-P, Buchert M, Hagelüken C. 40.  et al. 2011. What do we know about metal recycling rates?. J. Ind. Ecol. 15:3355–66 [Google Scholar]
  41. 41. US Nat. Res. Council Nat. Acad 2008. Minerals, Critical Minerals and the U.S. Economy. Washington, DC: Nat. Acad. Press
  42. 42. European Commission (EC) 2010. Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on Defining Critical Raw Materials Brussels, Belg.: EC
  43. Henckens MLCM, Driessen PPJ, Worrell E. 43.  2014. Metal scarcity and sustainability: analyzing the necessity to reduce the extraction of scarce metals. Resourc. Conserv. Recycl. 93:1–8 [Google Scholar]
  44. Dasgupta P.44.  2010. Nature's role in sustaining economic development. Philos. Trans. R. Soc. B 365:5–11 [Google Scholar]
  45. Allwood JM.45.  2014. Squaring the circular economy: the role of recycling within a hierarchy of material management strategies. See Ref. 33 445–77
  46. Hoang VN.46.  2014. Analysis of resource efficiency: a production frontier approach. J. Environ. Manag. 137:128–36 [Google Scholar]
  47. Okken P, Gielen D. 47.  1994. Optimisation of Integrated Energy and Materials Systems. Linked Energy and Material Flows: Methodological Considerations and Model Calculations for the Netherlands Beyond 2000. Petten, Neth.: ECN
  48. Hekkert MP, Joosten LAJ, Worrell E, Turkenburg WC. 48.  2000. Reduction of CO2 emissions by improved management of material and product use: the case of primary packaging. Resour. Conserv. Recycl. 29:33–64 [Google Scholar]
  49. Allwood JM, Cullen JM. 49.  2015. Sustainable Materials Without the Hot Air Cambridge, UK: UIT Press
  50. Moynihan MC, Allwood JM. 50.  2014. Utilization of structural steel in buildings. Proc. R. Soc. A 470:216820140170 [Google Scholar]
  51. Cooper DR, Allwood JM. 51.  2012. Reusing steel and aluminum components at end of product life. Environ. Sci. Technol. 46:10334–40 [Google Scholar]
  52. Gutowski TG, Sahni S, Boustani A, Graves SC. 52.  2011. Remanufacturing and energy savings. Environ. Sci. Technol. 45:4540–47 [Google Scholar]
  53. Bakker C, Wang F, Huisman J, den Hollander M. 53.  2014. Products that go round: exploring product life extension through design. J. Cleaner Prod. 69:10–16 [Google Scholar]
  54. Skelton ACH, Allwood JM. 54.  2013. Product-life trade-offs: What if products fail early?. Environ. Sci. Technol. 47:31719–28 [Google Scholar]
  55. Weber CL, Koomey JG, Matthews HS. 55.  2010. The energy and climate change implications of different music delivery methods. J. Ind. Ecol. 14:754–69 [Google Scholar]
  56. O'Connell MW, Hickey SW, Fitzpatrick C. 56.  2013. Evaluating the sustainability potential of a white goods refurbishment program. Sustain. Sci. 8:529–41 [Google Scholar]
  57. van Sluisveld MAE, Worrell E. 57.  2013. The paradox of packaging optimization—a characterization of packaging source reduction in the Netherlands.. Resour. Conserv. Recycl. 73:133–42 [Google Scholar]
  58. Carruth MA, Allwood JM, Moynihan MC. 58.  2011. The potential for reducing metal demand through lightweight product design. Resour. Conserv. Recycl. 57:48–60 [Google Scholar]
  59. Carruth MA, Allwood JM. 59.  2012. The development of a hot rolling process for variable cross-section I-beams. J. Mater. Process. Technol. 212:81640–53 [Google Scholar]
  60. Milford RL, Allwood JM, Cullen JM. 60.  2011. Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors. Resour. Conserv. Recycl. 55:1185–95 [Google Scholar]
  61. Gustavsson J, Cederberg C, Sonnesson U, van Otterdijk R, Meybeck A. 61.  2011. Global Food Losses and Food Waste. Rome:UN Food Agric. Org.
  62. Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ. 62.  2012. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438:477–89 [Google Scholar]
  63. Lundqvist J, de Fraiture C, Molden D. 63.  2008. Saving water: from field to fork—curbing losses and wastage in the food chain. SIWI Policy Brief Stockh., Swed.: SIWI [Google Scholar]
  64. Cooper DR, Gutowski TG. 64.  2016. The environmental impacts of reuse: a review. J. Ind. Ecol. In press
  65. Diener DL, Tillman A-M. 65.  2015. Component end-of-life management: exploring opportunities and related benefits of remanufacturing and functional recycling. Resour. Conserv. Recycl. 102:80–93 [Google Scholar]
  66. Paraskevas D, Kellens K, Dewulf W, Duflou JR. 66.  2015. Environmental modelling of aluminium recycling: a Life Cycle Assessment tool for sustainable metal management. J. Cleaner Prod. 105:357–70 [Google Scholar]
  67. Gutowski TG.67.  2011. Materials separation and recycling. Thermodynamics and the Destruction of Resources BR Bakshi, TG Gutowski, DP Sekulic 113–32 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  68. Nakamura S, Kondo Y, Kagawa S, Matsubae K, Nakajima K, Nagasaka T. 68.  2014. MaTrace: tracing the fate of materials over time and across products in open-loop recycling. Environ. Sci. Technol. 48:7207–14 [Google Scholar]
  69. Sirkin T, ten Houten M. 69.  1994. The cascade chain: a theory and tool for achieving resource sustainability with applications for product design. Resour. Conserv. Recycl. 10:213–77 [Google Scholar]
  70. Shen L, Worrell E, Patel MK. 70.  2010. Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling. Resour. Conserv. Recycl. 55:34–52 [Google Scholar]
  71. Söderholm P, Tilton JE. 71.  2012. Material efficiency: an economic perspective. Resour. Conserv. Recycl. 61:75–82 [Google Scholar]
  72. Pacheco-Torgal F, Labrincha JA. 72.  2013. The future of construction materials research and the seventh UN Millennium Development Goal: a few insights. Constr. Build. Mater. 40:729–37 [Google Scholar]
  73. Skidelsky R, Skidelsky E. 73.  2012. How Much Is Enough? The Love of Money and the Case for the Good Life London, UK: Allen Lane
  74. Slade G.74.  2006. Make to Break: Technology and Obsolescence in America Cambridge, MA: Harvard Univ. Press
  75. Vringer K, Blok K. 75.  2000. Long-term trends in direct and indirect household energy intensities: A factor in dematerialisation?. Energy Policy 28:713–27 [Google Scholar]
  76. Druckman A, Jackson T. 76.  2009. The carbon footprint of UK households 1990–2004: a socio-economically disaggregated, quasi-multi-regional input-output model. Ecol. Econ. 68:2066–77 [Google Scholar]
  77. Keynes JM.77.  1973. The General Theory of Employment, Interest, and Money. The Collected Writings of John Maynard Keynes. Cambridge, UK: Cambridge Univ. Press
  78. Jackson T.78.  2009. Prosperity Without Growth: Economics for a Finite Planet. New York: Earthscan
  79. Lorek S, Spangenberg JH. 79.  2014. Sustainable consumption within a sustainable economy—beyond green growth and green economies. J. Cleaner Prod. 63:33–44 [Google Scholar]
  80. Shove E, Walker G. 80.  2010. Governing transitions in the sustainability of everyday life. Res. Policy 39:471–76 [Google Scholar]
  81. Cullen JM, Allwood JM, Bambach M. 81.  2012. Mapping the global flow of steel: from steelmaking to end-use goods. Environ. Sci. Technol. 46:2413048–55 [Google Scholar]
  82. Cagno E, Worrell E, Trianni A, Pugliese G. 82.  2013. A novel approach for barriers to industrial energy efficiency. Renew. Sustain. Energy Rev. 19:290–308 [Google Scholar]
  83. Bautista-Lazo S, Short T. 83.  2013. Introducing the all seeing eye of business: a model for understanding the nature, impact and potential uses of waste. J. Cleaner Prod. 40:141–50 [Google Scholar]
  84. Rouw M, Worrell E. 84.  2011. Evaluating the impacts of packaging policy in The Netherlands. Resour. Conserv. Recycl. 55:483–92 [Google Scholar]
  85. Sorrell S, Dimitropoulos J, Sommerville M. 85.  2009. Empirical estimates of the direct rebound effect: a review. Energy Policy 37:1356–71 [Google Scholar]
  86. Rootzén J.86.  2015. Pathways to deep decarbonisation of carbon-intensive industry in the European Union. PhD thesis, Chalmers Univ. Technol., Göteborg, Swed.
  87. Ji Y, Jiao RJ, Chen L, Wu C. 87.  2013. Green modular design for material efficiency: a leader-follower joint optimization model. J. Cleaner Prod. 41:187–201 [Google Scholar]
  88. Bringezu S.88.  2006. Materializing Policies for Sustainable Use and Economy-wide Management of Resources: Biophysical Perspectives, Socio-economic Options and a Dual Approach for the European Union Wuppertal, Ger: Wuppertal Inst. Climate, Environ. Energy
  89. Kristof K, Lemken T, Roser A, Ott V. 89.  2008. Untersuchung der Wirksamkeit des Programms zur Verbesserung der Materialeffizienz Wuppertal/Karlsruhe, Ger: Wuppertal Inst. Climate, Environ. Energy/BSR Sustain. Gmbh
  90. Elkins P, Meyer B, Schmidt-Bleek F. 90.  2009. Reducing resource consumption—a proposal for global resource and environmental policy Discuss. Pap. 2009/5, Gesellschaft für Wirtschaftliche Strukturforschung mbH, Osnabrück, Ger.
  91. Steinberger JK, Roberts JT. 91.  2010. From constraint to sufficiency: the decoupling of energy and carbon from human needs, 1975–2005. Ecol. Econ. 70:425–43 [Google Scholar]
  92. Skelton ACH, Allwood JM. 92.  2013. The incentives for material efficiency along the steel sector supply chain: an analysis using input output techniques. Ecol. Econ. 89:33–42 [Google Scholar]
  93. Rees WE.93.  1992. Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ. Urban. 4:121–30 [Google Scholar]
  94. Wackernagel M, William WER. 94.  1996. Our Ecological Footprint Philadelphia: New Soc. Press
  95. Harari YN.95.  2015. Sapiens: A Brief History of Humankind New York: HarperCollins
  96. Stahel WR.96.  2013. Policy for material efficiency—sustainable taxation as a departure from the throwaway society. Philos. Trans. R. Soc. A 371:20110567 [Google Scholar]
  97. Dixon RK, McGowan E, Onysko G, Scheer RM. 97.  2010. US energy conservation and efficiency policies: challenges and opportunities. Energy Policy 38:6398–408 [Google Scholar]
  98. Uttam K, Balfors B, Faith-Ell C. 98.  2014. Green public procurement (GPP) of construction and building materials. Eco-Efficient Construction and Building Materials—Life Cycle Assessment (LCA), Eco-Labelling and Case Studies F Pacheco-Torgal, LF Cabeza, J Labrincha, A de Magalhães 166–95 Oxford, UK: Woodhead Publ. [Google Scholar]
  99. Nadel S.99.  2002. Appliance and equipment efficiency standards. Annu. Rev. Energy Environ. 27:159–92 [Google Scholar]
  100. Lin J.100.  2002. Appliance efficiency standards and labeling programs in China. Annu. Rev. Energy Environ. 27:349–67 [Google Scholar]
  101. Scott MJ, Daly DS, Hathaway JE, Lansing CS, Liu Y. 101.  et al. 2015. Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model. Energy 90:1682–94 [Google Scholar]
  102. 102. Calif. Integr. Waste Manag. Board (CIWMB) 2003. Plastics White Paper—optimizing plastics use, recycling, and disposal in California White Pap., CIWMB, Sacram., CA
  103. 103. Waste Res. Action Progr. (WRAP) 2009. Construction procurement guidance—delivering higher recycled content in construction. WRAPSept.
  104. 104. The Economist. 2013. The rise of the sharing economy: On the internet, everything is for hire. The EconomistMarch 9
  105. Cohen B, Muñoz P. 105.  2016. Sharing cities and sustainable consumption and production: towards an integrated framework. J. Cleaner Prod. 13487–97
  106. Freese B.106.  2003. Coal—A Human History New York: Penguin
  107. Diamond J.107.  2005. Collapse: How Societies Choose to Fail or Succeed New York: Penguin
  108. Oreskes N, Conway EM. 108.  2010. Merchants of Doubt New York: Bloomsbury Press
  109. Smink MM, Hekkert MP, Negro SO. 109.  2015. Keeping sustainable innovation on a leash? Exploring incumbents’ institutional strategies. Bus. Strategy Environ. 24:86–101 [Google Scholar]
  110. Kasser T.110.  2002. The High Price of Materialism Cambridge, MA: MIT Press
  111. Stiglitz JE.111.  2012. The Price of Inequality: How Today's Divided Society Endangers Our Future New York: W.W. Norton & Co.
  112. Harrod T.112.  2013. Visionary rather than practical: craft, art and material efficiency. Philos. Trans. R. Soc. A 371:20110569 [Google Scholar]
  113. Daly HE.113.  1996. Beyond Growth: The Economics of Sustainable Development Boston: Beacon Press
  114. Fournier V.114.  2008. Escaping from the economy: the politics of degrowth. Int. J. Sociol. Soc. Policy 28:528–45 [Google Scholar]
  115. van den Bergh JCM, Kallis G. 115.  2012. Growth, a-growth or degrowth to stay within planetary boundaries?. J. Econ. Issues XLVI:909–19 [Google Scholar]
  116. 116. Intergovernmental Panel on Climate Change 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al. New York: Cambridge Univ. Press
  117. Counsell TAM, Allwood JM. 117.  2007. A review of technology options for reducing the environmental impact of office paper. Resour. Conserv. Recycl. 49:4340–52 [Google Scholar]
  118. Cooper DR, Skelton ACH, Moynihan MC, Allwood JM. 118.  2014. Component level strategies for exploiting the lifespan of steel in products. Resour. Conserv. Recycl. 84:24–32 [Google Scholar]
  119. McBrien M, Allwood JM, Barekar NS. 119.  2015. Tailor Blank Casting—control of sheet width using an electromagnetic edge dam in aluminium twin roll casting. J. Mater. Process. Technol. 215:60–72 [Google Scholar]
  120. 120. Ellen McArthur Foundation, McKinsey & Company 2014. Towards the Circular Economy: Accelerating the Scale-up Across Global Supply Chains Geneva, Switz.: World Econ. Forum
  121. Woods L, Bakshi BR. 121.  2014. Reusable versus disposable cups revisited: guidance in life cycle comparisons addressing scenario, model, and parameter uncertainties for the US consumer. Int. J. Life Cycle Assess 19:931–40 [Google Scholar]
  122. Leal-Ayala DR, Allwood JM, Schmidt M, Alexeev I. 122.  2012. Toner-print removal from paper by long and ultrashort pulsed lasers. Proc. R. Soc. A 468:21442272–93 [Google Scholar]
  123. Moynihan MC, Allwood JM. 123.  2014. Viability and performance of demountable composite connectors. J.Constr. Steel Res. 99:47–56 [Google Scholar]
  124. Cullen JM, Allwood JM. 124.  2013. Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environ. Sci. Technol. 47:3057–64 [Google Scholar]
/content/journals/10.1146/annurev-environ-110615-085737
Loading
/content/journals/10.1146/annurev-environ-110615-085737
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error