1932

Abstract

Food system resilience has multiple dimensions. We draw on food system and resilience concepts and review resilience framings of different communities. We present four questions to frame food system resilience (Resilience of what? Resilience to what? Resilience from whose perspective? Resilience for how long?) and three approaches to enhancing resilience (robustness, recovery, and reorientation—the three “Rs”). We focus on enhancing resilience of food system outcomes and argue this will require food system actors adapting their activities, noting that activities do not change spontaneously but in response to a change in drivers: an opportunity or a threat. However, operationalizing resilience enhancement involves normative choices and will result in decisions having to be negotiated about trade-offs among food system outcomes for different stakeholders. New approaches to including different food system actors’ perceptions and goals are needed to build food systems that are better positioned to address challenges of the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112320-050744
2022-10-17
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-112320-050744.html?itemId=/content/journals/10.1146/annurev-environ-112320-050744&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Colding J, Barthel S 2019. Exploring the social-ecological systems discourse 20 years later. Ecol. Soc. 24:2
    [Google Scholar]
  2. 2.
    Cash DW, Adger WN, Berkes F, Garden P, Lebel L et al. 2006. Scale and cross-scale dynamics: governance and information in a multilevel world. Ecol. Soc. 11:8
    [Google Scholar]
  3. 3.
    Folke C. 2006. Resilience: the emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 16:253–67
    [Google Scholar]
  4. 4.
    Schlüter M, Haider LJ, Lade SJ, Lindkvist E, Martin R et al. 2019. Capturing emergent phenomena in social-ecological systems: an analytical framework. Ecol. Soc. 24:11
    [Google Scholar]
  5. 5.
    Ingram J, Zurek M 2018. Food systems approaches for the future. Agriculture & Food Systems to 2050: Global Trends, Challenges and Opportunities R Serraj, P Pingali 547–67 Singapore: World Sci. Publ.
    [Google Scholar]
  6. 6.
    Hamilton H, Henry R, Rounsevell M, Moran D, Cossar F et al. 2020. Exploring global food system shocks, scenarios and outcomes. Futures 123:102601
    [Google Scholar]
  7. 7.
    Béné C. 2020. Resilience of local food systems and links to food security—a review of some important concepts in the context of COVID-19 and other shocks. Food Secur. 12:805–22
    [Google Scholar]
  8. 8.
    Ingram J 2020. Food system models. Healthy and Sustainable Food Systems M Lawrence, S Friel 49–62 London: Routledge
    [Google Scholar]
  9. 9.
    Puma MJ. 2019. Resilience of the global food system. Nat. Sustain. 2:260–61
    [Google Scholar]
  10. 10.
    Nyström M, Jouffray J-B, Norström AV, Crona B, Søgaard Jørgensen P et al. 2019. Anatomy and resilience of the global production ecosystem. Nature 575:98–108
    [Google Scholar]
  11. 11.
    Westhoek H, Ingram J, van Berkum S, Hajer M. 2016. Food Systems and Natural Resources Nairobi, Kenya: U. N. Environ. Progr.
    [Google Scholar]
  12. 12.
    Oliver TH, Boyd E, Balcombe K, Benton TG, Bullock J et al. 2018. Overcoming undesirable resilience in the global food system. Glob. Sustain. 1:e9
    [Google Scholar]
  13. 13.
    Helfgott A. 2018. Operationalising systemic resilience. Eur. J. Oper. Res. 268:852–64
    [Google Scholar]
  14. 14.
    Resil. U. K. Food Syst. Glob. Context 2022. Resilience of the UK Food System in a Global Context: interdisciplinary research to enhance UK food security in a changing world. Resilience of the UK Food System in a Global Context https://www.foodsystemresilienceuk.org/
    [Google Scholar]
  15. 15.
    Ericksen PJ. 2008. Conceptualizing food systems for global environmental change research. Glob. Environ. Change 18:234–45
    [Google Scholar]
  16. 16.
    Ingram J. 2011. A food systems approach to researching food security and its interactions with global environmental change. Food Secur. 3:417–31
    [Google Scholar]
  17. 17.
    van Berkum S, Dengerink J, Ruben R 2018. The food systems approach: sustainable solutions for a sufficient supply of healthy food Rep. 2018-064, Wagening. Econ. Res. The Hague, Neth:.
    [Google Scholar]
  18. 18.
    Caron P, Ferrero y de Loma-Osorio G, Nabarro D, Hainzelin E, Guillou M et al. 2018. Food systems for sustainable development: proposals for a profound four-part transformation. Agron. Sustain. Dev. 38:41
    [Google Scholar]
  19. 19.
    Ericksen PJ, Stewart B, Dixon J, Barling D, Loring P et al. 2010. The value of a food system approach. Food Security and Global Environmental Change J Ingram, P Ericksen, D Liverman 25–45 London: Earthscan
    [Google Scholar]
  20. 20.
    Lyon C, Cordell D, Jacobs B, Martin-Ortega J, Marshall R et al. 2020. Five pillars for stakeholder analyses in sustainability transformations: the global case of phosphorus. Environ. Sci. Policy 107:80–89
    [Google Scholar]
  21. 21.
    Merkle M, Moran D, Warren F, Alexander P 2021. How does market power affect the resilience of food supply?. Glob. Food Secur. 30:100556
    [Google Scholar]
  22. 22.
    Zurek M, Hebinck A, Leip A, Vervoort J, Kuiper M et al. 2018. Assessing sustainable food and nutrition security of the EU Food System—an integrated approach. Sustainability 10:4271
    [Google Scholar]
  23. 23.
    Ignaciuk A, Rice M, Bogardi J, Canadell JG, Dhakal S et al. 2012. Responding to complex societal challenges: a decade of Earth System Science Partnership (ESSP) interdisciplinary research. Curr. Opin. Environ. Sustain. 4:147–58
    [Google Scholar]
  24. 24.
    Hasnain S, Ingram J, Zurek M. 2020. Mapping the UK food system—a report for the UKRI Transforming UK Food Systems Programme Rep., Environ. Change Inst., Univ. Oxford Oxford, UK:
    [Google Scholar]
  25. 25.
    Marshall G. 2015. A social-ecological systems framework for food systems research: accommodating transformation systems and their products. Int. J. Commons 9:881–908
    [Google Scholar]
  26. 26.
    Hodbod J, Eakin H. 2015. Adapting a social-ecological resilience framework for food systems. J. Environ. Stud. Sci. 5:474–84
    [Google Scholar]
  27. 27.
    Cote M, Nightingale AJ. 2011. Resilience thinking meets social theory: situating change in socio-ecological systems (SES) research. Prog. Hum. Geogr. 36:475–89
    [Google Scholar]
  28. 28.
    Brown K. 2013. Global environmental change I: A social turn for resilience?. Prog. Hum. Geogr. 38:107–117
    [Google Scholar]
  29. 29.
    Cinner JE, Barnes ML. 2019. Social dimensions of resilience in social-ecological systems. One Earth 1:51–56
    [Google Scholar]
  30. 30.
    Fan S, Cho EE, Meng T, Rue C. 2021. How to prevent and cope with coincidence of risks to the global food system. Annu. Rev. Environ. Resour. 46:601–23
    [Google Scholar]
  31. 31.
    Savary S, Akter S, Almekinders C, Harris J, Korsten L et al. 2020. Mapping disruption and resilience mechanisms in food systems. Food Secur. 12:695–717
    [Google Scholar]
  32. 32.
    Benton TG. 2019. Using scenario analyses to address the future of food. EFSA J. 17:e170703
    [Google Scholar]
  33. 33.
    Cottrell RS, Nash KL, Halpern BS, Remenyi TA, Corney SP et al. 2019. Food production shocks across land and sea. Nat. Sustain. 2:130–37
    [Google Scholar]
  34. 34.
    Mu W, van Asselt E, Van der Fels-Klerx H. 2021. Towards a resilient food supply chain in the context of food safety. Food Control 125:107953
    [Google Scholar]
  35. 35.
    He C, Liu Z, Xu M, Ma Q, Dou Y. 2017. Urban expansion brought stress to food security in China: evidence from decreased cropland net primary productivity. Sci. Total Environ. 576:660–70
    [Google Scholar]
  36. 36.
    Hall C, Dawson TP, Macdiarmid JI, Matthews RB, Smith P. 2017. The impact of population growth and climate change on food security in Africa: looking ahead to 2050. Int. J. Agric. Sustain. 15:124–35
    [Google Scholar]
  37. 37.
    Stringer LC, Fraser EDG, Harris D, Lyon C, Pereira L et al. 2020. Adaptation and development pathways for different types of farmers. Environ. Sci. Policy 104:174–89
    [Google Scholar]
  38. 38.
    Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M et al. 2019. Food security. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems PR Shukla, J Skea, E Calvo Buendia, V Masson-Delmotte, H-O Pörtner et al.437–550 Geneva, Switz.: Intergov. Panel Clim. Change
    [Google Scholar]
  39. 39.
    Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M et al. 2020. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Ger.: IPBES Secr.
    [Google Scholar]
  40. 40.
    Bélanger J, Pilling D, eds. 2019. The state of the world's biodiversity for food and agriculture Rep., U. N. Food Agric. Organ. Comm. Genet. Resour. Food Agric. Assess. Rome, Italy:
    [Google Scholar]
  41. 41.
    Naranjo SE, Ellsworth PC, Frisvold GB. 2015. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60:621–45
    [Google Scholar]
  42. 42.
    Pimentel D, Wilson C, McCullum C, Huang R, Dwen P et al. 1997. Economic and environmental benefits of biodiversity. BioScience 47:747–57
    [Google Scholar]
  43. 43.
    Dicks LV, Breeze TD, Ngo HT, Senapathi D, An J et al. 2021. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5:1453–61
    [Google Scholar]
  44. 44.
    Erenler HE, Gillman MP, Ollerton J. 2020. Impact of extreme events on pollinator assemblages. Curr. Opin. Insect Sci. 38:34–39
    [Google Scholar]
  45. 45.
    Gomez M, Mejia A, Ruddell BL, Rushforth RR. 2021. Supply chain diversity buffers cities against food shocks. Nature 595:250–54
    [Google Scholar]
  46. 46.
    Gutiérrez-Moya E, Adenso-Díaz B, Lozano S 2021. Analysis and vulnerability of the international wheat trade network. Food Secur. 13:113–28
    [Google Scholar]
  47. 47.
    Tendall DM, Joerin J, Kopainsky B, Edwards P, Shreck A et al. 2015. Food system resilience: defining the concept. Glob. Food Secur. 6:17–23
    [Google Scholar]
  48. 48.
    Wiebe K, Zurek M, Lord S, Brzezina N, Gabrielyan G et al. 2018. Scenario development and foresight analysis: exploring options to inform choices. Annu. Rev. Environ. Resour. 43:545–70
    [Google Scholar]
  49. 49.
    Siegrist M, Árvai J. 2020. Risk perception: reflections on 40 years of research. Risk Anal. 40:2191–206
    [Google Scholar]
  50. 50.
    Slovic P. 2000. The Perception of Risk London: Earthscan
    [Google Scholar]
  51. 51.
    Slovic P. 1987. Perception of risk. Science 236:280–85
    [Google Scholar]
  52. 52.
    Kasperson RE, Renn O, Slovic P, Brown HS, Emel J et al. 1988. The social amplification of risk: a conceptual framework. Risk Anal. 8:177–87
    [Google Scholar]
  53. 53.
    Power M, Doherty B, Pybus K, Pickett K. 2020. How COVID-19 has exposed inequalities in the UK food system: the case of UK food and poverty. Emerald Open Res. 2:11
    [Google Scholar]
  54. 54.
    Garnett P, Doherty B, Heron T. 2020. Vulnerability of the United Kingdom's food supply chains exposed by COVID-19. Nat. Food 1:315–18
    [Google Scholar]
  55. 55.
    Sternberg T. 2012. Chinese drought, bread and the Arab Spring. Appl. Geogr. 34:519–24
    [Google Scholar]
  56. 56.
    Johnstone S, Mazo J. 2011. Global warming and the Arab Spring. Survival 53:11–17
    [Google Scholar]
  57. 57.
    Miller F, Osbahr H, Boyd E, Thomalla F, Bharwani S et al. 2010. Resilience and vulnerability: complementary or conflicting concepts?. Ecol. Soc. 15:11
    [Google Scholar]
  58. 58.
    Gatto A, Drago C. 2020. A taxonomy of energy resilience. Energy Policy 136:111007
    [Google Scholar]
  59. 59.
    Holling CS. 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4:1–23
    [Google Scholar]
  60. 60.
    Folke C, Colding J, Berkes F 2003. Synthesis: building resilience and adaptive capacity in social–ecological systems. Navigating Social-Ecological Systems: Building Resilience for Complexity and Change F Berkes, J Colding, C Folke 352–87 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  61. 61.
    Gunderson L. 2010. Ecological and human community resilience in response to natural disasters. Ecol. Soc. 15:18
    [Google Scholar]
  62. 62.
    Béné C, Fanzo J, Haddad L, Hawkes C, Caron P et al. 2020. Five priorities to operationalize the EAT–Lancet Commission report. Nat. Food 1:457–59
    [Google Scholar]
  63. 63.
    Carr ER. 2020. Resilient livelihoods in an era of global transformation. Glob. Environ. Change 64:102155
    [Google Scholar]
  64. 64.
    Carr ER. 2019. Properties and projects: reconciling resilience and transformation for adaptation and development. World Dev. 122:70–84
    [Google Scholar]
  65. 65.
    Ostrom E. 2007. A diagnostic approach for going beyond panaceas. PNAS 104:15181–87
    [Google Scholar]
  66. 66.
    Ostrom E. 2010. Beyond markets and states: polycentric governance of complex economic systems. Am. Econ. Rev. 100:641–72
    [Google Scholar]
  67. 67.
    Ostrom E. 2001. Vulnerability and polycentric governance systems. IHDP Update 3:1–4
    [Google Scholar]
  68. 68.
    Barnett AJ, Anderies JM. 2014. Weak feedbacks, governance mismatches, and the robustness of social-ecological systems: an analysis of the Southwest Nova Scotia lobster fishery with comparison to Maine. Ecol. Soc. 19:39
    [Google Scholar]
  69. 69.
    APA (Am. Psychol. Assoc.) 2014. The road to resilience. American Psychological Association. http://www.apa.org/helpcenter/road-resilience.aspx
    [Google Scholar]
  70. 70.
    Pimm SL. 1984. The complexity and stability of ecosystems. Nature 307:321–26
    [Google Scholar]
  71. 71.
    Tukamuhabwa BR, Stevenson M, Busby J, Zorzini M. 2015. Supply chain resilience: definition, review and theoretical foundations for further study. Int. J. Prod. Res. 53:5592–623
    [Google Scholar]
  72. 72.
    Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D et al. 2015. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30:673–84
    [Google Scholar]
  73. 73.
    Weise H, Auge H, Baessler C, Bärlund I, Bennett EM et al. 2020. Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts. Oikos 129:445–56
    [Google Scholar]
  74. 74.
    Markolf SA, Chester MV, Eisenberg DA, Iwaniec DM, Davidson CI et al. 2018. Interdependent infrastructure as linked social, ecological, and technological systems (SETSs) to address lock-in and enhance resilience. Earth's Future 6:1638–59
    [Google Scholar]
  75. 75.
    Munson SM, Reed SC, Peñuelas J, McDowell NG, Sala OE. 2018. Ecosystem thresholds, tipping points, and critical transitions. New Phytol. 218:1315–17
    [Google Scholar]
  76. 76.
    Lenton TM. 2013. Environmental tipping points. Annu. Rev. Environ. Resour. 38:1–29
    [Google Scholar]
  77. 77.
    Gregory PJ, Ingram JS. 2008. Climate change and the current ‘food crisis. ’. CAB Rev. 3:1–10
    [Google Scholar]
  78. 78.
    Lang T, Ingram J 2013. Food security twists and turns—why food systems need complex governance. Addressing Tipping Points for a Precarious Future T O'Riordan, T Lenton 81–103 Oxford, UK: Brit. Acad. Scholarsh.
    [Google Scholar]
  79. 79.
    Checkland P. 1999. Systems thinking, systems practice. Rethinking Management Information Systems45–56 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  80. 80.
    Georgiou I. 2003. The idea of emergent property. J. Oper. Res. Soc. 54:239–47
    [Google Scholar]
  81. 81.
    Cabrera D, Colosi L, Lobdell C. 2008. Systems thinking. Eval. Program Plan. 31:299–310
    [Google Scholar]
  82. 82.
    Prosperi P, Allen T, Cogill B, Padilla M, Peri I 2016. Towards metrics of sustainable food systems: a review of the resilience and vulnerability literature. Environ. Syst. Decis. 36:3–19
    [Google Scholar]
  83. 83.
    Doherty B, Ensor J, Heron T, Prado P. 2019. Food systems resilience: towards an interdisciplinary research agenda. Emerald Open Res 1:4
    [Google Scholar]
  84. 84.
    Fraser ED. 2007. Travelling in antique lands: using past famines to develop an adaptability/resilience framework to identify food systems vulnerable to climate change. Clim. Change 83:495–514
    [Google Scholar]
  85. 85.
    Klassen S, Murphy S 2020. Equity as both a means and an end: lessons for resilient food systems from COVID-19. World Dev. 136:105104
    [Google Scholar]
  86. 86.
    Hertel T, Elouafi I, Tanticharoen M, Ewert F. 2021. Diversification for enhanced food systems resilience. Nat. Food 2:832–34
    [Google Scholar]
  87. 87.
    Hansen AR, Ingram JS, Midgley G. 2020. Negotiating food systems resilience. Nat. Food 1:519
    [Google Scholar]
  88. 88.
    Walker B, Carpenter SR, Folke C, Gunderson L, Peterson GD et al. 2020. Navigating the chaos of an unfolding global cycle. Ecol. Soc. 25:23
    [Google Scholar]
  89. 89.
    Winkler KJ, Dade MC, Rieb JT. 2021. Mismatches in the ecosystem services literature—a review of spatial, temporal, and functional-conceptual mismatches. Curr. Landsc. Ecol. Rep. 6:23–34
    [Google Scholar]
  90. 90.
    Stokols D, Lejano R, Hipp J. 2013. Enhancing the resilience of human–environment systems: a social ecological perspective. Ecol. Soc. 18:7
    [Google Scholar]
  91. 91.
    Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B et al. 2020. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J. Exp. Bot. 71:3780–802
    [Google Scholar]
  92. 92.
    Hess T, Knox J, Holman I, Sutcliffe C 2020. Resilience of primary food production to a changing climate: on-farm responses to water-related risks. Water 12:2155
    [Google Scholar]
  93. 93.
    Gardner E, Breeze TD, Clough Y, Smith HG, Baldock KCR et al. 2021. Field boundary features can stabilise bee populations and the pollination of mass-flowering crops in rotational systems. J. Appl. Ecol. 58:2287–304
    [Google Scholar]
  94. 94.
    Stephens EC, Martin G, van Wijk M, Timsina J, Snow V. 2020. Impacts of COVID-19 on agricultural and food systems worldwide and on progress to the sustainable development goals. Agric. Syst. 183:102873
    [Google Scholar]
  95. 95.
    Midgley G. 2000. Systemic Intervention: Philosophy, Methodology and Practice New York: Springer
    [Google Scholar]
  96. 96.
    Matin N, Forrester J, Ensor J. 2018. What is equitable resilience?. World Dev. 109:197–205
    [Google Scholar]
  97. 97.
    van Bers C, Delaney A, Eakin H, Cramer L, Purdon M et al. 2019. Advancing the research agenda on food systems governance and transformation. Curr. Opin. Environ. Sustain. 39:94–102
    [Google Scholar]
  98. 98.
    Benton TG, Beddington J, Thomas SM, Flynn DJ, Fan S, Webb P 2021. A ‘net zero’ equivalent target is needed to transform food systems. Nat. Food 2:905–6
    [Google Scholar]
  99. 99.
    Webb P, Benton TG, Beddington J, Flynn D, Kelly NM, Thomas SM. 2020. The urgency of food system transformation is now irrefutable. Nat. Food 1:584–85
    [Google Scholar]
  100. 100.
    Wilson RS, Herziger A, Hamilton M, Brooks JS. 2020. From incremental to transformative adaptation in individual responses to climate-exacerbated hazards. Nat. Clim. Change 10:200–8
    [Google Scholar]
  101. 101.
    Utting P. 2018. Achieving the sustainable development goals through social and solidarity economy: incremental versus transformative change Knowl. Hub Work. Pap., UN Inter-Agency Task Force Soc. Solidar. Econ https://www.local2030.org/library/442/Achieving-the-Sustainable-Development-Goals-through-Social-and-Solidarity-Economy-Incremental-versus-Transformative-Change.pdf
    [Google Scholar]
  102. 102.
    Barnes ML, Wang P, Cinner JE, Graham NAJ, Guerrero AM et al. 2020. Social determinants of adaptive and transformative responses to climate change. Nat. Clim. Change 10:823–28
    [Google Scholar]
  103. 103.
    Jacobs B, Cordell D, Chin J, Rowe H. 2017. Towards phosphorus sustainability in North America: a model for transformational change. Environ. Sci. Policy 77:151–59
    [Google Scholar]
  104. 104.
    Healy S, Chitranshi B, Diprose G, Eskelinen T, Madden A et al. 2020. Planetary food commons and postcapitalist post-COVID food futures. Development 63:277–84
    [Google Scholar]
  105. 105.
    Biggs R, Schlüter M, Schoon ML 2015. Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  106. 106.
    Benessia A, Funtowicz S, Giampietro M, Guimarães Pereira Â, Ravetz J et al. 2016.. The Rightful Place of Science: Science on the Verge Tempe, AZ: Consort. Sci. Policy Outcomes
    [Google Scholar]
  107. 107.
    Walsh-Dilley M, Wolford W. 2015. Un)Defining resilience: subjective understandings of ‘resilience’ from the field. Resilience 3:173–82
    [Google Scholar]
  108. 108.
    Quinlan AE, Berbés-Blázquez M, Haider LJ, Peterson GD. 2016. Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. J. Appl. Ecol. 53:677–87
    [Google Scholar]
  109. 109.
    Walker BH, Anderies JM, Kinzig AP, Ryan P. 2006. Exploring resilience in social-ecological systems through comparative studies and theory development: introduction to the special issue. Ecol. Soc. 11:12
    [Google Scholar]
  110. 110.
    Laborde D, Martin W, Swinnen J, Vos R. 2020. COVID-19 risks to global food security. Science 369:500–2
    [Google Scholar]
  111. 111.
    Moran D, Cossar F, Merkle M, Alexander P 2020. UK food system resilience tested by COVID-19. Nat. Food 1:242
    [Google Scholar]
  112. 112.
    Di Renzo L, Gualtieri P, Cinelli G, Bigioni G, Soldati L et al. 2020. Psychological aspects and eating habits during COVID-19 home confinement: results of EHLC-COVID-19 Italian online survey. Nutrients 12:2152
    [Google Scholar]
  113. 113.
    Nicholls E, Ely A, Birkin L, Basu P, Goulson D. 2020. The contribution of small-scale food production in urban areas to the sustainable development goals: a review and case study. Sustain. Sci. 15:1585–99
    [Google Scholar]
  114. 114.
    Langemeyer J, Madrid-Lopez C, Beltran AM, Mendez GV. 2021. Urban agriculture—A necessary pathway towards urban resilience and global sustainability?. Landsc. Urban Plan. 210:104055
    [Google Scholar]
  115. 115.
    Mead BR, Davies JAC, Falagán N, Kourmpetli S, Liu L, Hardman CA. 2021. Urban agriculture in times of crisis: the role of home food growing in perceived food insecurity and well-being during the early COVID-19 lockdown. Emerald Open Res 3:7
    [Google Scholar]
  116. 116.
    Dornelles AZ, Boyd E, Nunes RJ, Asquith M, Boonstra WJ et al. 2020. Towards a bridging concept for undesirable resilience in social-ecological systems. Glob. Sustain. 3:e20
    [Google Scholar]
  117. 117.
    Hinrichs CC. 2014. Transitions to sustainability: a change in thinking about food systems change?. Agric. Hum. Values 31:143–55
    [Google Scholar]
  118. 118.
    Alinovi L, Mane E, Romano D 2008. Towards the measurement of household resilience to food insecurity: applying a model to Palestinian household data. Deriving Food Security Information from National Household Budget Surveys: Experiences, Achievements, Challenges R Sibrian 137–52 Rome: U. N. Food Agric. Organ.
    [Google Scholar]
  119. 119.
    Walsh-Dilley M, Wolford W, McCarthy J. 2016. Rights for resilience: food sovereignty, power, and resilience in development practice. Ecol. Soc. 21:11
    [Google Scholar]
  120. 120.
    Seekell D, Carr J, Dell'Angelo J, D'Odorico P, Fader M et al. 2017. Resilience in the global food system. Environ. Res. Lett. 12:025010
    [Google Scholar]
  121. 121.
    FAO (U. N. Food Agric. Organ.) 2016. Rima-II. Resilience index measurement and analysis Rep., FAO Rome:
    [Google Scholar]
  122. 122.
    Gatto A. 2020. A pluralistic approach to economic and business sustainability: a critical meta-synthesis of foundations, metrics, and evidence of human and local development. Corp. Soc. Responsib. Environ. Manag. 27:1525–39
    [Google Scholar]
  123. 123.
    Costanza R, Kubiszewski I, Giovannini E, Lovins H, McGlade J et al. 2014. Development: Time to leave GDP behind. Nature 505:283–85
    [Google Scholar]
  124. 124.
    Saltelli A, Nardo M, Saisana M, Tarantola S. 2005. Composite indicators: the controversy and the way forward. Statistics, Knowledge and Policy: Key Indicators to Inform Decision Making Organ. Econ. Co-op. Dev. (OECD) 359–72 Paris: OECD
    [Google Scholar]
  125. 125.
    Barrett CB, Constas MA 2014. Toward a theory of resilience for international development applications. PNAS 111:14625–30
    [Google Scholar]
  126. 126.
    Eason T, Garmestani AS, Cabezas H. 2014. Managing for resilience: early detection of regime shifts in complex systems. Clean Technol. Environ. Policy 16:773–83
    [Google Scholar]
  127. 127.
    Jacobi J, Mukhovi S, Llanque A, Augstburger H, Käser F et al. 2018. Operationalizing food system resilience: an indicator-based assessment in agroindustrial, smallholder farming, and agroecological contexts in Bolivia and Kenya. Land Use Policy 79:433–46
    [Google Scholar]
  128. 128.
    Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P et al. 2012. Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain. Sci. 7:25–43
    [Google Scholar]
  129. 129.
    Allen CR, Angeler DG, Chaffin BC, Twidwell D, Garmestani A. 2019. Resilience reconciled. Nat. Sustain. 2:898–900
    [Google Scholar]
  130. 130.
    Midgley G, Rajagopalan R. 2020. Critical Systems Thinking, Systemic Intervention and Beyond New York: Springer
    [Google Scholar]
  131. 131.
    Carpenter S, Brock W. 2011. Early warnings of unknown nonlinear shifts: a nonparametric approach. Ecology 92:2196–201
    [Google Scholar]
  132. 132.
    Perretti CT, Munch SB. 2012. Regime shift indicators fail under noise levels commonly observed in ecological systems. Ecol. Appl. 22:1772–79
    [Google Scholar]
  133. 133.
    Donohue I, Hillebrand H, Montoya JM, Petchey OL, Pimm SL et al. 2016. Navigating the complexity of ecological stability. Ecol. Lett. 19:1172–85
    [Google Scholar]
  134. 134.
    ETC Group 2015. Mega-mergers in the global agricultural inputs sector: threats to food security & climate resilience. ETC Group Oct. 30. https://www.etcgroup.org/content/mega-mergers-global-agricultural-inputs-sector
    [Google Scholar]
  135. 135.
    Hendrickson MK. 2015. Resilience in a concentrated and consolidated food system. J. Environ. Stud. Sci. 5:418–31
    [Google Scholar]
  136. 136.
    Renwick A, Islam MM, Thomson S. 2012. Power in global agriculture: economics, politics, and natural resources. Int. J. Agric. Manag. 2:31
    [Google Scholar]
  137. 137.
    Garmestani AS, Allen CR, Mittelstaedt JD, Stow CA, Ward WA. 2006. Firm size diversity, functional richness, and resilience. Environ. Dev. Econ. 11:533–51
    [Google Scholar]
  138. 138.
    Bebber DP. 2019. Climate change effects on Black Sigatoka disease of banana. Philos. Trans. R. Soc. B 374:20180269
    [Google Scholar]
  139. 139.
    Stokstad E. 2019. Banana fungus puts Latin America on alert: apparent detection of a devastating Fusarium strain in Colombia threatens exports. Science 365:6450207–8
    [Google Scholar]
  140. 140.
    Dale J, James A, Paul J-Y, Khanna H, Smith M et al. 2017. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 8:1496
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112320-050744
Loading
/content/journals/10.1146/annurev-environ-112320-050744
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error