1932

Abstract

This article discusses the conservation challenges of volant migratory transborder species and conservation governance primarily in North America. Many migratory species provide ecosystem service benefits to society. For example, insectivorous bats prey on crop pests and reduce the need for pesticides; birds and insects pollinate food plants; and birds afford recreational opportunities to hunters and birdwatchers. Migration is driven by the seasonal availability of resources; as resources in one area become seasonally scarce, individuals move to locations where resources have become seasonally abundant. The separation of the annual lifecycle means that species management and governance is often fractured across international borders. Because migratory species depend on habitat in different locations, their ability to provide ecosystem services in one area depends on the spatial subsidies, or support, provided by habitat and ecological processes in other areas. This creates telecouplings, or interconnections across geographic space, of areas such that impacts to the habitat of a migratory species in one location will affect the benefits enjoyed by people in other locations. Information about telecoupling and spatial subsidies can be used to craft new governance arrangements such as Payment for Ecosystem Services programs that target specific stakeholder groups and locations. We illustrate these challenges and opportunities with three North American case studies: the Duck Stamp Program, Mexican free-tailed bats (), and monarch butterflies ().

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-110615-090119
2017-10-17
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/energy/42/1/annurev-environ-110615-090119.html?itemId=/content/journals/10.1146/annurev-environ-110615-090119&mimeType=html&fmt=ahah

Literature Cited

  1. López-Hoffman L, Wiederholt R, Sansone C, Bagstad KJ, Cryan P. 1.  et al. 2014. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton. PLOS ONE 9:e87912 [Google Scholar]
  2. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G. 2.  et al. 2007. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10:299–314 [Google Scholar]
  3. Medellin RA. 3.  2009. Sustaining transboundary ecosystem services provided by bats. Conservation of Shared Environments, ed. L López-Hoffman, ED McGovern, RG Varady, KW Flessa 170–84 Tucson, AZ: Univ. Arizona Press
  4. Green AJ, Elmberg J. 4.  2014. Ecosystem services provided by waterbirds. Biol. Rev. 89:105–22 [Google Scholar]
  5. Goldstein JH, Thogmartin WE, Bagstad KJ, Dubovsky JA, Mattsson BJ. 5.  et al. 2014. Replacement cost valuation of Northern Pintail (Anas acuta) subsistence harvest in Arctic and sub-Arctic North America. Hum. Dimens. Wildl 19:347–54 [Google Scholar]
  6. Myers KH, Parsons GR, Edwards PET. 6.  2010. Measuring the recreational use value of migratory shorebirds on the Delaware Bay. Mar. Resour. Econom. 25:247–64 [Google Scholar]
  7. López-Hoffman L, Varady RG, Flessa KW, Balvanera P. 7.  2010. Ecosystem services across borders: a framework for transboundary conservation policy. Front. Ecol. Environ. 8:84–91Neighboring countries sharing ecosystem services and actions in one country can affect ecosystem services in another. [Google Scholar]
  8. López-Hoffman L, McGovern ED, Flessa KW. 8.  2009. Conservation of Shared Environments: Learning from the United States and Mexico Tucson, AZ: Univ. Arizona Press [Google Scholar]
  9. Lundberg J, Moberg F. 9.  2003. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6:0087–98 [Google Scholar]
  10. López-Hoffman L, Diffendorfer J, Wiederholt R, Thogmartin W, McCracken G. 10.  et al. 2017. Operationalizing the telecoupling framework by calculating spatial subsidies in the ecosystem services of migratory Mexican free-tailed bats. Ecol. Soc In press [Google Scholar]
  11. Bolen EG. 11.  2000. Waterfowl management: yesterday and tomorrow. J. Wildl. Manag. 64:323–35 [Google Scholar]
  12. Liu JG, Hull V, Batistella M, DeFries R, Dietz T. 12.  et al. 2013. Framing sustainability in a telecoupled world. Ecol. Soc. 18:26 [Google Scholar]
  13. Liu JG, Yang W, Li SX. 13.  2016. Framing ecosystem services in the telecoupled Anthropocene. Front. Ecol. Environ 14:27–36Integrated telecoupling frameworks provide an approach to understanding and managing ecosystem services. [Google Scholar]
  14. Hulina J, Bocetti C, Campa H III, Hull V, Yang W, Liu J. 14.  2017. Telecoupling framework for research on migratory species in the Anthropocene. Elementa Sci. Anthropocene 5:5 [Google Scholar]
  15. López-Hoffman, Semmens D, Diffendorfer J. 15.  2013. How do migratory species add ecosystem service value to wilderness?. Int. J. Wilderness 19:14–19 [Google Scholar]
  16. Semmens DJ, Diffendorfer JE, López-Hoffman L, Shapiro CD. 16.  2011. Accounting for the ecosystem services of migratory species: quantifying migration support and spatial subsidies. Ecol. Econom. 70:2236–42Quantifying mismatches between areas of support versus area of benefits provision can facilitate conservation of migratory species. [Google Scholar]
  17. Díaz S, Demissew S, Carabias J, Joly C, Lonsdale M. 17.  et al. 2015. The IPBES conceptual framework—connecting nature and people. Curr. Opin. Environ. Sustain. 14:1–16 [Google Scholar]
  18. Dingle H. 18.  2006. Animal migration: is there a common migratory syndrome?. J. Ornithol. 147:212–20Migration is a syndrome of genetic and behavioral traits whose emergent property is the large-scale return movements of populations. [Google Scholar]
  19. Galbraith CA, Jones T, Kirby J, Mundkur T. 19.  2014. A review of migratory bird flyways and priorities for management Rep. 27, UNEP/CMS Secr Bonn, Ger: http://www.cms.int/sites/default/files/publication/CMS_Flyways_Reviews_Web.pdf [Google Scholar]
  20. 20. Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Synthesis Report Washington, DC: Island Press http://www.millenniumassessment.org/en/index.html [Google Scholar]
  21. Kumar P. 21.  2010. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations London: Earthscan. http://www.teebweb.org/our-publications/teeb-study-reports/ecological-and-economic-foundations/ [Google Scholar]
  22. Landers DH, Nahlik AM. 22.  2013. Final ecosystem goods and services classification system (FEGS-CS) Rep. EPA/600/R-13/ORD-004914, US Environ. Protect. Agency Washington, DC: https://gispub4.epa.gov/FEGS/FEGS-CS%20FINAL%20V.2.8a.pdf [Google Scholar]
  23. Sekercioglu ÇH, Wenny DG, Whelan CJ. 23.  2016. Why Birds Matter: Avian Ecological Function and Ecosystem Services Chicago: Univ. Chicago Press [Google Scholar]
  24. Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH. 24.  2011. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223:1–38 [Google Scholar]
  25. Brower LP, Malcolm SB. 25.  1991. Animal migrations: endangered phenomena. Am. Zoologist 31:265–76 [Google Scholar]
  26. Dingle H, Drake VA. 26.  2007. What is migration?. BioScience 57:113–21 [Google Scholar]
  27. Bronmark C, Hulthen K, Nilsson PA, Skov C, Hansson LA. 27.  et al. 2014. There and back again: migration in freshwater fishes. Can. J. Zool. 92:467–79 [Google Scholar]
  28. Pulido F. 28.  2007. The genetics and evolution of avian migration. BioScience 57:165–74 [Google Scholar]
  29. Smith J, Deppe J. 29.  2008. Simulating the effects of wetland loss and inter-annual variability on the fitness of migratory bird species. Proc. 2008 IEEE Geosci. Remote Sensing Symp.838–41 New York: IEEE [Google Scholar]
  30. Sutherland WJ, Dolman PM. 30.  1994. Combining behavior and population-dynamics with applications for predicting consequences of habitat loss. Proc. R. Soc. B. Biol. Sci. 255:133–38 [Google Scholar]
  31. Taylor C, Norris DR. 31.  2010. Population dynamics in migratory networks. Theor. Ecol. 3:65–73 [Google Scholar]
  32. Wiederholt R, Lopez-Hoffman L, Cline J, Medellin RA, Cryan P. 32.  et al. 2013. Moving across the border: modeling migratory bat populations. Ecosphere 4:1–16 [Google Scholar]
  33. Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S. 33.  2011. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80:4–18 [Google Scholar]
  34. Liang R, McCance E, Flores Villela O. 34.  2000. Species of common concern: Conservation of migratory and transboundary species Rep., Comm. Environ. Coop., Montr., Can http://www3.cec.org/islandora/en/item/1604-species-common-conservation-concern-in-north-america-en.pdf [Google Scholar]
  35. Miller KA. 35.  2011. Conservation of migratory species in a changing climate: strategic behavior and policy design. Environ. Law 41:573–98 [Google Scholar]
  36. Dallimer M, Strange N. 36.  2015. Why socio-political borders and boundaries matter in conservation. Trends Ecol. Evol. 30:132–39 [Google Scholar]
  37. Kark S, Tulloch A, Gordon A, Mazor T, Bunnefeld N, Levin N. 37.  2015. Cross-boundary collaboration: key to the conservation puzzle. Curr. Opin. Environ. Sustain. 12:12–24 [Google Scholar]
  38. Behrens V, Rauschmayer F, Wittmer H. 38.  2008. Managing international “problem” species: why pan-European cormorant management is so difficult. Environ. Conserv. 35:55–63 [Google Scholar]
  39. Kark S, Levin N, Grantham HS, Possingham HP. 39.  2009. Between-country collaboration and consideration of costs increase conservation planning efficiency in the Mediterranean Basin. Proc. Natl. Acad. Sci. 106:15368–73 [Google Scholar]
  40. Organ JF, Geist V, Mahoney SP, Williams S, Krausman PR. 40.  et al. 2012. The North American model of wildlife conservation Tech. Rev. 12-04 Wildlife Soc Bethesda, MD: [Google Scholar]
  41. Donald PF, Sanderson FJ, Burfield IJ, Bierman SM, Gregory RD, Waliczky Z. 41.  2007. International conservation policy delivers benefits for birds in Europe. Science 317:810–13 [Google Scholar]
  42. Boardman R. 42.  2006. The International Politics of Bird Conservation: Biodiversity, Regionalism and Global Governance Cheltenham, UK: Edward Elgar Publ. [Google Scholar]
  43. Salzman J. 43.  2005. Creating markets for ecosystem services: notes from the field. N. Y. Univ. Law Rev. 80:870–961 [Google Scholar]
  44. Honey-Rosés J, López-Garcia J, Rendón-Salinas E, Peralta-Higuera A, Galindo-Leal C. 44.  2009. To pay or not to pay? Monitoring performance and enforcing conditionality when paying for forest conservation in Mexico. Environ. Conserv. 36:120–28 [Google Scholar]
  45. Marra PP, Cohen EB, Loss SR, Rutter JE, Tonra CM. 45.  2015. A call for full annual cycle research in animal ecology. Biol. Lett. 11:20150552 [Google Scholar]
  46. Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH. 46.  et al. 2011. Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–98 [Google Scholar]
  47. Kelly JF, Shipley JR, Chilson PB, Howard KW, Frick WF, Kunz TH. 47.  2012. Quantifying animal phenology in the aerosphere at a continental scale using NEXRAD weather radars. Ecosphere 3:1–9 [Google Scholar]
  48. Howard E, Davis AK. 48.  2015. Investigating long-term changes in the spring migration of monarch butterflies (Lepidoptera: Nymphalidae) using 18 years of data from Journey North, a citizen science program. Ann. Entomol. Soc. Am. 108:664–69 [Google Scholar]
  49. Zuckerberg B, Fink D, Sorte FAL, Hochachka WM, Kelling S. 49.  2016. Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling. Divers. Distrib. 22:717–30 [Google Scholar]
  50. Sheehy J, Taylor CM, Norris DR. 50.  2011. The importance of stopover habitat for developing effective conservation strategies for migratory animals. J. Ornithol. 152:161–68 [Google Scholar]
  51. McCarthy MA, Thompson CJ, Hauser C, Burgman MA, Possingham HP. 51.  et al. 2010. Resource allocation for efficient environmental management. Ecol. Lett. 13:1280–89 [Google Scholar]
  52. Nicol S, Wiederholt R, Diffendorfer JE, Mattsson BJ, Thogmartin WE. 52.  et al. 2016. A management-oriented framework for selecting metrics used to assess habitat- and path-specific quality in spatially structured populations. Ecol. Indic. 69:792–802 [Google Scholar]
  53. Wilcove DS, Wikelski M. 53.  2008. Going, going, gone: Is animal migration disappearing?. PLOS Biol 6:e188 [Google Scholar]
  54. Kirby JS, Stattersfield AJ, Butchart SHM, Evans MI, Grimmett RFA. 54.  et al. 2008. Key conservation issues for migratory land- and waterbird species on the world's major flyways. Bird Conserv. Int. 18:S49–S73 [Google Scholar]
  55. Piersma T, Lok T, Chen Y, Hassell CJ, Yang HY. 55.  et al. 2016. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J. Appl. Ecol. 53:479–90 [Google Scholar]
  56. Bairlein F. 56.  2016. Migratory birds under threat. Science 354:547–48Illegal killing, habitat degradation and loss, and climate change are the principal drivers contributing to the loss of migratory birds. [Google Scholar]
  57. Niemuth ND, Fleming KK, Reynolds RE. 57.  2014. Waterfowl conservation in the US prairie pothole region: confronting the complexities of climate change. PLOS ONE 9:e100034 [Google Scholar]
  58. Guillemain M, Pernollet CA, Massez G, Cavallo F, Simon G, Champagnon J. 58.  2015. Disentangling the drivers of change in common teal migration phenology over 50 years: land use versus climate change effects. J. Ornithol. 156:647–55 [Google Scholar]
  59. Oberhauser K, Wiederholt R, Diffendorfer JE, Semmens D, Ries L. 59.  et al. 2017. A trans-national monarch butterfly population model and implications for regional conservation priorities. Ecol. Entomol. 42:51–60 [Google Scholar]
  60. Davidai N, Westbrook JK, Lessard JP, Hallam TG, McCracken GF. 60.  2015. The importance of natural habitats to Brazilian free-tailed bats in intensive agricultural landscapes in the Winter Garden region of Texas, United States. Biol. Conserv. 190:107–14 [Google Scholar]
  61. O'Shea TJ, Cryan PM, Hayman DTS, Plowright RK, Streicker DG. 61.  2016. Multiple mortality events in bats: a global review. Mammal Rev 46:175–90 [Google Scholar]
  62. Medellin RA, Wiederholt R, López-Hoffman L. 62.  2017. Conservation relevance of bat caves for biodiversity and ecosystem services. Biol. Conserv. 211:45–50 [Google Scholar]
  63. Klaassen RHG, Hake M, Strandberg R, Koks BJ, Trierweiler C. 63.  et al. 2014. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 83:176–84 [Google Scholar]
  64. Sawyer H, Kauffman MJ, Nielson RM, Horne JS. 64.  2009. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19:2016–25 [Google Scholar]
  65. Longcore T, Rich C, Mineau P, MacDonald B, Bert DG. 65.  et al. 2013. Avian mortality at communication towers in the United States and Canada: which species, how many, and where?. Biol. Conserv. 158:410–9 [Google Scholar]
  66. Longcore T, Rich C, Mineau P, MacDonald B, Bert DG. 66.  et al. 2012. An estimate of avian mortality at communication towers in the United States and Canada. PLOS ONE 7:e34025 [Google Scholar]
  67. Bracey AM, Etterson MA, Niemi GJ, Green RF. 67.  2016. Variation in bird-window collision mortality and scavenging rates within an urban landscape. Wilson J. Ornithol. 128:355–67 [Google Scholar]
  68. Kahle LQ, Flannery ME, Dumbacher JP. 68.  2016. Bird-window collisions at a west-coast urban park museum: analyses of bird biology and window attributes from Golden Gate Park, San Francisco. PLOS ONE 11:e0144600 [Google Scholar]
  69. Kummer JA, Bayne EM. 69.  2015. Bird feeders and their effects on bird-window collisions at residential houses. Avian Conserv. Ecol. 10:6 http://www.ace-eco.org/vol10/iss2/art6/ [Google Scholar]
  70. Ocampo-Penuela N, Winton RS, Wu CJ, Zambello E, Wittig TW, Cagle NL. 70.  2016. Patterns of bird-window collisions inform mitigation on a university campus. PeerJ 4:e1652 [Google Scholar]
  71. Desholm M. 71.  2009. Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms. J. Environ. Manag. 90:2672–79 [Google Scholar]
  72. Arnett EB, Brown WK, Erickson WP, Fiedler JK, Hamilton BL. 72.  et al. 2008. Patterns of bat fatalities at wind energy facilities in North America. J. Wildl. Manag. 72:61–78 [Google Scholar]
  73. Klem D. 73.  2015. Bird-window collisions: a critical animal welfare and conservation issue. J. Appl. Anim. Welfare Sci. 18:S11–S17 [Google Scholar]
  74. Cusa M, Jackson DA, Mesure M. 74.  2015. Window collisions by migratory bird species: urban geographical patterns and habitat associations. Urban Ecosyst 18:1427–46 [Google Scholar]
  75. Horn JW, Arnett EB, Kunz TH. 75.  2008. Behavioral responses of bats to operating wind turbines. J. Wildl. Manag. 72:123–32 [Google Scholar]
  76. Hayes MA, Cryan PM, Wunder MB. 76.  2015. Seasonally-dynamic presence-only species distribution models for a cryptic migratory bat impacted by wind energy development. PLOS ONE 10:e0132599 [Google Scholar]
  77. Erickson RA, Thogmartin WE, Diffendorfer JE, Russell RE, Szymanski J. 77.  2016. The synergistic effects of wind energy generation and white-nose syndrome threaten the extinction of the endangered Indiana bat. PeerJ 4:e2830 [Google Scholar]
  78. Robinson WD, Bowlin MS, Bisson I, Shamoun-Baranes J, Thorup K. 78.  et al. 2009. Integrating concepts and technologies to advance the study of bird migration. Front. Ecol. Environ. 8:354–61 [Google Scholar]
  79. Møller AP, Fiedler W, Berthold P. 79.  2010. Effects of Climate Change on Birds Oxford, UK: Oxford Univ. Press [Google Scholar]
  80. Kullberg C, Fransson T, Hedlund J, Jonzen N, Langvall O. 80.  et al. 2015. Change in spring arrival of migratory birds under an era of climate change, Swedish data from the last 140 years. Ambio 44:S69–S77 [Google Scholar]
  81. Robinson RA, Learmonth JA, Hutson AM, Macleod CD, Sparks TH. 81.  et al. 2005. Climate change and migratory species Rep. 414, Br. Trust Ornithol Thetford, UK: [Google Scholar]
  82. Shaw AK. 82.  2016. Drivers of animal migration and implications in changing environments. Evol. Ecol. 30:991–1007 [Google Scholar]
  83. Rashford BS, Adams RM, Wu JJ, Voldseth RA, Guntenspergen GR. 83.  et al. 2016. Impacts of climate change on land-use and wetland productivity in the Prairie Pothole Region of North America. Reg. Environ. Change 16:515–26 [Google Scholar]
  84. Knudsen E, Linden A, Both C, Jonzen N, Pulido F. 84.  et al. 2011. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86:928–46 [Google Scholar]
  85. Moller AP, Rubolini D, Lehikoinen E. 85.  2008. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105:16195–200 [Google Scholar]
  86. Langham GM, Schuetz JG, Distler T, Soykan CU, Wilsey C. 86.  2015. Conservation status of North American birds in the face of future climate change. PLOS ONE 10:e0135350 [Google Scholar]
  87. Maclean IM, Rehfisch MM, Delany S, Robinson RA. 87.  2007. The effects of climate change on migratory waterbirds within the African-Eurasian Flyway Rep. 486, Br. Trust Ornithol Thetford. UK: https://www.bto.org/sites/default/files/shared_documents/publications/research-reports/2007/rr486.pdf [Google Scholar]
  88. Brochet AL, Gauthier-Clerc M, Mathevet R, Bechet A, Mondain-Monval JY, Tamisier A. 88.  2009. Marsh management, reserve creation, hunting periods and carrying capacity for wintering ducks and coots. Biodivers. Conserv. 18:1879–94 [Google Scholar]
  89. Dinges AJ, Webb EB, Vrtiska MP. 89.  2015. Effects of the Light Goose Conservation Order on non-target waterfowl distribution during spring migration. Wildl. Biol. 21:88–97 [Google Scholar]
  90. Brochet AL, Van den Bossche W, Jbour S, NdanG'Ang'A PK, Jones VR. 90.  et al. 2016. Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird Conserv. Int. 26:1–28 [Google Scholar]
  91. 91. European Commission. 2000. Managing Natura 2000 Sites: The Provisions of Article 6 of the ‘Habitats’ Directive 92/43/EEC Luxembourg: Off. Publ. Eur. Commun http://ec.europa.eu/environment/nature/natura2000/management/docs/art6/provision_of_art6_en.pdf [Google Scholar]
  92. Sokos CK, Birtsas PK, Connelly JW, Papaspyropoulos KG. 92.  2013. Hunting of migratory birds: disturbance intolerant or harvest tolerant?. Wildl. Biol. 19:113–25 [Google Scholar]
  93. Sekercioglu C. 93.  2002. Impacts of birdwatching on human and avian communities. Environ. Conserv. 29:282–89 [Google Scholar]
  94. Steven R, Pickering C, Castley JG. 94.  2011. A review of the impacts of nature based recreation on birds. J. Environ. Manag. 92:2287–94 [Google Scholar]
  95. Kim C, Scott D, Thigpen JF, Kim S. 95.  1998. Economic impact of a birding festival. Festival Manag. Event Tour. 5:51–58 [Google Scholar]
  96. 96. U.S. Department of the Interior, U.S. Fish and Wildlife Service, U.S. Department of Commerce, Bureau USC. 2012. 2011 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation: National Overview Washington, DC.: https://www.fws.gov/uploadedFiles/HuntingFishingNatSurvey_2012-508%283%29.pdf [Google Scholar]
  97. Winthrop RH. 97.  2014. The strange case of cultural services: limits of the ecosystem services paradigm. Ecol. Econom. 108:208–14 [Google Scholar]
  98. Sekercioglu ÇH. 98.  2006. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21:464–71 [Google Scholar]
  99. Whelan CJ, Wenny DG, Marquis RJ. 99.  2008. Ecosystem services provided by birds. Ann. N. Y. Acad. Sci. 1134:25–60 [Google Scholar]
  100. Wenny DG, Devault TL, Johnson MD, Kelly D, Sekercioglu CH. 100.  et al. 2011. The need to quantify ecosystem services provided by birds. Auk 128:1–14 [Google Scholar]
  101. Railsback SF, Johnson MD. 101.  2014. Effects of land use on bird populations and pest control services on coffee farms. Proc. Natl. Acad. Sci. 111:6109–14 [Google Scholar]
  102. Moleón M, Sánchez-Zapata JA, Margalida A, Carrete M, Owen-Smith N, Donázar JA. 102.  2014. Humans and scavengers: the evolution of interactions and ecosystem services. BioScience 64:394–403 [Google Scholar]
  103. Holling CS. 103.  1988. Temperate forest insect outbreaks, tropical deforestation and migratory birds. Mem. Entomol. Soc. Can. 146:21–32 [Google Scholar]
  104. Maine JJ, Boyles JG. 104.  2015. Bats initiate vital agroecological interactions in corn. PNAS 112:12438–43 [Google Scholar]
  105. Fleskes JP, Gilmer DS, Jarvis RL. 105.  2005. Pintail distribution and selection of marsh types at Mendota Wildlife Area during fall and winter. Calif. Fish Game 91:270–85 [Google Scholar]
  106. Kulbaba MW, Tardif JC, Staniforth RJ. 106.  2009. Morphological and ecological relationships between burrs and furs. Am. Midland Nat. 161:380–91 [Google Scholar]
  107. Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus A, Fouchier RAM. 107.  2006. Global patterns of influenza A virus in wild birds. Science 312:384–88 [Google Scholar]
  108. Breed AC, Field HE, Smith CS, Edmonston J, Meers J. 108.  2010. Bats without borders: long-distance movements and implications for disease risk management. EcoHealth 7:204–12 [Google Scholar]
  109. Altizer S, Bartel R, Han BA. 109.  2011. Animal migration and infectious disease risk. Science 331:296–302 [Google Scholar]
  110. Henny CJ, Blus LJ. 110.  1986. Radiotelemetry locates wintering grounds of DDE- contaminated black-crowned night-herons. Wildl. Soc. Bull. 14:236–41 [Google Scholar]
  111. Klimaszyk P. 111.  2012. May a cormorant colony be a source of coliform and chemical pollution in a lake?. Oceanol. Hydrobiol. Stud. 41:67–73 [Google Scholar]
  112. Langwig KE, Frick WF, Reynolds R, Parise KL, Drees KP. 112.  et al. 2015. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc. R. Soc. B 22:282 [Google Scholar]
  113. Reiskind MH, Wund MA. 113.  2009. Experimental assessment of the impacts of northern long-eared bats on ovipositing culex (Diptera: Culicidae) mosquitoes. J. Med. Entomol 461037–44 [Google Scholar]
  114. Levey DJ, Silva WR, Galetti M. 114.  2002. Seed Dispersal and Frugivory: Ecology, Evolution and Conservation Oxfordshire, UK: CABI Publ. [Google Scholar]
  115. Reynolds RJ, Westbrook MJ, Rohde AS, Cridland JM, Fenster CB, Dudash MR. 115.  2009. Pollinator specialization and pollination syndromes of three related North American silene. Ecology 90:2077–87 [Google Scholar]
  116. Nabhan GP, Buchmann SL. 116.  1997. Services provided by pollinators. Nature's Services: Societal Dependence on Natural Ecosystems G Daily 133–50 Washington, DC: Island Press [Google Scholar]
  117. Casperson MR. 117.  2012. The importance of birds in ocean bay subsistence: results from the Mink Island site, Katmai National Park and Preserve, Alaska. Arctic. Anthropol. 49:18–34 [Google Scholar]
  118. Fall JA, Paige A, Vanek V, Brown L. 118.  1998. Subsistence harvests and uses of birds and eggs in four communities of the Aleutian Islands area: Akutan, False Pass, Nelson Lagoon, and Nikolski Tech. Rep. 243 Div. Subsist., Alsk. Dep. Fish Game http://www.adfg.alaska.gov/techpap/tp243.pdf [Google Scholar]
  119. Young RC, Kitaysky AS, Carothers C, Dorresteijn I. 119.  2014. Seabirds as a subsistence and cultural resource in two remote Alaskan communities. Ecol. Soc. 19:40 [Google Scholar]
  120. Fall JA. 120.  2016. Regional patterns of fish and wildlife harvests in contemporary Alaska. Arctic 69:47–64 [Google Scholar]
  121. Wheeler P, Thornton T. 121.  2005. Subsistence research in Alaska: a thirty year retrospective. Alaska J. Anthropol. 3:69–103 [Google Scholar]
  122. Millsap BA, Allen GT. 122.  2006. Effects of falconry harvest on wild raptor populations in the United States: theoretical considerations and management recommendations. Wildl. Soc. Bull. 34:1392–400 [Google Scholar]
  123. Wyler LS, Sheikh PA. 123.  2008. International Illegal Trade in Wildlife: Threats and U.S. Policy. Washington, DC: Libr. Congr., Congr. Res. Serv. [Google Scholar]
  124. Sveinsson J. 124.  2013. Real Eiderdown Reykjavik, Ice: Eiderdown Proc. Export http://eiderdown.com/files/eider_article.pdf [Google Scholar]
  125. Mulder CPH, Jones H, Kameda K, Palmborg C, Schmidt S. 125.  et al. 2011. Impacts of seabirds on plant and soil properties. Seabird Islands: Ecology, Invasion, and Restoration CPH Mulder, WB Anderson, DR Towns, PJ Bellingham 135–76 New York: Oxford Univ. Press [Google Scholar]
  126. Bauer S, Hoye BJ. 126.  2014. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344:1242552Migrating animals transport nutrients, energy, and toxicants—as well as reproductive propagules and parasites—from one location to another. [Google Scholar]
  127. Kitchell JF, Schindler DE, Herwig BR, Post DM, Olson MH, Oldham M. 127.  1999. Nutrient cycling at the landscape scale: the role of diel foraging migrations by geese at the Bosque del Apache National Wildlife Refuge, New Mexico. Limnol. Oceanogr. 44:828–36 [Google Scholar]
  128. Pernollet C, Simpson D, Gauthier-Clerc M, Guillemain M. 128.  2015. Rice and duck, a good combination? Identifying the incentives and triggers for joint rice farming and wild duck conservation. Agric. Ecosyst. Environ. 214:118–32 [Google Scholar]
  129. Navedo JG, Hahn S, Parejo M, Abad-Gomez JM, Gutierrez JS. 129.  et al. 2015. Unravelling trophic subsidies of agroecosystems for biodiversity conservation: food consumption and nutrient recycling by waterbirds in Mediterranean rice fields. Sci. Total Environ. 511:288–97 [Google Scholar]
  130. Jefferies RL, Jano AP, Abraham KF. 130.  2006. A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. J. Ecol. 94:234–42 [Google Scholar]
  131. Medellin RA, Gaona O. 131.  1999. Seed dispersal by bats and birds in forest and disturbed habitats of Chiapas, Mexico. Biotropica 31:478–85 [Google Scholar]
  132. Jones CG, Lawton JH, Shachak M. 132.  1994. Organisms as ecosystem engineers. Oikos 69:373–86 [Google Scholar]
  133. Bancroft WJ, Garkaklis MJ, Roberts JD. 133.  2005. Burrow building in seabird colonies: a soil-forming process in island ecosystems. Pedobiologia 49:149–65 [Google Scholar]
  134. Battisti C, Poeta G, Fanelli G. 134.  2016. Environmental Science, Vol. XIII An Introduction to Disturbance Ecology: A Road Map for Wildlife Management and Conservation Cham, Switz.: Springer [Google Scholar]
  135. Vasilijević M, Zunckel K, McKinney M, Erg B, Schoon M, Rosen T. 135.  2015. Best Practice Protected Areas Guidelines, Series 23: Transboundary Conservation: A Systematic and Integrated Approach Gland, Switz.: IUCN https://portals.iucn.org/library/sites/library/files/documents/PAG-023.pdf [Google Scholar]
  136. Chilson PB, Bridge E, Frick WF, Chapman JW, Kelly JF. 136.  2012. Radar aeroecology: exploring the movements of aerial fauna through radio-wave remote sensing. Biol. Lett. 8:698–701 [Google Scholar]
  137. Sorte FAL, Fink D, Hochachka WM, Farnsworth A, Rodewald AD. 137.  et al. 2014. The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J. Biogeogr. 41:1685–96 [Google Scholar]
  138. Kunz TH, Gauthreaux SA, Hristov NI, Horn JW, Jones G. 138.  et al. 2008. Aeroecology: probing and modeling the aerosphere. Integr. Comp. Biol. 48:1–11 [Google Scholar]
  139. Davy CM, Ford AT, Fraser KC. 139.  2017. Aeroconservation for the fragmented skies. Conserv. Lett. doi: 10.1111/conl.12347 [Google Scholar]
  140. Newton I. 140.  2007. Weather-related mass-mortality events in migrants. Ibis 149:453–67 [Google Scholar]
  141. Dorsey K. 141.  1998. The Dawn of Conservation Diplomacy: U.S.-Canadian Wildlife Protection Treaties in the Progressive Era Seattle: Univ. Wash. Press [Google Scholar]
  142. 142. MBT. 1917. Convention for the Protection of Migratory Birds in Canada and the United States. Am. J. Intl. Law 2:62–66 [Google Scholar]
  143. Mumme SP. 143.  2015. The evolution of natural resource conservation capacity on the US-Mexico Border: bilateral and trilateral environmental agreements since La Paz. Rev. Policy Res. 32:19–39 [Google Scholar]
  144. Chester CC, McGovern ED. 144.  2009. Open skies over a closing border: U.S.-Mexico efforts to protect migratory birds. In Conservation of Shared Environments, ed. L López-Hoffman, ED McGovern, RG Varady, KW Flessa, pp. 100–14. Tucson, AZ: Univ. Arizona Press
  145. Caddell R. 145.  2005. International law and the protection of migratory wildlife: an appraisal of twenty-five years of the Bonn Convention. Colo. J. Int. Environ. Law Policy 16:113–56 [Google Scholar]
  146. 146. Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA). 2016. Agreement Text and Annexes as Amended by MOP6 Bonn, Germany: UNEP/AEWA Secr http://www.unep-aewa.org/sites/default/files/basic_page_documents/aewa_agreement_text_2016_2018_FINAL_correction%20made%20on%20p%2054_wcover.pdf [Google Scholar]
  147. 147. Agreement on the Conservation of Albatroses and Petrels (ACAP). 2015. Agreement on the Conservation of Albatroses and Petrels: Amended by the Fifth Session of the Meeting of the Parties Hobart, Austr.: ACAP Secr http://www.acap.aq/en/acap-agreement/206-agreement-on-the-conservation-of-albatrosses-and-petrels/file [Google Scholar]
  148. Chester CC. 148.  2015. Yellowstone to Yukon: transborder conservation across a vast international landscape. Environ. Sci. Policy 49:75–84 [Google Scholar]
  149. Chester CC. 149.  2006. Conservation Across Borders: Biodiversity in an Interdependent World Washington, DC: Island Press [Google Scholar]
  150. Jantke K, Schneider UA. 150.  2010. Multiple-species conservation planning for European wetlands with different degrees of coordination. Biol. Conserv 143:1812–21 [Google Scholar]
  151. Semmens DJ, Bagstad KJ, Wiederholt R, Goldstein J, Loomis J. 151.  et al. 2017. Spatial ecological and economic subsidies of the monarch butterfly (Danaus plexippus) in eastern North America Environ. Policy Work. Pap., Udall Cent. Stud. Public Policy, Univ Arizona, Tucson: [Google Scholar]
  152. Rubio-Cisneros NT, Aburto-Oropeza O, Murray J, Gonzalez-Abraham CE, Jackson J, Ezcurra E. 152.  2014. Transnational ecosystem services: the potential of habitat conservation for waterfowl through recreational hunting activities. Hum. Dimens. Wildl. 19:1–16 [Google Scholar]
  153. McCracken GF, Westbrook JK, Brown VA, Eldridge M, Federico P, Kunz TH. 153.  2012. Bats track and exploit changes in insect pest populations. PLOS ONE 7:1–10 [Google Scholar]
  154. Federico P, Hallam TG, McCracken GF, Purucker ST, Grant WE. 154.  et al. 2008. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecol. Appl. 18:826–37 [Google Scholar]
  155. Bagstad KJ, Wiederholt R. 155.  2013. Tourism values for Mexican free-tailed bat viewing. Hum. Dimens. Wildl. 18:307–11 [Google Scholar]
  156. Boyles JG, Cryan PM, McCracken GF, Kunz TH. 156.  2011. Economic importance of bats in agriculture. Science 332:41–2 [Google Scholar]
  157. Ghanem SJ, Voigt CC. 157.  2012. Increasing awareness of ecosystem services provided by bats. Advances in the Study of Behavior, Vol. 44 HJ Brockmann, TJ Roper, M Naguib, JC Mitani, LW Simmons 279–302 Amsterdam: Elsevier [Google Scholar]
  158. Lee YF, McCracken GF. 158.  2005. Dietary variation of Brazilian free-tailed bats links to migratory populations of pest insects. J. Mammal. 86:67–76 [Google Scholar]
  159. Brown VA, de Torrez EB, McCracken GF. 159.  2015. Crop pests eaten by bats in organic pecan orchards. Crop Prot 67:66–71 [Google Scholar]
  160. Cleveland CJ, Betke M, Federico P, Frank JD, Hallam TG. 160.  et al. 2006. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4:238–43 [Google Scholar]
  161. Diffendorfer JE, Loomis JB, Ries L, Oberhauser K, Lopez-Hoffman L. 161.  et al. 2013. National valuation of monarch butterflies indicates an untapped potential for incentive-based conservation. Conserv. Lett. 7:253–62 [Google Scholar]
  162. Vidal O, Rendon-Salinas E. 162.  2014. Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biol. Conserv. 180:165–75 [Google Scholar]
  163. Pleasants JM, Oberhauser KS. 163.  2013. Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect. Conserv. Divers. 6:135–44 [Google Scholar]
  164. Flockhart DTT, Pichancourt JB, Norris DR, Martin TG. 164.  2015. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 84:155–65 [Google Scholar]
  165. Sáenz-Romero C, Rehfeldt GE, Duval P, Lindig-Cisneros RA. 165.  2012. Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecol. Manag. 275:98–106 [Google Scholar]
  166. Zipkin EF, Ries L, Reeves R, Regetz J, Oberhauser KS. 166.  2012. Tracking climate impacts on the migratory monarch butterfly. Glob. Change Biol. 18:3039–49 [Google Scholar]
/content/journals/10.1146/annurev-environ-110615-090119
Loading
/content/journals/10.1146/annurev-environ-110615-090119
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error