1932

Abstract

Food demand is projected to increase significantly over the coming decades. Sustainable intensification (SI) is essential to meet this demand. SI is particularly important in smallholder systems, yet to date it remains unclear what the most promising SI strategies are to increase food production and farmer incomes at scale. We review the literature on SI to identify the most promising strategies, as manifest in replicated findings of favorable causal impacts. Adoption of improved cultivars generated the largest, most consistent, positive yield and economic outcomes. Two agroecological practices, push-pull systems and the System of Rice Intensification, also repeatedly led to large positive impacts. These strategies have considerable potential to scale to reach more than 50% of smallholder farmers who plant staple crops. Significant barriers to adoption remain, however, and identifying ways to overcome barriers to scale these successful strategies will be critical to meeting Sustainable Development Goals 1 and 2 by 2030.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112320-093911
2023-11-13
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112320-093911.html?itemId=/content/journals/10.1146/annurev-environ-112320-093911&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    van Dijk M, Morley T, Rau ML, Saghai Y. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2:7494–501
    [Google Scholar]
  2. 2.
    IPCC (Intergov. Panel Clim. Change) 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
  3. 3.
    Potapov P, Turubanova S, Hansen MC, Tyukavina A, Zalles V et al. 2022. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3:119–28
    [Google Scholar]
  4. 4.
    Rosegrant MW, Ringler C, Zhu T. 2009. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34:205–22
    [Google Scholar]
  5. 5.
    Godfray HCJ, Garnett T. 2014. Food security and sustainable intensification. Philos. Trans. R. Soc. B 369:163920120273
    [Google Scholar]
  6. 6.
    Rapsomanikis G. 2015. The economic lives of smallholder farmers Rep. U. N. Food Agric. Organ. Rome:
  7. 7.
    Lowder SK, Sánchez MV, Bertini R. 2021. Which farms feed the world and has farmland become more concentrated?. World Dev. 142:105455
    [Google Scholar]
  8. 8.
    Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. 2012. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3:11293
    [Google Scholar]
  9. 9.
    Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science 319:5863607–10
    [Google Scholar]
  10. 10.
    Ortiz-Bobea A, Ault TR, Carrillo CM, Chambers RG, Lobell DB. 2021. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11:4306–12
    [Google Scholar]
  11. 11.
    Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. 2012. Closing yield gaps through nutrient and water management. Nature 490:7419254–57
    [Google Scholar]
  12. 12.
    Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G. 2013. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 5:3291–317
    [Google Scholar]
  13. 13.
    Pingali P. 2012. Green Revolution: impacts, limits, and the path ahead. PNAS 109:3112302–8
    [Google Scholar]
  14. 14.
    von der Goltz J, Dar A, Fishman R, Mueller ND, Barnwal P, McCord GC. 2020. Health impacts of the Green Revolution: evidence from 600,000 births across the developing world. J. Health Econ. 74:102373
    [Google Scholar]
  15. 15.
    Minten B, Barrett C. 2008. Agricultural technology, productivity, and poverty in Madagascar. World Dev. 36:5797–822
    [Google Scholar]
  16. 16.
    Fukase E, Martin W. 2020. Economic growth, convergence, and world food demand and supply. World Dev. 132:104954
    [Google Scholar]
  17. 17.
    Barrett CB, Benton TG, Cooper KA, Fanzo J, Gandhi R et al. 2020. Bundling innovations to transform agri-food systems. Nat. Sustain. 3:12974–76
    [Google Scholar]
  18. 18.
    FAO (U. N. Food Agric. Organ.), IFAD (Int. Fund Agric. Dev.), UNICEF (U. N. Children's Fund), WFP (U. N. World Progr.), WHO (World Health Organ.) 2020. The State of Food Security and Nutrition in the World 2020: transforming food systems for affordable healthy diets Rep. FAO Rome:
  19. 19.
    Cassman KG, Grassini P. 2020. A global perspective on sustainable intensification research. Nat. Sustain. 3:4262–68
    [Google Scholar]
  20. 20.
    Pretty JN. 1997. The sustainable intensification of agriculture. Nat. Resour. Forum. 21:4247–56
    [Google Scholar]
  21. 21.
    Loos J, Abson DJ, Chappell MJ, Hanspach J, Mikulcak F et al. 2014. Putting meaning back into “sustainable intensification. .” Front. Ecol. Environ. 12:6356–61
    [Google Scholar]
  22. 22.
    Petersen B, Snapp S. 2015. What is sustainable intensification? Views from experts. Land Use Policy 46:1–10
    [Google Scholar]
  23. 23.
    Pretty J, Bharucha ZP. 2014. Sustainable intensification in agricultural systems. Ann. Botany 114:81571–96
    [Google Scholar]
  24. 24.
    Cairns JE, Chamberlin J, Rutsaert P, Voss RC, Ndhlela T, Magorokosho C. 2021. Challenges for sustainable maize production of smallholder farmers in sub-Saharan Africa. J. Cereal Sci. 101:103274
    [Google Scholar]
  25. 25.
    Ekpa O, Palacios-Rojas N, Kruseman G, Fogliano V, Linnemann AR. 2019. Sub-Saharan African maize-based foods—processing practices, challenges and opportunities. Food Rev. Int. 35:7609–39
    [Google Scholar]
  26. 26.
    Global Yield Gap Atlas 2023. Global Yield Gap and Water Productivity Atlas https://www.yieldgap.org/gygaviewer/index.html
  27. 27.
    Barrett CB, Benton T, Fanzo J, Herrero M, Nelson RJ et al. 2022. Socio-Technical Innovation Bundles for Agri-Food Systems Transformation Cham, Switz: Springer Int.
  28. 28.
    Katengeza SP, Holden ST. 2021. Productivity impact of drought tolerant maize varieties under rainfall stress in Malawi: a continuous treatment approach. Agric. Econ. 52:1157–71
    [Google Scholar]
  29. 29.
    Lunduka RW, Mateva KI, Magorokosho C, Manjeru P. 2019. Impact of adoption of drought-tolerant maize varieties on total maize production in south Eastern Zimbabwe. Clim. Dev. 11:135–46
    [Google Scholar]
  30. 30.
    Martey E, Etwire PM, Kuwornu JKM. 2020. Economic impacts of smallholder farmers’ adoption of drought-tolerant maize varieties. Land Use Policy 94:104524
    [Google Scholar]
  31. 31.
    Olagunju KO, Ogunniyi AI, Awotide BA, Adenuga AH, Ashagidigbi WM. 2020. Evaluating the distributional impacts of drought-tolerant maize varieties on productivity and welfare outcomes: an instrumental variable quantile treatment effects approach. Clim. Dev. 12:10865–75
    [Google Scholar]
  32. 32.
    Simtowe F, Amondo E, Marenya P, Rahut D, Sonder K, Erenstein O. 2019. Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: evidence from Uganda. Land Use Policy 88:104091
    [Google Scholar]
  33. 33.
    Holden ST, Fisher M. 2015. Subsidies promote use of drought tolerant maize varieties despite variable yield performance under smallholder environments in Malawi. Food Secur. 7:61225–38
    [Google Scholar]
  34. 34.
    Manda J, Alene AD, Gardebroek C, Kassie M, Tembo G 2016. Adoption and impacts of sustainable agricultural practices on maize yields and incomes: evidence from rural Zambia. J. Agric. Econ. 67:1130–53
    [Google Scholar]
  35. 35.
    Chepchirchir RT, Macharia I, Murage AW, Midega CAO, Khan ZR. 2017. Impact assessment of push-pull pest management on incomes, productivity and poverty among smallholder households in Eastern Uganda. Food Secur. 9:61359–72
    [Google Scholar]
  36. 36.
    Khan ZR, Midega CAO, Amudavi DM, Hassanali A, Pickett JA. 2008. On-farm evaluation of the ‘push-pull’ technology for the control of stemborers and striga weed on maize in western Kenya. Field Crops Res. 106:3224–33
    [Google Scholar]
  37. 37.
    Amadu FO, Miller DC, McNamara PE. 2020. Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: evidence from southern Malawi. Ecol. Econ. 167:106443
    [Google Scholar]
  38. 38.
    Kuntashula E, Nhlane R, Chisola F. 2018. Adoption and impact of fertiliser trees on heterogeneous farmer classified soil types in the Chongwe district of Zambia. Agrekon 57:2137–51
    [Google Scholar]
  39. 39.
    Arslan A, McCarthy N, Lipper L, Asfaw S, Cattaneo A, Kokwe M. 2015. Climate smart agriculture? Assessing the adaptation implications in Zambia. J. Agric. Econ. 66:3753–80
    [Google Scholar]
  40. 40.
    Snapp SS, Rohrbach DD, Simtowe F, Freeman HA. 2002. Sustainable soil management options for Malawi: Can smallholder farmers grow more legumes?. Agric. Ecosyst. Environ. 91:1–3159–74
    [Google Scholar]
  41. 41.
    Adolwa IS, Schwarze S, Buerkert A. 2019. Impacts of integrated soil fertility management on yield and household income: the case of Tamale (Ghana) and Kakamega (Kenya). Ecol. Econ. 161:186–92
    [Google Scholar]
  42. 42.
    FAO (U. N. Food Agric. Organ.) 2016. Save and Grow in Practice: Maize, Rice and Wheat Rome: FAO
  43. 43.
    Boillat S, Jew EKK, Steward PR, Speranza CI, Whitfield S et al. 2019. Can smallholder farmers buffer rainfall variability through conservation agriculture? On-farm practices and maize yields in Kenya and Malawi. Environ. Res. Lett. 14:11115007
    [Google Scholar]
  44. 44.
    Jena PR. 2019. Can minimum tillage enhance productivity? Evidence from smallholder farmers in Kenya. J. Clean. Prod. 218:465–75
    [Google Scholar]
  45. 45.
    Ngoma H. 2018. Does minimum tillage improve the livelihood outcomes of smallholder farmers in Zambia?. Food Secur. 10:2381–96
    [Google Scholar]
  46. 46.
    Tambo JA, Kirui OK. 2021. Yield effects of conservation farming practices under fall armyworm stress: the case of Zambia. Agric. Ecosyst. Environ. 321:107618
    [Google Scholar]
  47. 47.
    Ngwira AR, Thierfelder C, Eash N, Lambert DM. 2013. Risk and maize-based cropping systems for smallholder Malawi farmers using conservation agriculture technologies. Exp. Agric. 49:4483–503
    [Google Scholar]
  48. 48.
    Tambo JA, Mockshell J. 2018. Differential impacts of conservation agriculture technology options on household income in sub-Saharan Africa. Ecol. Econ. 151:95–105
    [Google Scholar]
  49. 49.
    Duvallet M, Dumas P, Makowski D, Boé J, Mendez del Villar P, Ben-Ari T 2021. Rice yield stability compared to major food crops in West Africa. Environ. Res. Lett. 16:12124005
    [Google Scholar]
  50. 50.
    Balasubramanian V, Sie M, Hijmans RJ, Otsuka K. 2007. Increasing rice production in sub-Saharan Africa: challenges and opportunities. Adv. Agron. 94:55–133
    [Google Scholar]
  51. 51.
    Dibba L, Fialor SC, Diagne A, Nimoh F. 2012. The impact of NERICA adoption on productivity and poverty of the small-scale rice farmers in the Gambia. Food Secur. 4:2253–65
    [Google Scholar]
  52. 52.
    Dontsop Nguezet PM, Okoruwa VO, Adeoti AI, Adenegan KO 2012. Productivity impact differential of improved rice technology adoption among rice farming households in Nigeria. J. Crop Improv. 26:11–21
    [Google Scholar]
  53. 53.
    Asante B, Wiredu AN, Martey E, Sarpong DB, Mensah-Bonsu A. 2014. NERICA adoption and impacts on technical efficiency of rice producing households in Ghana: implications for research and development. Am. J. Exp. Agric. 4:3244–62
    [Google Scholar]
  54. 54.
    Papademetriou MK 2000. Rice production in the Asia-Pacific region: issues and perspectives Rep. U. N. Food Agric. Organ. Rome:
  55. 55.
    Bishwajit G, Sarker S, Kpoghomou M-A, Gao H, Jun L et al. 2013. Self-sufficiency in rice and food security: a South Asian perspective. Agric. Food Secur. 2:110
    [Google Scholar]
  56. 56.
    IRRI (Int. Rice Res. Inst.) 2021. Transitioning toward equitable, profitable, and environmentally sound rice agri-food systems. Southeast Asia Rep. IRRI Los Baños, Phil.:
  57. 57.
    Sharma M, Kishore A, Roy D, Joshi K. 2020. A comparison of the Indian diet with the EAT-Lancet reference diet. BMC Public Health 20:1812
    [Google Scholar]
  58. 58.
    Yuan S, Stuart AM, Laborte AG, Rattalino Edreira JI, Dobermann A et al. 2022. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nat. Food 3:3217–26
    [Google Scholar]
  59. 59.
    Bairagi S, Mishra AK, Durand-Morat A. 2020. Climate risk management strategies and food security: evidence from Cambodian rice farmers. Food Policy 95:101935
    [Google Scholar]
  60. 60.
    Emerick K, de Janvry A, Sadoulet E, Dar MH. 2016. Technological innovations, downside risk, and the modernization of agriculture. Am. Econ. Rev. 106:61537–61
    [Google Scholar]
  61. 61.
    Tho LCB, Dung LC, Umetsu C. 2021.. “ One must do, five reductions” technical practice and the economic performance of rice smallholders in the Vietnamese Mekong delta. Sustain. Prod. Consum. 28:1040–49
    [Google Scholar]
  62. 62.
    Dar MH, de Janvry A, Emerick K, Raitzer D, Sadoulet E. 2013. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups. Sci. Rep. 3:13315
    [Google Scholar]
  63. 63.
    Kakumanu KR, Kaluvai YR, Balasubramanian M, Nagothu US, Kotapati GR, Karanam S. 2019. Adaptation to climate change: impact of capacity building, India. Irrig. Drain. 68:150–58
    [Google Scholar]
  64. 64.
    Noltze M, Schwarze S, Qaim M. 2013. Impacts of natural resource management technologies on agricultural yield and household income: the system of rice intensification in Timor Leste. Ecol. Econ. 85:59–68
    [Google Scholar]
  65. 65.
    Takahashi K, Barrett CB. 2014. The system of rice intensification and its impacts on household income and child schooling: evidence from rural Indonesia. Am. J. Agric. Econ. 96:1269–89
    [Google Scholar]
  66. 66.
    Barrett CB, Islam A, Malek AM, Pakrashi D, Ruthbah U. 2022. Experimental evidence on adoption and impact of the System of Rice Intensification. Am. J. Agric. Econ. 104:14–32
    [Google Scholar]
  67. 67.
    Ali A, Erenstein O, Rahut DB. 2014. Impact of direct rice-sowing technology on rice producers’ earnings: empirical evidence from Pakistan. Dev. Stud. Res. 1:1244–54
    [Google Scholar]
  68. 68.
    Jain M, Singh B, Srivastava AAK, Malik RK, McDonald AJ, Lobell DB. 2017. Using satellite data to identify the causes of and potential solutions for yield gaps in India's Wheat Belt. Environ. Res. Lett. 12:9094011
    [Google Scholar]
  69. 69.
    Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333:6042616–20
    [Google Scholar]
  70. 70.
    Newport D, Lobell DB, Balwinder-Singh Srivastava AK, Rao P et al. 2020. Factors constraining timely sowing of wheat as an adaptation to climate change in Eastern India. Weather Clim. Soc. 12:3515–28
    [Google Scholar]
  71. 71.
    Sattar A, Singh G, Singh SV, Kumar M, Kumar PV, Bal SK. 2020. Evaluating temperature thresholds and optimizing sowing dates of wheat in Bihar. J. Agrometeorol. 22:2158–64
    [Google Scholar]
  72. 72.
    Keil A, D'Souza A, McDonald A 2015. Zero-tillage as a pathway for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: Does it work in farmers’ fields?. Food Secur. 7:983–1001
    [Google Scholar]
  73. 73.
    Krishna VV, Veettil PC. 2014. Productivity and efficiency impacts of conservation tillage in northwest Indo-Gangetic Plains. Agric. Syst. 127:126–38
    [Google Scholar]
  74. 74.
    Erenstein O, Laxmi V. 2008. Zero tillage impacts in India's rice-wheat systems: a review. Soil Tillage Res. 100:1–21–14
    [Google Scholar]
  75. 75.
    Fisher M, Abate T, Lunduka RW, Asnake W, Alemayehu Y, Madulu RB. 2015. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: determinants of adoption in eastern and southern Africa. Clim. Change 133:2283–99
    [Google Scholar]
  76. 76.
    Katengeza SP, Holden ST, Lunduka RW. 2019. Adoption of drought tolerant maize varieties under rainfall stress in Malawi. J. Agric. Econ. 70:1198–214
    [Google Scholar]
  77. 77.
    Obayelu OA, Fakolujo OM, Awotide BA. 2019. What impact does the adoption of drought-tolerant maize for Africa have on the yield and poverty status of farmers in the arid region of Nigeria?. J. Agric. Sci. Belgrade 64:3303–17
    [Google Scholar]
  78. 78.
    CIMMYT (Int. Maize Wheat Improv. Cent.) 2021. A decade of improved and climate-smart maize through collaborative research and innovation. CIMMYT Febr. 23, https://www.cimmyt.org/news/qa-a-decade-of-improved-and-climate-smart-maize-through-collaborative-research-and-innovation/
    [Google Scholar]
  79. 79.
    Niassy S, Kidoido M, Mbeche NI, Pittchar J, Hailu G et al. 2020. Adoption and willingness to pay for the push-pull technology among smallholder maize farmers in Rwanda. Int. J. Agric. Ext. Rural Dev. 8:31–15
    [Google Scholar]
  80. 80.
    Khan ZR, Midega CAO, Pittchar JO, Murage AW, Birkett MA et al. 2014. Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philos. Trans. R. Soc. B 369:163920120284
    [Google Scholar]
  81. 81.
    Muriithi BW, Menale K, Diiro G, Muricho G. 2018. Does gender matter in the adoption of push-pull pest management and other sustainable agricultural practices? Evidence from Western Kenya. Food Secur. 10:2253–72
    [Google Scholar]
  82. 82.
    Misango VG, Nzuma JM, Irungu P, Kassie M 2022. Intensity of adoption of integrated pest management practices in Rwanda: a fractional logit approach. Heliyon 8:1e08735
    [Google Scholar]
  83. 83.
    Bonhof MJ, Overholt WA, Huis AV, Polaszek A. 1997. Natural enemies of cereal stemborers in East Africa: a review. Int. J. Trop. Insect Sci. 17:119–35
    [Google Scholar]
  84. 84.
    Watson A, Gressel J, Sands D, Hallett S, Vurro M, Beed F 2007. Fusarium Oxysporum f. sp. Striga, Athletes foot or Achilles heel?. Novel Biotechnologies for Biocontrol Agent Enhancement and Management M Vurro, J Gressel 213–22. Dordrecht: Springer Neth.
    [Google Scholar]
  85. 85.
    Arouna A, Lokossou JC, Wopereis MCS, Bruce-Oliver S, Roy-Macauley H. 2017. Contribution of improved rice varieties to poverty reduction and food security in sub-Saharan Africa. Glob. Food Secur. 14:54–60
    [Google Scholar]
  86. 86.
    Akinnagbe OM, Akinbobola TP. 2022. Farmers adoption level of New Rice for Africa (NERICA) varieties in Ekiti State, Nigeria. Agric Res. 11:2321–29
    [Google Scholar]
  87. 87.
    Futakuchi K, Senthilkumar K, Arouna A, Vandamme E, Diagne M et al. 2021. History and progress in genetic improvement for enhancing rice yield in sub-Saharan Africa. Field Crops Res. 267:108159
    [Google Scholar]
  88. 88.
    Yamano T, Arouna A, Labarta RA, Huelgas ZM, Mohanty S. 2016. Adoption and impacts of international rice research technologies. Glob. Food Secur. 8:1–8
    [Google Scholar]
  89. 89.
    Yokouchi T, Saito K. 2016. Factors affecting farmers’ adoption of NERICA upland rice varieties: the case of a seed producing village in central Benin. Food Secur. 8:1197–209
    [Google Scholar]
  90. 90.
    Saito K, Asai H, Zhao D, Laborte AG, Grenier C. 2018. Progress in varietal improvement for increasing upland rice productivity in the tropics. Plant Prod. Sci. 21:3145–58
    [Google Scholar]
  91. 91.
    Linares OF. 2002. African rice (Oryza glaberrima): history and future potential. PNAS 99:2516360–65
    [Google Scholar]
  92. 92.
    Int. Rice Res. Inst 2018. Climate change - ready rice. International Rice Research Institute. https://www.irri.org/climate-change-ready-rice
    [Google Scholar]
  93. 93.
    Raghu PT, Veettil PC, Das S. 2022. Smallholder adaptation to flood risks: adoption and impact of Swarna-Sub1 in Eastern India. Environ. Chall. 7:100480
    [Google Scholar]
  94. 94.
    Reddy AAA. 2017. The case of improved Samba Mahsuri. Econ. Polit. Wkly. 52:3917–19
    [Google Scholar]
  95. 95.
    Dass A, Kaur R, Choudhary AK, Pooniya V, Raj R, Rana KS. 2015. System of rice (Oryza sativa) intensification for higher productivity and resource use efficiency—a review. Indian J. Agron. 60:11–19
    [Google Scholar]
  96. 96.
    Moser CM, Barrett CB. 2003. The disappointing adoption dynamics of a yield-increasing, low external-input technology: the case of SRI in Madagascar. Agric. Syst. 76:31085–1100
    [Google Scholar]
  97. 97.
    Ishtiaque A, Singh S, Lobell D, Balwinder-Singh Fishman R, Jain M 2022. Prior crop season management constrains farmer adaptation to warming temperatures: evidence from the Indo-Gangetic Plains. Sci. Total Environ. 807:151671
    [Google Scholar]
  98. 98.
    McDonald AJ, Balwinder-Singh Keil A, Srivastava A, Craufurd P et al. 2022. Time management governs climate resilience and productivity in the coupled rice-wheat cropping systems of eastern India. Nat. Food 3:7542–51
    [Google Scholar]
  99. 99.
    Keil A, D'Souza A, McDonald A 2017. Zero-tillage is a proven technology for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: What determines farmer awareness and adoption?. Food Secur. 9:723–43
    [Google Scholar]
  100. 100.
    Foster AD, Rosenzweig MR. 2010. Microeconomics of technology adoption. Annu. Rev. Econ. 2:395–424
    [Google Scholar]
  101. 101.
    Rogers EM. 1995. Diffusion of Innovations New York: Free Press. , 4th ed..
  102. 102.
    Foster AD, Rosenzweig MR. 1995. Learning by doing and learning from others: human capital and technical change in agriculture. J. Polit. Econ. 103:61176–1209
    [Google Scholar]
  103. 103.
    Marenya PP, Barrett CB. 2007. Household-level determinants of adoption of improved natural resources management practices among smallholder farmers in western Kenya. Food Policy 32:4515–36
    [Google Scholar]
  104. 104.
    Conley TG, Udry CR. 2010. Learning about a new technology: pineapple in Ghana. Am. Econ. Rev. 100:135–69
    [Google Scholar]
  105. 105.
    Emerick K, Dar MH. 2021. Farmer field days and demonstrator selection for increasing technology adoption. Rev. Econ. Stat. 103:4680–93
    [Google Scholar]
  106. 106.
    Mehar M, Padmaja SS, Prasad N. 2022. Coping with climate stress in Eastern India: farmers’ adoption of stress-tolerant rice varieties. Asian J. Agric. Dev. 19:143–60
    [Google Scholar]
  107. 107.
    Murage AW, Midega CAO, Pittchar JO, Pickett JA, Khan ZR. 2015. Determinants of adoption of climate-smart push-pull technology for enhanced food security through integrated pest management in eastern Africa. Food Secur. 7:3709–24
    [Google Scholar]
  108. 108.
    Veettil PC, Raghu PT, Ashok A. 2021. Information quality, adoption of climate-smart varieties and their economic impact in flood-risk areas. Environ. Dev. Econ. 26:145–68
    [Google Scholar]
  109. 109.
    Ayedun B. 2018. Drought tolerant maize adoption and its determinants in West Africa. Acta Sci. Nutr. Health 2:121–30
    [Google Scholar]
  110. 110.
    Dibba L, Zeller M, Diagne A, Nielsen T, eds. 2015. How accessibility to seeds affects the potential adoption of an improved rice variety: the case of The New Rice for Africa (NERICA) in The Gambia. Q. J. Int. Agric. 54:133–58
    [Google Scholar]
  111. 111.
    Dontsop Nguezet PM, Diagne A, Okoruwa OV, Ojehomon V, Manyong V 2013. Estimating the actual and potential adoption rates and determinants of NERICA rice varieties in Nigeria. J. Crop Improv. 27:5561–85
    [Google Scholar]
  112. 112.
    Simtowe F, Muricho DN, Mbando F, Makumbi D, Jumbo M. 2019. How scalable are stress tolerant maize varieties? An examination of knowledge, seed access and affordability heterogeneity effect in Tanzania. 2019 Sixth International Conference, September 23–26, 2019, Abuja, Nigeria 295941, African Association of Agricultural Economists (AAAE) Nairobi, Kenya: AAAE
    [Google Scholar]
  113. 113.
    Simtowe F, Makumbi D, Worku M, Mawia H, Rahut DB. 2021. Scalability of adaptation strategies to drought stress: the case of drought tolerant maize varieties in Kenya. Int. J. Agric. Sustain. 19:191–105
    [Google Scholar]
  114. 114.
    Simtowe F, Marenya P, Amondo E, Worku M, Rahut DB, Erenstein O. 2019. Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda. Agric. Econ. 7:115
    [Google Scholar]
  115. 115.
    Arsil P, Tey YS, Brindal M, Ardiansyah Sumarni E, Masrukhi 2022. Perceived attributes driving the adoption of system of rice intensification: the Indonesian farmers’ view. Open Agric. 7:1217–25
    [Google Scholar]
  116. 116.
    Pal A, Dhakre DS, Bhattacharya D. 2019. An analysis of constraints in large scale dissemination of System of Rice Intensification (SRI) in Odisha, India. Int. J. Curr. Microbiol. App. Sci. 8:071898–1906
    [Google Scholar]
  117. 117.
    Amudavi D, Khan Z, Midega CAO, Pickett J, Lynam J, Pittchar J. 2008. Push-pull technology and determinants influencing expansion among smallholder producers in Western Kenya. Proceedings of the 24th Annual Meetingpp. 38–50 College Station, TX: AIAEE
    [Google Scholar]
  118. 118.
    Krishna VV, Keil A, Jain M, Zhou W, Jose M et al. 2022. Conservation agriculture benefits Indian farmers, but technology targeting needed for greater impacts. Front. Agron. 4: https://doi.org/10.3389/fagro.2022.772732
    [Crossref] [Google Scholar]
  119. 119.
    Yamano T, Malabayabas ML, Habib MdA, Das SK. 2018. Neighbors follow early adopters under stress: panel data analysis of submergence-tolerant rice in northern Bangladesh. Agric. Econ. 49:3313–23
    [Google Scholar]
  120. 120.
    Keil A, D'Souza A, McDonald A 2016. Growing the service economy for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: lessons from custom hiring services for zero-tillage. Food Secur. 8:1011–28
    [Google Scholar]
  121. 121.
    Barrett CB, Moser CM, McHugh OV, Barison J. 2004. Better technology, better plots, or better farmers? Identifying changes in productivity and risk among Malagasy rice farmers. 864869–88
  122. 122.
    Graf SL, Oya C. 2021. Is the system of rice intensification (SRI) pro poor? Labour, class and technological change in West Africa. Agric. Syst. 193:103229
    [Google Scholar]
  123. 123.
    Jain M, Singh B. 2019. Toward an Evergreen Revolution: sustainable intensification in smallholder farming. A Better Planet: Forty Big Ideas for a Sustainable Future D Etsy, I Burke 55–62. New Haven, CT: Yale Univ. Press
    [Google Scholar]
  124. 124.
    Cent. Int. Mejor. Maís Trigo 2023. Heat Stress Tolerant Maize for Asia (HTMA) https://www.cimmyt.org/projects/heat-stress-tolerant-maize-for-asia-htma/
  125. 125.
    Khanna M. 2022. PAU develops wheat variety with higher heat tolerance. Hindustan Times Aug. 24. https://www.hindustantimes.com/cities/chandigarh-news/pau-develops-wheat-variety-with-higher-heat-tolerance-101661287809816.html
    [Google Scholar]
  126. 126.
    Kumar U, Singh RP, Dreisigacker S, Röder MS, Crossa J et al. 2021. Juvenile heat tolerance in wheat for attaining higher grain yield by shifting to early sowing in October in South Asia. Genes 12:111808
    [Google Scholar]
  127. 127.
    Eyshi Rezaei E, Webber H, Gaiser T, Naab J, Ewert F. 2015. Heat stress in cereals: mechanisms and modelling. Eur. J. Agron. 64:98–113
    [Google Scholar]
  128. 128.
    Tesfaye K, Zaidi PH, Gbegbelegbe S, Boeber C, Rahut DB et al. 2017. Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theor. Appl. Climatol. 130:3959–70
    [Google Scholar]
  129. 129.
    Tesfaye K, Kruseman G, Cairns JE, Zaman-Allah M, Wegary D et al. 2018. Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Clim. Risk Manag. 19:106–19
    [Google Scholar]
  130. 130.
    Kanter DR, Bell AR, McDermid SS. 2019. Precision agriculture for smallholder nitrogen management. One Earth 1:3281–84
    [Google Scholar]
  131. 131.
    Onyango CM, Nyaga JM, Wetterlind J, Söderström M, Piikki K. 2021. Precision agriculture for resource use efficiency in smallholder farming systems in sub-Saharan Africa: a systematic review. Sustainability 13:31158
    [Google Scholar]
  132. 132.
    Mafuta M, Zennaro M, Bagula A, Ault G, Gombachika H, Chadza T. 2013. Successful deployment of a wireless sensor network for precision agriculture in Malawi. Int. J. Distrib. Sensor Networks 9:5150703
    [Google Scholar]
  133. 133.
    Jain M, Balwinder-Singh Rao P, Srivastava AK, Poonia S et al. 2019. The impact of agricultural interventions can be doubled by using satellite data. Nat. Sustain. 2:10931–34
    [Google Scholar]
  134. 134.
    Agjee NH, Ismail R, Mutanga O. 2016. Identifying relevant hyperspectral bands using Boruta: a temporal analysis of water hyacinth biocontrol. J. Appl. Remote Sens. 10:4042002
    [Google Scholar]
  135. 135.
    Hossain MA, Siddique MNA. 2020. Online Fertilizer Recommendation System (OFRS): a step towards precision agriculture and optimized fertilizer usage by smallholder farmers in Bangladesh. EJGEO 1:4 https://ej-geo.org/index.php/ejgeo/article/view/47
    [Google Scholar]
  136. 136.
    Carter M, de Janvry A, Sadoulet E, Sarris A. 2017. Index insurance for developing country agriculture: a reassessment. Annu. Rev. Resour. Econ. 9:421–38
    [Google Scholar]
  137. 137.
    Jensen N, Barrett C. 2017. Agricultural index insurance for development. Appl. Econ. Perspect. Policy 39:2199–219
    [Google Scholar]
  138. 138.
    Jain M, Solomon D, Capnerhurst H, Arnold A, Elliott A et al. 2020. How much can sustainable intensification increase yields across South Asia? A systematic review of the evidence. Environ. Res. Lett. 15:8083004
    [Google Scholar]
  139. 139.
    Kassie M, Teklewold H, Jaleta M, Marenya P, Erenstein O. 2015. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 42:400–11
    [Google Scholar]
  140. 140.
    Hadebe ST, Modi AT, Mabhaudhi T. 2017. Drought tolerance and water use of cereal crops: a focus on sorghum as a food security crop in sub-Saharan Africa. J. Agron. Crop Sci. 203:3177–91
    [Google Scholar]
  141. 141.
    U. S. Dep. Agric 2023. International Agricultural Productivity. United States Department of Agriculture https://www.ers.usda.gov/data-products/international-agricultural-productivity/
    [Google Scholar]
  142. 142.
    Macours K. 2019. Farmers’ demand and the traits and diffusion of agricultural innovations in developing countries. Annu. Rev. Resour. Econ. 11:483–99
    [Google Scholar]
  143. 143.
    Stevens GA, Beal T, Mbuya MNN, Luo H, Neufeld LM et al. 2022. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health 10:11e1590–99
    [Google Scholar]
  144. 144.
    Depenbusch L, Schreinemachers P, Roothaert R, Namazzi S, Onyango C et al. 2021. Impact of home garden interventions in East Africa: results of three randomized controlled trials. Food Policy 104:102140
    [Google Scholar]
  145. 145.
    Vaiknoras K, Larochelle C. 2021. The impact of iron-biofortified bean adoption on bean productivity, consumption, purchases and sales. World Dev. 139:105260
    [Google Scholar]
  146. 146.
    Fanzo J, Haddad L, Schneider KR, Béné C, Covic NM et al. 2021. Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals. Food Policy 104:102163
    [Google Scholar]
  147. 147.
    Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A. 2011. Global food losses and food waste: extent, causes and prevention Rep. U. N. Food Agric. Organ. Rome:
  148. 148.
    Sen A. 1981. Poverty and Famines: An Essay on Entitlement and Deprivation Oxford, UK: Oxford Univ. Press
  149. 149.
    Reich J, Paul SS, Snapp SS. 2021. Highly variable performance of sustainable intensification on smallholder farms: a systematic review. Glob. Food Secur. 30:100553
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112320-093911
Loading
/content/journals/10.1146/annurev-environ-112320-093911
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error