1932

Abstract

Harmful cyanobacterial blooms (CyanoHABs) impact lakes, estuaries, and freshwater reservoirs worldwide. The duration, severity, and spread of CyanoHABs have markedly increased over the past decades and will likely continue to increase. This article addresses the universal phenomena of cyanobacterial blooms occurring in many freshwater ecosystems worldwide. Based on analysis of ecophysiological traits of bloom-forming cyanobacteria and their interactions with environmental processes, we summarize and decipher the driving forces leading to the initiation, outbreak, and persistence of the blooms. Due to the coupling effects of eutrophication, rising CO levels and global warming, a multidisciplinary joint research approach is critical for better understanding the CyanoHAB phenomenon and its prediction, remediation, and prevention. There is an urgent need to evaluate and guide proper use of bloom control techniques at large scales, using science-based and environmentally friendly approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112320-081653
2023-11-13
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112320-081653.html?itemId=/content/journals/10.1146/annurev-environ-112320-081653&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hou X, Feng L, Dai Y, Hu C, Gibson L et al. 2022. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat. Geosci. 15:130–34
    [Google Scholar]
  2. 2.
    Pu J, Song K, Liu G, Wen Z, Fang C et al. 2022. Differentiation of algal blooms and aquatic vegetation in Chinese lakes using modified vegetation presence frequency index method. Chin. Geogr. Sci. 32:792–807
    [Google Scholar]
  3. 3.
    Burford MA, Carey CC, Hamilton DP, Huisman J, Paerl HW et al. 2020. Perspective: advancing the research agenda for improving understanding of cyanobacteria in a future of global change. Harmful Algae 91:101601
    [Google Scholar]
  4. 4.
    Ho JC, Michalak AM, Pahlevan N. 2019. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574:667–70
    [Google Scholar]
  5. 5.
    Fang C, Song K, Paerl HW, Jacinthe PA, Wen Z et al. 2022. Global divergent trends of algal blooms detected by satellite during 1982–2018. Glob. Change Biol. 28:2327–40
    [Google Scholar]
  6. 6.
    Huo D, Gan N, Geng R, Cao Q, Song L et al. 2021. Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins. Harmful Algae 109:102106
    [Google Scholar]
  7. 7.
    Qin B, Zhu G, Gao G, Zhang Y, Li W et al. 2010. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. J. Environ. Manag. 45:105–12
    [Google Scholar]
  8. 8.
    Wynne TT, Stumpf RP. 2015. Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in western Lake Erie from 2002–2014. Toxins 7:1649–63
    [Google Scholar]
  9. 9.
    Veerman J, Kumar A, Mishra DR. 2022. Exceptional landscape-wide cyanobacteria bloom in Okavango Delta, Botswana in 2020 coincided with a mass elephant die-off event. Harmful Algae 111:102145
    [Google Scholar]
  10. 10.
    Wilkinson GM, Walter JA, Buelo CD, Pace ML. 2022. No evidence of widespread algal bloom intensification in hundreds of lakes. Front. Ecol. Evol. 20:16–21
    [Google Scholar]
  11. 11.
    Humpage A, Cunliffe D, Chorus I, Testai E, Ibelings BW et al. 2021. Exposure to cyanotoxins: understanding it and short-term intervention to prevent it. Toxic Cyanobacteria in Water I Chorus, M Welker 295–400. Boca Raton, FL: CRC Press
    [Google Scholar]
  12. 12.
    Sukenik A, Kaplan A. 2021. Cyanobacterial harmful algal blooms in aquatic ecosystems: a comprehensive outlook on current and emerging mitigation and control approaches. Microorganisms 9:1472
    [Google Scholar]
  13. 13.
    Hauer T, Komarek J. 2022. CyanoDB 2.0 - On-line database of cyanobacterial genera. Worldwide electronic publication Univ. S. Bohem., Inst. Botany AS CR České Budějovice, Czechia: http://www.cyanodb.cz
    [Google Scholar]
  14. 14.
    Guiry MD, Guiry GM. 2023. AlgaeBase. Worldwide electronic publication Natl. Univ. Irel. Galway: https://www.algaebase.org
    [Google Scholar]
  15. 15.
    Watson SB, Whitton BA, Higgins SN, Paerl HW, Brooks BW, Wehr JD 2015. Harmful algal blooms. Freshwater Algae of North America: Ecology and Classification J Wehr, R Sheath, J Kociolek 873–920. San Diego: Academic
    [Google Scholar]
  16. 16.
    Hentschke GS, Gama WA Jr. 2022. Trends in cyanobacteria: a contribution to systematics and biodiversity studies. In The Pharmacological Potential of Cyanobacteria G Lopes, M Silva, V Vasconcelos 1–20. Cambridge, MA: Academic
    [Google Scholar]
  17. 17.
    Cai H, McLimans CJ, Beyer JE, Krumholz LR, Hambright KD. 2023. Microcystis pangenome reveals cryptic diversity within and across morphospecies. Sci. Adv. 9:eadd3783
    [Google Scholar]
  18. 18.
    Moustaka-Gouni M, Sommer U, Katsiapi M, Vardaka E. 2020. Monitoring of cyanobacteria for water quality: doing the necessary right or wrong?. Mar. Freshw. Res. 71:717–24
    [Google Scholar]
  19. 19.
    Humbert JF, Barbe V, Latifi A, Gugger M, Calteau A et al. 2013. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLOS ONE 8:e70747
    [Google Scholar]
  20. 20.
    Yang C, Lin F, Li Q, Li T, Zhao J. 2015. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium. Front. Microbiol. 6:394
    [Google Scholar]
  21. 21.
    Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW et al. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20
    [Google Scholar]
  22. 22.
    Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM et al. 2021. The genetic and ecophysiological diversity of Microcystis. Environ. Microbiol. 23:7278–313
    [Google Scholar]
  23. 23.
    Cao H, Xu D, Zhang T, Ren Q, Xiang L et al. 2022. Comprehensive and functional analyses reveal the genomic diversity and potential toxicity of Microcystis. Harmful Algae 113:102186
    [Google Scholar]
  24. 24.
    Biller SJ, Berube PM, Lindell D, Chisholm SW. 2015. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13:13–27
    [Google Scholar]
  25. 25.
    Wu Z, Yang S, Shi J. 2022. Overview of the distribution and adaptation of a bloom-forming cyanobacterium Raphidiopsis raciborskii: integrating genomics, toxicity, and ecophysiology. J. Oceanol. Limnol. 40:1774–91
    [Google Scholar]
  26. 26.
    Zhao L, Song Y, Li L, Gan N, Brand JJ, Song L. 2018. The highly heterogeneous methylated genomes and diverse restriction-modification systems of bloom-forming Microcystis. Harmful Algae 75:87–93
    [Google Scholar]
  27. 27.
    Walsby AE. 1994. Gas vesicles. Microbiol. Rev. 58:94–144
    [Google Scholar]
  28. 28.
    Pfeifer F. 2012. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10:705–15
    [Google Scholar]
  29. 29.
    Vincent WF. 2009. Cyanobacteria. Encyclopedia of Inland Waters GE Likens 226–32. Oxford: Academic
    [Google Scholar]
  30. 30.
    Xiao Y, Gan N, Liu J, Zheng L, Song L. 2012. Heterogeneity of buoyancy in response to light between two buoyant types of cyanobacterium Microcystis. Hydrobiologia 679:297–311
    [Google Scholar]
  31. 31.
    Gao H, Zhu T, Xu M, Wang S, Xu X, Kong R. 2016. pH-dependent gas vesicle formation in Microcystis. FEBS Lett. 590:3195–201
    [Google Scholar]
  32. 32.
    Kaplan A. 2017. On the cradle of CCM research: discovery, development, and challenges ahead. J. Exp. Bot. 68:3785–96
    [Google Scholar]
  33. 33.
    Badger MR, Price GD. 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 54:609–22
    [Google Scholar]
  34. 34.
    Raven JA, Gobler CJ, Hansen PJ. 2020. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: theoretical and observed effects on harmful algal blooms. Harmful Algae 91:101594
    [Google Scholar]
  35. 35.
    Price GD. 2011. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosyn. Res. 109:47–57
    [Google Scholar]
  36. 36.
    Sandrini G, Matthijs HCP, Verspagen JMH, Muyzer G, Huisman J. 2014. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J. 8:589–600
    [Google Scholar]
  37. 37.
    Van de Waal DB, Verspagen JMH, Finke JF, Vournazou V, Immers AK et al. 2011. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J. 5:1438–50
    [Google Scholar]
  38. 38.
    Visser PM, Verspagen JMH, Sandrini G, Stal LJ, Matthijs HCP et al. 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–59
    [Google Scholar]
  39. 39.
    Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM. 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50:8923–29
    [Google Scholar]
  40. 40.
    Shan K, Song L, Chen W, Li L, Liu L et al. 2019. Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes. Harmful Algae 84:84–94
    [Google Scholar]
  41. 41.
    Guedes IA, Pacheco ABF, Vilar MCP, Mello MM, Marinho MM et al. 2019. Intraspecific variability in response to phosphorus depleted conditions in the cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii. Harmful Algae 86:96–105
    [Google Scholar]
  42. 42.
    Amano Y, Sakai Y, Sekiya T, Takeya K, Taki K, Machida M. 2010. Effect of phosphorus fluctuation caused by river water dilution in eutrophic lake on competition between blue-green alga Microcystis aeruginosa and diatom Cyclotella sp. J. Environ. Sci. 22:1666–73
    [Google Scholar]
  43. 43.
    Shen H, Song L. 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592:475–86
    [Google Scholar]
  44. 44.
    Wan L, Chen X, Deng Q, Yang L, Li X et al. 2019. Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis) and its role in their succession. Harmful Algae 84:46–55
    [Google Scholar]
  45. 45.
    Harke MJ, Gobler CJ. 2013. Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLOS ONE 8:e69834
    [Google Scholar]
  46. 46.
    Wei N, Song L, Gan N. 2021. Quantitative proteomic and microcystin production response of Microcystis aeruginosa to phosphorus depletion. Microorganisms 9:1183
    [Google Scholar]
  47. 47.
    Harke MJ, Berry DL, Ammerman JW, Gobler CJ. 2012. Molecular response of the bloom-forming cyanobacterium, Microcystis aeruginosa, to phosphorus limitation. Microb. Ecol. 63:188–98
    [Google Scholar]
  48. 48.
    Shi J, Ou-yang T, Yang S, Zhao L, Ji L, Wu Z 2022. Transcriptomic responses to phosphorus in an invasive cyanobacterium, Raphidiopsis raciborskii: implications for nutrient management. Harmful Algae 111:102150
    [Google Scholar]
  49. 49.
    Teikari J, Osterholm J, Kopf M, Battchikova N, Wahlsten M et al. 2015. Transcriptomic and proteomic profiling of Anabaena sp. strain 90 under inorganic phosphorus stress. Appl. Environ. Microbiol. 81:5212–22
    [Google Scholar]
  50. 50.
    Bar-Yosef Y, Sukenik A, Hadas O, Viner-Mozzini Y, Kaplan A. 2010. Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr. Biol. 20:1557–61
    [Google Scholar]
  51. 51.
    Zhao L, Lin LZ, Chen MY, Teng WK, Zheng LL et al. 2022. The widespread capability of methylphosphonate utilization in filamentous cyanobacteria and its ecological significance. Water Res. 217:118385
    [Google Scholar]
  52. 52.
    Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM et al. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72
    [Google Scholar]
  53. 53.
    Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J et al. 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. PNAS 101:568–73
    [Google Scholar]
  54. 54.
    Kaplan A, Harel M, Kaplan-Levy R, Hadas O, Sukenik A, Dittmann E. 2012. The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front. Microbiol. 3:138
    [Google Scholar]
  55. 55.
    Ger KA, Urrutia-Cordero P, Frost PC, Hansson LA, Sarnelle O et al. 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54:128–44
    [Google Scholar]
  56. 56.
    Vilar MCP, da Costa Pena Rodrigues TF, da Silva Ferrão-Filho A, de Oliveira e Azevedo SMF. 2021. Grazer-induced chemical defense in a microcystin-producing Microcystis aeruginosa (Cyanobacteria) exposed to Daphnia gessneri infochemicals. J. Chem. Ecol. 47:847–58
    [Google Scholar]
  57. 57.
    Śliwińska-Wilczewska S, Wiśniewska K, Konarzewska Z, Cieszyńska A, Barreiro Felpeto A et al. 2021. The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. Sci. Total Environ. 773:145681
    [Google Scholar]
  58. 58.
    Chia MA, Jankowiak JG, Kramer BJ, Goleski JA, Huang IS et al. 2018. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. Harmful Algae 74:67–77
    [Google Scholar]
  59. 59.
    Leão PN, Vasconcelos MTSD, Vasconcelos VM. 2009. Allelopathy in freshwater cyanobacteria. Crit. Rev. Microbiol. 35:271–82
    [Google Scholar]
  60. 60.
    Legrand C, Rengefors K, Fistarol GO, Granéli E. 2003. Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 42:406–19
    [Google Scholar]
  61. 61.
    Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF et al. 2016. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53
    [Google Scholar]
  62. 62.
    Lu Z, Lei L, Lu Y, Peng L, Han B. 2021. Phosphorus deficiency stimulates dominance of Cylindrospermopsis through facilitating cylindrospermopsin-induced alkaline phosphatase secretion: integrating field and laboratory-based evidences. Environ. Pollut. 290:117946
    [Google Scholar]
  63. 63.
    Borges H, Wood SA, Puddick J, Blaney E, Hawes I et al. 2016. Intracellular, environmental and biotic interactions influence recruitment of benthic Microcystis (Cyanophyceae) in a shallow eutrophic lake. J. Plankton Res. 38:1289–301
    [Google Scholar]
  64. 64.
    Feng B, Wang C, Wu X, Tian C, Tian Y, Xiao B. 2019. Involvement of microcystins, colony size and photosynthetic activity in the benthic recruitment of Microcystis. J. Appl. Phycol. 31:223–33
    [Google Scholar]
  65. 65.
    Misson B, Latour D. 2012. Influence of light, sediment mixing, temperature and duration of the benthic life phase on the benthic recruitment of Microcystis. J. Plankton Res. 34:113–19
    [Google Scholar]
  66. 66.
    Ren M, Zhang M, Fan F, Yang J, Yang Z et al. 2021. Difference in temporal and spatial distribution pattern of cyanobacteria between the sediment and water column in Lake Chaohu. Environ. Pollut. 291:118163
    [Google Scholar]
  67. 67.
    Kaplan-Levy RN, Hadas O, Summers ML, Rücker J, Sukenik A 2010. Akinetes: dormant cells of Cyanobacteria. Dormancy and Resistance in Harsh Environments E Lubzens, J Cerda, M Clark 5–27. Berlin, Heidelberg: Springer-Verlag
    [Google Scholar]
  68. 68.
    Paerl HW, Paul VJ. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46:1349–63
    [Google Scholar]
  69. 69.
    Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16:471–83
    [Google Scholar]
  70. 70.
    Paerl HW, Otten TG. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65:995–1010
    [Google Scholar]
  71. 71.
    Thomas MK, Litchman E. 2016. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763:357–69
    [Google Scholar]
  72. 72.
    O'Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42:10773–81
    [Google Scholar]
  73. 73.
    Deng JM, Qin BQ, Paerl HW, Zhang YL, Ma JR, Chen YW. 2014. Earlier and warmer springs increase cyanobacterial (Microcystis spp.) blooms in subtropical Lake Taihu, China. Freshw. Biol. 59:1076–85
    [Google Scholar]
  74. 74.
    Kundzewicz ZW, Mata LJ, Arnell N, Doll P, Kabat P et al. 2007. Freshwater resources and their management climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ML Parry, OF Canziani, JP Palutikof, PJ van der Linden, CE Hanson 173–210. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  75. 75.
    Wagner C, Adrian R 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnol. Oceanogr. 54:2460–68
    [Google Scholar]
  76. 76.
    Jeppesen E, Kronvang B, Olesen JE, Audet J, Søndergaard M et al. 2011. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663:1–21
    [Google Scholar]
  77. 77.
    Zhang YL, Shi K, Zhou YQ, Liu XH, Qin BQ. 2016. Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery. Remote Sens. Environ. 173:109–21
    [Google Scholar]
  78. 78.
    Reichwaldt ES, Ghadouani A. 2012. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Res. 46:1372–93
    [Google Scholar]
  79. 79.
    Stockwell JD, Doubek JP, Adrian R, Anneville O, Carey CC et al. 2020. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 26:2756–84
    [Google Scholar]
  80. 80.
    Qin B, Deng J, Shi K, Wang J, Brookes J et al. 2021. Extreme climate anomalies enhancing cyanobacterial blooms in eutrophic Lake Taihu, China. Water Resour. Res. 57:e2020WR029371
    [Google Scholar]
  81. 81.
    Paerl HW, Dennis RL, Whitall DR. 2002. Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries 25:677–93
    [Google Scholar]
  82. 82.
    Zhan X, Bo Y, Zhou F, Liu X, Paerl HW et al. 2017. Evidence for the importance of atmospheric nitrogen deposition to eutrophic Lake Dianchi, China. Environ. Sci. Technol. 51:6699–708
    [Google Scholar]
  83. 83.
    Yang JR, Lv H, Isabwe A, Liu L, Yu X et al. 2017. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Res. 120:52–63
    [Google Scholar]
  84. 84.
    Yang Z, Kong F, Yang Z, Zhang M, Yu Y, Qian S. 2009. Benefits and costs of the grazer-induced colony formation in Microcystis aeruginosa. Int. J. Environ. Res. Publ. Health 45:203–8
    [Google Scholar]
  85. 85.
    Xiao M, Li M, Reynolds CS. 2018. Colony formation in the cyanobacterium Microcystis. Biol. Rev. 93:1399–420
    [Google Scholar]
  86. 86.
    Gan N, Xiao Y, Zhu L, Wu Z, Liu J et al. 2012. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ. Microbiol. 14:730–42
    [Google Scholar]
  87. 87.
    Aparicio Medrano E, van de Wiel BJH, Uittenbogaard RE, Dionisio Pires LM, Clercx HJH. 2016. Simulations of the diurnal migration of Microcystis aeruginosa based on a scaling model for physical-biological interactions. Ecol. Model. 337:200–10
    [Google Scholar]
  88. 88.
    Ostrovsky I, Wu S, Li L, Song L. 2020. Bloom-forming toxic cyanobacterium Microcystis: quantification and monitoring with a high-frequency echosounder. Water Res. 183:116091
    [Google Scholar]
  89. 89.
    Wu H, Wu X, Yang T, Wang C, Tian C et al. 2021. Feedback regulation of surface scum formation and persistence by self-shading of Microcystis colonies: numerical simulations and laboratory experiments. Water Res. 194:116908
    [Google Scholar]
  90. 90.
    Hoke AK, Reynoso G, Smith MR, Gardner MI, Lockwood DJ et al. 2021. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLOS ONE 16:e0257017
    [Google Scholar]
  91. 91.
    Li Q, Lin F, Yang C, Wang J, Lin Y et al. 2018. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming Microcystis-epibiont communities. Front. Microbiol. 9:746
    [Google Scholar]
  92. 92.
    Shi L, Cai Y, Gao S, Zhang M, Chen F et al. 2022. Gene expression pattern of microbes associated with large cyanobacterial colonies for a whole year in Lake Taihu. Water Res. 223:118958
    [Google Scholar]
  93. 93.
    Zuo J, Hu L, Shen W, Zeng J, Li L et al. 2021. The involvement of α-proteobacteria Phenylobacterium in maintaining the dominance of toxic Microcystis blooms in Lake Taihu, China. Environ. Microbiol. 23:1066–78
    [Google Scholar]
  94. 94.
    Xie M, Ren M, Yang C, Yi H, Li Z et al. 2016. Metagenomic analysis reveals symbiotic relationship among bacteria in Microcystis-dominated community. Front. Microbiol. 7:56
    [Google Scholar]
  95. 95.
    Yan Z, Liu Z, Jia Z, Song C, Cao X, Zhou Y. 2023. Metabolites of extracellular organic matter from Microcystis and Dolichospermum drive distinct modes of carbon, nitrogen, and phosphorus recycling. Sci. Total Environ. 865:161124
    [Google Scholar]
  96. 96.
    Cirés S, Ballot A. 2016. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54:21–43
    [Google Scholar]
  97. 97.
    Wang S, Zhang X, Chen N, Tian L, Zhang Y, Nam WH. 2022. A systematic review and quantitative meta-analysis of the relationships between driving forces and cyanobacterial blooms at global scale. Environ. Res. 216:114670
    [Google Scholar]
  98. 98.
    Bertone E, Burford MA, Hamilton DP. 2018. Fluorescence probes for real-time remote cyanobacteria monitoring: a review of challenges and opportunities. Water Res. 141:152–62
    [Google Scholar]
  99. 99.
    Rousso BZ, Bertone E, Stewart R, Hamilton DP. 2020. A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water Res. 182:115959
    [Google Scholar]
  100. 100.
    Millie DF, Pigg RJ, Fahnenstiel GL, Carrick HJ. 2010. Algal chlorophylls: a synopsis of analytical methodologies. Algae DA Chapman 93–122. Denver, CO: Am. Water Works. Assoc.
    [Google Scholar]
  101. 101.
    Kutser T, Metsamaa L, Strömbeck N, Vahtmäe E. 2006. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 67:303–12
    [Google Scholar]
  102. 102.
    Page T, Smith PJ, Beven KJ, Jones ID, Elliott JA et al. 2018. Adaptive forecasting of phytoplankton communities. Water Res. 134:74–85
    [Google Scholar]
  103. 103.
    Thomas MK, Fontana S, Reyes M, Kehoe M, Pomati F. 2018. The predictability of a lake phytoplankton community, over time-scales of hours to years. Ecol. Lett. 21:619–28
    [Google Scholar]
  104. 104.
    Chen C, Huang J, Chen Q, Zhang J, Li Z, Lin Y. 2019. Assimilating multi-source data into a three-dimensional hydro-ecological dynamics model using Ensemble Kalman Filter. Environ. Model. Softw. 117:188–99
    [Google Scholar]
  105. 105.
    Bertani I, Steger CE, Obenour DR, Fahnenstiel GL, Bridgeman TB et al. 2017. Tracking cyanobacteria blooms: Do different monitoring approaches tell the same story?. Sci. Total Environ. 575:294–308
    [Google Scholar]
  106. 106.
    Shi K, Zhang Y, Qin B, Zhou B. 2019. Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges. Sci. Bull. 64:1540–56
    [Google Scholar]
  107. 107.
    Rowe MD, Anderson EJ, Wynne TT, Stumpf RP, Fanslow DL et al. 2016. Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short-term forecasts in Lake Erie. J. Geophys. Res. Oceans 121:5296–314
    [Google Scholar]
  108. 108.
    Wynne TT, Stumpf RP, Tomlinson MC, Schwab DJ, Watabayashi GY, Christensen JD. 2011. Estimating cyanobacterial bloom transport by coupling remotely sensed imagery and a hydrodynamic model. Ecol. Appl. 21:2709–21
    [Google Scholar]
  109. 109.
    Liu S, Glamore W, Tamburic B, Morrow A, Johnson F. 2022. Remote sensing to detect harmful algal blooms in inland waterbodies. Sci. Total Environ. 851:158096
    [Google Scholar]
  110. 110.
    Tang Y, Feng Y, Fung S, Xomchuk VR, Jiang M et al. 2022. Spatiotemporal deep-learning-based algal bloom prediction for Lake Okeechobee using multisource data fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15:8318–31
    [Google Scholar]
  111. 111.
    Zheng L, Wang H, Liu C, Zhang S, Ding A et al. 2021. Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models. J. Environ. Manag. 295:113060
    [Google Scholar]
  112. 112.
    Su Q, Yan S, Wu L, Zeng X. 2022. Online public opinion prediction based on a novel seasonal grey decomposition and ensemble model. Expert Syst. Appl. 210:118341
    [Google Scholar]
  113. 113.
    Shan K, Wang X, Yang H, Zhou B, Song L, Shang M. 2020. Use statistical machine learning to detect nutrient thresholds in Microcystis blooms and microcystin management. Harmful Algae 94:101807
    [Google Scholar]
  114. 114.
    Recknagel F, Park HD, Sukenik A, Zohary T. 2022. Dissolved organic nitrogen, dinoflagellates and cyanobacteria in two eutrophic lakes: analysis by inferential modelling. Harmful Algae 114:102229
    [Google Scholar]
  115. 115.
    Matthijs HCP, Jančula D, Visser PM, Maršálek B. 2016. Existing and emerging cyanocidal compounds: new perspectives for cyanobacterial bloom mitigation. Aquatic Ecol. 50:443–60
    [Google Scholar]
  116. 116.
    Carmichael WW, Azevedo S, An JS, Molica R, Jochimsen EM et al. 2001. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ. Health Perspect. 109:663–68
    [Google Scholar]
  117. 117.
    Jochimsen EM, Carmichael WW, An J, Cardo DM, Cookson ST et al. 1998. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338:873–78
    [Google Scholar]
  118. 118.
    Hawkins PR, Runnegar MT, Jackson AR, Falconer IR. 1985. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl. Environ. Microbiol. 50:1292–95
    [Google Scholar]
  119. 119.
    Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S et al. 2017. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 91:1049–130
    [Google Scholar]
  120. 120.
    Svirčev Z, Drobac D, Tokodi N, Mijović B, Codd GA, Meriluoto J. 2017. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch. Toxicol. 91:621–50
    [Google Scholar]
  121. 121.
    Carmichael WW, Boyer GL. 2016. Health impacts from cyanobacteria harmful algae blooms: implications for the north American great lakes. Harmful Algae 54:194–212
    [Google Scholar]
  122. 122.
    Peng L, Liu Y, Chen W, Liu L, Kent M, Song L. 2010. Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes: significance for freshwater aquacultures. Ecotox. Environ. Safe. 73:1804–11
    [Google Scholar]
  123. 123.
    Chen J, Zhang D, Xie P, Wang Q, Ma Z. 2009. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms. Sci. Total Environ. 407:3317–22
    [Google Scholar]
  124. 124.
    Roy-Lachapelle A, Solliec M, Bouchard MF, Sauvé S. 2017. Detection of cyanotoxins in algae dietary supplements. Toxins 9:76
    [Google Scholar]
  125. 125.
    Torbick N, Ziniti B, Stommel E, Linder E, Andrew A et al. 2018. Assessing cyanobacterial harmful algal blooms as risk factors for amyotrophic lateral sclerosis. Neurotox. Res. 33:199–212
    [Google Scholar]
  126. 126.
    Facciponte DN, Bough MW, Seidler D, Carroll JL, Ashare A et al. 2018. Identifying aerosolized cyanobacteria in the human respiratory tract: a proposed mechanism for cyanotoxin-associated diseases. Sci. Total Environ. 645:1003–13
    [Google Scholar]
  127. 127.
    Svirčev Z, Lalić D, Bojadžija Savić G, Tokodi N, Drobac Backović D et al. 2019. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 93:2429–81
    [Google Scholar]
  128. 128.
    Ash AK, Patterson S. 2022. Reporting of freshwater cyanobacterial poisoning in terrestrial wildlife: a systematic map. Animals 12:2423
    [Google Scholar]
  129. 129.
    Breinlinger S, Phillips TJ, Haram BN, Mareš J, Martínez Yerena JA et al. 2021. Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science 371:eaax9050
    [Google Scholar]
  130. 130.
    Schindler DW, Hecky R, Findlay D, Stainton M, Parker B et al. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. PNAS 105:11254–58
    [Google Scholar]
  131. 131.
    Zhou J, Leavitt PR, Zhang Y, Qin B. 2022. Anthropogenic eutrophication of shallow lakes: Is it occasional?. Water Res. 221:118728
    [Google Scholar]
  132. 132.
    Qin B, Zhou J, Elser JJ, Gardner WS, Deng J, Brookes JD. 2020. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ. Sci. Technol. 54:3191–98
    [Google Scholar]
  133. 133.
    Xu H, McCarthy MJ, Paerl HW, Brookes JD, Zhu G et al. 2021. Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: implications for nutrient management. Limnol. Oceanogr. 66:1492–509
    [Google Scholar]
  134. 134.
    Yao X, Zhang L, Zhang Y, Zhang B, Zhao Z et al. 2018. Nitrogen fixation occurring in sediments: contribution to the nitrogen budget of Lake Taihu, China. J. Geophys. Res. Biogeosci. 123:2661–74
    [Google Scholar]
  135. 135.
    Shatwell T, Koehler J. 2019. Decreased nitrogen loading controls summer cyanobacterial blooms without promoting nitrogen-fixing taxa: long-term response of a shallow lake. Limnol. Oceanogr. 64:S166–78
    [Google Scholar]
  136. 136.
    Almuhtaram H, Kibuye FA, Ajjampur S, Glover CM, Hofmann R et al. 2021. State of knowledge on early warning tools for cyanobacteria detection. Ecol. Indic. 133:108442
    [Google Scholar]
  137. 137.
    Liu H, Liu G, Xing W. 2021. Functional traits of submerged macrophytes in eutrophic shallow lakes affect their ecological functions. Sci. Total Environ. 760:143332
    [Google Scholar]
  138. 138.
    Lürling M, Kang L, Mucci M, van Oosterhout F, Noyma NP et al. 2020. Coagulation and precipitation of cyanobacterial blooms. Ecol. Eng. 158:106032
    [Google Scholar]
  139. 139.
    Zang X, Zhang H, Liu Q, Li L, Li L, Zhang X. 2020. Harvesting of Microcystis flos-aquae using chitosan coagulation: influence of proton-active functional groups originating from extracellular and intracellular organic matter. Water Res. 185:116272
    [Google Scholar]
  140. 140.
    Li L, Pan G. 2016. Cyanobacterial bloom mitigation using proteins with high isoelectric point and chitosan-modified soil. J. Appl. Phycol. 28:357–63
    [Google Scholar]
  141. 141.
    Zhu X, Dao G, Tao Y, Zhan X, Hu H. 2021. A review on control of harmful algal blooms by plant-derived allelochemicals. J. Hazard. Mat. 401:123403
    [Google Scholar]
  142. 142.
    Wang C, Wu Y, Wang Y, Bai L, Jiang H, Yu J. 2018. Lanthanum-modified drinking water treatment residue for initial rapid and long-term equilibrium phosphorus immobilization to control eutrophication. Water Res. 137:173–83
    [Google Scholar]
  143. 143.
    Wang C, Yang Y, Hou J, Wang P, Miao L et al. 2020. Optimization of cyanobacterial harvesting and extracellular organic matter removal utilizing magnetic nanoparticles and response surface methodology: a comparative study. Algal Res. 45:101756
    [Google Scholar]
  144. 144.
    Hao J, Lian B, Liu H, Lu X. 2016. The release of phosphorus from sediment to lake water induced by cyanobacterial blooms and phosphorus removal by cell harvesting. Geomicrobiol. J. 33:347–53
    [Google Scholar]
  145. 145.
    Kibuye FA, Zamyadi A, Wert EC. 2021. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part II—mechanical and biological control methods. Harmful Algae 109:102119
    [Google Scholar]
  146. 146.
    Boon PI, Bunn SE, Green JD, Shiel RJ. 1994. Consumption of cyanobacteria by freshwater zooplankton: implications for the success of ‘top-down’ control of cyanobacterial blooms in Australia. Mar. Freshw. Res. 45:875–87
    [Google Scholar]
  147. 147.
    Ekvall MK, Urrutia-Cordero P, Hansson L. 2014. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation. PLOS ONE 9:e112956
    [Google Scholar]
  148. 148.
    Guo C, Li S, Ke J, Liao C, Hansen AG et al. 2023. The feeding habits of small-bodied fishes mediate the strength of top-down effects on plankton and water quality in shallow subtropical lakes. Water Res. 233:119705
    [Google Scholar]
  149. 149.
    Lu Z, Sha J, Tian Y, Zhang X, Liu B, Wu Z. 2017. Polyphenolic allelochemical pyrogallic acid induces caspase-3 (like)-dependent programmed cell death in the cyanobacterium Microcystis aeruginosa. Algal Res. 21:148–55
    [Google Scholar]
  150. 150.
    Pal M, Yesankar PJ, Dwivedi A, Qureshi A. 2020. Biotic control of harmful algal blooms (HABs): a brief review. J. Environ. Manag. 268:110687
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112320-081653
Loading
/content/journals/10.1146/annurev-environ-112320-081653
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error