1932

Abstract

This review explains the science behind the drive for global net zero emissions and why this is needed to halt the ongoing rise in global temperatures. We document how the concept of net zero carbon dioxide (CO) emissions emerged from an earlier focus on stabilization of atmospheric greenhouse gas concentrations. Using simple conceptual models of the coupled climate–carbon cycle system, we explain why approximately net zero CO emissions and declining net energy imbalance due to other climate drivers are required to halt global warming on multidecadal timescales, introducing important concepts, including the rate of adjustment to constant forcing and the rate of adjustment to zero emissions. The concept of net zero was taken up through the 5th Assessment Report of the Intergovernmental Panel on Climate Change and the United Nations Framework Convention on Climate Change (UNFCCC) Structured Expert Dialogue, culminating in Article 4of the 2015 Paris Agreement. Increasing numbers of net zero targets have since been adopted by countries, cities, corporations, and investors. The degree to which any entity can claim to have achieved net zero while continuing to rely on distinct removals to compensate for ongoing emissions is at the heart of current debates over carbon markets and offsetting both inside and outside the UNFCCC. We argue that what matters here is not the precise makeup of a basket of emissions and removals at any given point in time, but the sustainability of a net zero strategy as a whole and its implications for global temperature over multidecadal timescales. Durable, climate-neutral net zero strategies require like-for-like balancing of anthropogenic greenhouse gas sources and sinks in terms of both origin (biogenic versus geological) and gas lifetime.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112320-105050
2022-10-17
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-112320-105050.html?itemId=/content/journals/10.1146/annurev-environ-112320-105050&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    IPCC (Intergov. Panel Clim. Change) 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al. Cambridge, UK: Cambridge Univ. Press 1535 pp .
  2. 2.
    UNFCCC (U. N. Framew. Conv. Clim. Change) 2015. Report on the structured expert dialogue on the 20132015 review. Note by the co-facilitators of the structured expert dialogue Rep. UNFCCC Bonn, Ger: https://unfccc.int/documents/8707
    [Google Scholar]
  3. 3.
    UNFCCC (U. N. Framew. Conv. Clim. Change) 2015. Paris Agreement, 21st Conference of the Parties, Paris Bonn, Ger: UNFCCC https://unfccc.int/sites/default/files/english_paris_agreement.pdf
  4. 4.
    Hale T, Kuramochi T, Lang J, Yeo ZY, Smith S et al. 2022. Net Zero Tracker Cologne, Ger.: NewClimate Institute https://zerotracker.net/methodology
  5. 5.
    Matthews HD, Caldeira K. 2008. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35:L04705
    [Google Scholar]
  6. 6.
    Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA et al. 2009. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–66
    [Google Scholar]
  7. 7.
    Meinshausen M, Meinshausen N, Hare W, Raper SC, Frieler K et al. 2009. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–62
    [Google Scholar]
  8. 8.
    Matthews HD, Gillett NP, Stott PA, Zickfeld K. 2009. The proportionality of global warming to cumulative carbon emissions. Nature 459:829–32
    [Google Scholar]
  9. 9.
    Zickfeld K, Eby M, Matthews HD, Weaver AJ. 2009. Setting cumulative emissions targets to reduce the risk of dangerous climate change. PNAS 106:16129–34
    [Google Scholar]
  10. 10.
    IPCC (Intergov. Panel Clim. Change) 2018. Summary for policymakers. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty V Masson-Delmotte, O Zhai, H-O Pörtner, D Roberts, J Skea et al. pp. 324 Cambridge, UK/New York: Cambridge Univ. Press https://doi.org/10.1017/9781009157940
    [Crossref] [Google Scholar]
  11. 11.
    IPCC (Intergov. Panel Clim. Change) 2018. Annex I: glossary. In An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. V Masson-Delmotte, O Zhai, H-O Pörtner, D Roberts, J Skea et al.pp. 54162 Cambridge, UK/New York: Cambridge Univ. Press https://doi.org/10.1017/9781009157940
    [Crossref] [Google Scholar]
  12. 12.
    IPCC (Intergov. Panel Clim. Change) 2021. Summary for policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan 3–32 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  13. 13.
    Solomon S, Plattner G-K, Knutti R, Friedlingstein P. 2009. Irreversible climate change due to carbon dioxide emissions. PNAS 106:1704–9
    [Google Scholar]
  14. 14.
    MacDougall AH, Frölicher TL, Jones CD. 2020. Is there warming in the pipeline? A multi-model analysis of the zero emissions commitment from CO2. Biogeosciences 17:2987–3016
    [Google Scholar]
  15. 15.
    Frölicher TL, Winton M, Sarmiento JL. 2014. Continued global warming after CO2 emissions stoppage. Nat. Clim. Change 4:40–44
    [Google Scholar]
  16. 16.
    Gregory JM, Jones CD, Cadule P, Friedlingstein P. 2009. Quantifying carbon cycle feedbacks. J. Clim. 22:5232–50
    [Google Scholar]
  17. 17.
    Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T et al. 2013. Long-term climate change: projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.1031–106 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  18. 18.
    Held IM, Winton M, Takahashi K, Delworth T, Zeng F, Vallis GK. 2010. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23:2418–27
    [Google Scholar]
  19. 19.
    Tsutsui J. 2017. Quantification of temperature response to CO2 forcing in atmosphere-ocean general circulation models. Clim. Change 140:287–305
    [Google Scholar]
  20. 20.
    Jenkins S, Cain M, Friedlingstein P, Gillett N, Walsh T, Allen MR. 2021. Quantifying non-CO2 contributions to remaining carbon budgets. NPJ Clim. Atmos. Sci. 4:47
    [Google Scholar]
  21. 21.
    Allen MR, Peters GP, Shine KP, Azar C, Balcombe P et al. 2022. Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. NPJ Clim. Atmos. Sci. 5:5
    [Google Scholar]
  22. 22.
    Cain M, Lynch J, Allen MR, Fuglestvedt JS, Frame DJ, Macey AH. 2019. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. NPJ Clim. Atmos. Sci. 2:129
    [Google Scholar]
  23. 23.
    Smith MA, Cain M, Allen MR 2021. Further improvement of warming-equivalent emissions calculation. NPJ Clim. Atmos. Sci. 4:19
    [Google Scholar]
  24. 24.
    UNFCCC (U. N. Framew. Conv. Clim. Change) 1992. United Nations Framework Convention on Climate Change Bonn, Ger.: UNFCCC https://unfccc.int/resource/docs/convkp/conveng.pdf
  25. 25.
    Leggett J, Pepper WJ, Swart RJ 1992. Emissions scenarios for IPCC: an update. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment JT Houghton, BA Callandar, SK Varney 73–95 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  26. 26.
    Wigley TML, Richels R, Edmonds JA. 1996. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379:240–43
    [Google Scholar]
  27. 27.
    Nakicenovic N, Swart RJ, eds. 2000. IPCC Special Report on Emissions Scenarios Cambridge, UK: Cambridge Univ. Press
  28. 28.
    van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A et al. 2011. The representative concentration pathways: an overview. Clim. Change 109:5
    [Google Scholar]
  29. 29.
    Friedlingstein P, Fung I, Holland E, John J, Brasseur G et al. 1995. On the contribution of CO2 fertilization to the missing biospheric sink. Glob. Biogeochem. Cycles 9:541–56
    [Google Scholar]
  30. 30.
    Joos F, Bruno M, Fink R, Siegenthaler U, Stocker TF et al. 1996. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus B Chem. Phys. Meteorol. 48:394–417
    [Google Scholar]
  31. 31.
    Enting IG, Wigley TML, Heimann M. 1994. Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land Analyses Canberra, Aust: CSIRO Div. Atmos. Res.
  32. 32.
    Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M et al. 2001. The carbon cycle and atmospheric carbon dioxide. Climate Change 2001: The Scientific Basis JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden et al.185–237 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  33. 33.
    Charney J, Arakawa A, Baker J, Bolin B, Dickinson RE et al. 1979. Carbon Dioxide and Climate: A Scientific Assessment Washington, DC: Natl. Acad. Press
  34. 34.
    Houghton JT, Jenkins GJ, Ephraums JJ. 1990. Climate Change: The IPCC Scientific Assessment Cambridge, UK: Cambridge Univ. Press
  35. 35.
    Joos F, Bruno M. 1996. Pulse response functions are cost-efficient tools to model the link between carbon emissions, atmospheric CO2 and global warming. Phys. Chem. Earth 21:471–76
    [Google Scholar]
  36. 36.
    Andronova NG, Schlesinger ME. 2001. Objective estimation of the probability density function for climate sensitivity. J. Geophys. Res. Atmos. 106:22605–11
    [Google Scholar]
  37. 37.
    Forest CE, Stone PH, Sokolov AP, Allen MR, Webster MD. 2002. Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295:113–17
    [Google Scholar]
  38. 38.
    Murphy JM, Sexton DM, Barnett DN, Jones GS, Webb MJ et al. 2004. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–72
    [Google Scholar]
  39. 39.
    Stainforth DA, Aina T, Christensen C, Collins M, Faull N et al. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–6
    [Google Scholar]
  40. 40.
    IPCC (Intergov. Panel Clim. Change) 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden et al. Cambridge, UK: Cambridge Univ. Press 881 pp .
  41. 41.
    IPCC (Intergov. Panel Clim. Change) 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M manning, Z Chen, M Marquis et al. Cambridge, UK: Cambridge Univ. Press 996 pp .
  42. 42.
    Allen MR, Stott PA, Mitchell JFB, Schnur R, Delworth TL. 2000. Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407:617–20
    [Google Scholar]
  43. 43.
    Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA, Gregory JM et al. 2005. Constraining climate forecasts: the role of prior assumptions. Geophys. Res. Lett. 32:L09702
    [Google Scholar]
  44. 44.
    Roe GH, Baker MB. 2007. Why is climate sensitivity so unpredictable?. Science 318:629–32
    [Google Scholar]
  45. 45.
    Raper SCB, Gregory JM, Stouffer RJ. 2002. The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Clim. 15:124–30
    [Google Scholar]
  46. 46.
    Knutti R, Tomassini L. 2008. Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophys. Res. Lett. 35:L09701
    [Google Scholar]
  47. 47.
    Gregory JM, Forster PM. 2008. Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res. Atmos. 113:D23105
    [Google Scholar]
  48. 48.
    Gregory JM, Mitchell JFB. 1997. The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment. Geophys. Res. Lett. 24:1943–46
    [Google Scholar]
  49. 49.
    Siegenthaler U, Oeschger H. 1978. Predicting future atmospheric carbon dioxide levels. Science 199:388–95
    [Google Scholar]
  50. 50.
    Maier-Reimer E, Hasselmann K. 1987. Transport and storage of CO2 in the ocean—an inorganic ocean-circulation carbon cycle model. Clim. Dyn. 2:63–90
    [Google Scholar]
  51. 51.
    Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A et al. 2005. Efficacy of climate forcings. J. Geophys. Res. Atmos. 110:D18104
    [Google Scholar]
  52. 52.
    Winton M, Takahashi K, Held IM. 2010. Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23:2333–44
    [Google Scholar]
  53. 53.
    Gregory JM. 2000. Vertical heat transports in the ocean and their effect on time-dependent climate change. Clim. Dyn. 16:501–15
    [Google Scholar]
  54. 54.
    Hansen J, Russell G, Lacis A, Fung I, Rind D, Stone P. 1985. Climate response times: dependence on climate sensitivity and ocean mixing. Science 229:857–59
    [Google Scholar]
  55. 55.
    Arrhenius S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. J. Sci. 41:237–76
    [Google Scholar]
  56. 56.
    Manabe S, Wetherald RT. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24:241–59
    [Google Scholar]
  57. 57.
    Zhou C, Zelinka MD, Dessler AE, Wang M. 2021. Greater committed warming after accounting for the pattern effect. Nat. Clim. Change 11:132–36
    [Google Scholar]
  58. 58.
    Matthews HD, Solomon S. 2013. Irreversible does not mean unavoidable. Science 340:438–39
    [Google Scholar]
  59. 59.
    Cockburn H. 2021. Climate crisis: greenhouse gases already emitted will warm Earth beyond limits in Paris Agreement, research suggests. The Independent Jan. 5. https://www.independent.co.uk/climate-change/news/greenhouse-gases-committed-warming-climate-change-b1782571.html
    [Google Scholar]
  60. 60.
    Gregory JM, Stouffer RJ, Raper SCB, Stott PA, Rayner NA. 2002. An observationally based estimate of the climate sensitivity. J. Clim. 15:3117–21
    [Google Scholar]
  61. 61.
    Levitus S, Antonov JI, Boyer TP, Stephens C. 2000. Warming of the world ocean. Science 287:2225–29
    [Google Scholar]
  62. 62.
    Armour KC, Bitz CM, Roe GH. 2013. Time-varying climate sensitivity from regional feedbacks. J. Clim. 26:4518–34
    [Google Scholar]
  63. 63.
    Allen MR, Frame DJ. 2007. Atmosphere: Call off the quest. Science 318:582–83
    [Google Scholar]
  64. 64.
    Andrews T, Gregory JM, Webb MJ, Taylor KE. 2012. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 39:L09712
    [Google Scholar]
  65. 65.
    Frame DJ, Stone DA, Stott PA, Allen MR. 2006. Alternatives to stabilization scenarios. Geophys. Res. Lett. 33:L14707
    [Google Scholar]
  66. 66.
    Cummins DP, Stephenson DB, Stott PA. 2020. Optimal estimation of stochastic energy balance model parameters. J. Clim. 33:7909–26
    [Google Scholar]
  67. 67.
    Seshadri AK. 2017. Fast-slow climate dynamics and peak global warming. Clim. Dyn. 48:2235–53
    [Google Scholar]
  68. 68.
    Geoffroy O, Saint-Martin D, Olivié DJL, Voldoire A, Bellon G, Tytéca S. 2013. Transient climate response in a two-layer energy-balance model. Part I: analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Clim. 26:1841–57
    [Google Scholar]
  69. 69.
    Peters GP, Aamaas B, Berntsen T, Fuglestvedt JS. 2011. The integrated global temperature change potential (iGTP) and relationships between emission metrics. Environ. Res. Lett. 6:044021
    [Google Scholar]
  70. 70.
    Li S, Jarvis A 2009. Long run surface temperature dynamics of an A-OGCM: the HadCM3 4×CO2 forcing experiment revisited. Clim. Dyn. 33:817–25
    [Google Scholar]
  71. 71.
    Cubasch U, Meehl GA 2001. Projections of future climate change. Climate Change 2001: A Scientific Basis JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden et al.526–82 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  72. 72.
    Millar RJ, Otto A, Forster PM, Lowe JA, Ingram WJ, Allen MR. 2015. Model structure in observational constraints on transient climate response. Clim. Change 131:199–211
    [Google Scholar]
  73. 73.
    Pfister PL, Stocker TF. 2018. The realized warming fraction: a multi-model sensitivity study. Environ. Res. Lett. 13:124024
    [Google Scholar]
  74. 74.
    Joos F, Gerber S, Prentice IC, Otto-Bliesner BL, Valdes PJ 2004. Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Glob. Biogeochem. Cycles 18:GB2002
    [Google Scholar]
  75. 75.
    Archer D, Eby E, Brovkin V, Ridgwell A, Cao L et al. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37:117–34
    [Google Scholar]
  76. 76.
    Revelle R, Suess HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27
    [Google Scholar]
  77. 77.
    Pierrehumbert RT. 2014. Short-lived climate pollution. Annu. Rev. Earth Planet. Sci. 42:341–79
    [Google Scholar]
  78. 78.
    Lenton TM. 2006. Climate change to the end of the millennium. Clim. Change 76:7–29
    [Google Scholar]
  79. 79.
    Millar JR, Nicholls ZR, Friedlingstein P, Allen MR. 2017. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 17:7213–28
    [Google Scholar]
  80. 80.
    Caldeira K, Kasting JF. 1992. The life span of the biosphere revisited. Nature 360:721–23
    [Google Scholar]
  81. 81.
    Friedlingstein P, Solomon S. 2005. Contributions of past and present human generations to committed warming caused by carbon dioxide. PNAS 102:10832–36
    [Google Scholar]
  82. 82.
    Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N. 2005. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim. Change 68:281–302
    [Google Scholar]
  83. 83.
    Raper SCB, Gregory JM, Osborn TJ. 2001. Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results. Clim. Dyn. 17:601–13
    [Google Scholar]
  84. 84.
    Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–87
    [Google Scholar]
  85. 85.
    Friedlingstein P, Dufresne J-L, Cox PM, Rayner P. 2003. How positive is the feedback between climate change and the carbon cycle?. Tellus B Chem. Phys. Meteorol. 55:692–700
    [Google Scholar]
  86. 86.
    Fung IY, Doney SC, Lindsay K, John J 2005. Evolution of carbon sinks in a changing climate. PNAS 102:11201–6
    [Google Scholar]
  87. 87.
    Zeng N, Qian H, Munoz E, Iacono R. 2004. How strong is carbon cycle-climate feedback under global warming?. Geophys. Res. Lett. 31:L20203
    [Google Scholar]
  88. 88.
    Matthews HD. 2006. Emissions targets for CO2 stabilization as modified by carbon cycle feedbacks. Tellus B Chem. Phys. Meteorol. 58:591–602
    [Google Scholar]
  89. 89.
    Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W et al. 2006. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19:3337–53
    [Google Scholar]
  90. 90.
    Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P et al. 2011. Permafrost carbon-climate feedbacks accelerate global warming. PNAS 108:14769–74
    [Google Scholar]
  91. 91.
    Arora VK, Katavouta A, Williams RG, Jones CD, Brovkin V et al. 2020. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17:4173–22
    [Google Scholar]
  92. 92.
    Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H et al. 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579:80–87
    [Google Scholar]
  93. 93.
    Gloor M, Sarmiento JL, Gruber N. 2010. What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction?. Atmos. Chem. Phys. 10:7739–51
    [Google Scholar]
  94. 94.
    Bennedsen M, Hillebrand E, Koopman SJ. 2019. Trend analysis of the airborne fraction and sink rate of anthropogenically released CO2. Biogeosciences 16:3651–63
    [Google Scholar]
  95. 95.
    Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J et al. 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12:3269–40
    [Google Scholar]
  96. 96.
    Leach NJ, Jenkins S, Nicholls Z, Smith CJ, Lynch J et al. 2021. FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geosci. Model Dev. 14:3007–36
    [Google Scholar]
  97. 97.
    Raupach MR. 2013. The exponential eigenmodes of the carbon-climate system, and their implications for ratios of responses to forcings. Earth Syst. Dyn. 4:31–49
    [Google Scholar]
  98. 98.
    Raupach MR, Gloor M, Sarmiento JL, Canadell JG, Frölicher TL et al. 2014. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences 11:3453–75
    [Google Scholar]
  99. 99.
    Herrington T, Zickfeld K. 2014. Path independence of climate and carbon cycle response over a broad range of cumulative carbon emissions. Earth Syst. Dyn. 5:409–22
    [Google Scholar]
  100. 100.
    Leduc M, Matthews HD, de Elia R. 2015. Quantifying the limits of a linear temperature response to cumulative CO2 emissions. J. Clim. 28:9955–68
    [Google Scholar]
  101. 101.
    MacDougall AH. 2016. The transient response to cumulative CO2 emissions: a review. Curr. Clim. Change Rep. 2:39–47
    [Google Scholar]
  102. 102.
    Millar R, Allen M, Rogelj J, Friedlingstein P. 2016. The cumulative carbon budget and its implications. Oxf. Rev. Econ. Policy 32:323–42
    [Google Scholar]
  103. 103.
    MacDougall AH, Friedlingstein P. 2015. The origin and limits of the near proportionality between climate warming and cumulative CO2 emissions. J. Clim. 28:4217–30
    [Google Scholar]
  104. 104.
    Goodwin P, Williams RG, Ridgwell A. 2015. Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nat. Geosci. 8:29–34
    [Google Scholar]
  105. 105.
    Williams RG, Goodwin P, Roussenov VM, Bopp L. 2016. A framework to understand the transient climate response to emissions. Environ. Res. Lett. 11:015003
    [Google Scholar]
  106. 106.
    Gillett NP, Arora VK, Matthews D, Allen MR. 2013. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Clim. 26:6844–58
    [Google Scholar]
  107. 107.
    Millar RJ, Friedlingstein P. 2018. The utility of the historical record for assessing the transient climate response to cumulative emissions. Philos. Trans. R. Soc. A 376:20160449
    [Google Scholar]
  108. 108.
    Seshadri AK. 2017. Origin of path independence between cumulative CO2 emissions and global warming. Clim. Dyn. 49:3383–401
    [Google Scholar]
  109. 109.
    Zickfeld K, Herrington T. 2015. The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission. Environ. Res. Lett. 10:031001
    [Google Scholar]
  110. 110.
    Zickfeld K, Azevedo D, Mathesius S, Matthews HD. 2021. Asymmetry in the climate-carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11:613–17
    [Google Scholar]
  111. 111.
    Rogelj J, Schaeffer M, Friedlingstein P, Gillett NP, van Vuuren DP et al. 2016. Differences between carbon budget estimates unravelled. Nat. Clim. Change 6:245–52
    [Google Scholar]
  112. 112.
    Ricke KL, Caldeira K. 2014. Maximum warming occurs about one decade after a carbon dioxide emission. Environ. Res. Lett. 9:124002
    [Google Scholar]
  113. 113.
    Plattner G-K, Knutti R, Joos F, Stocker TF, von Bloh W et al. 2008. Long-term climate commitments projected with climate-carbon cycle models. J. Clim. 21:2721–51
    [Google Scholar]
  114. 114.
    Gasser T, Kechiar M, Ciais P, Burke EJ, Kleinen T et al. 2018. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11:830–35
    [Google Scholar]
  115. 115.
    Mahowald NM, Randerson JT, Lindsay K, Munoz E, Doney SC et al. 2017. Interactions between land use change and carbon cycle feedbacks. Glob. Biogeochem. Cycles 31:96–113
    [Google Scholar]
  116. 116.
    Matthews HD, Solomon S, Pierrehumbert R. 2012. Cumulative carbon as a policy framework for achieving climate stabilization. Philos. Trans. R. Soc. A 370:4365–79
    [Google Scholar]
  117. 117.
    Millar RJ, Fuglestvedt JS, Friedlingstein P, Rogelj J, Grubb MJ et al. 2017. Emission budgets and pathways consistent with limiting warming to 1.5°C. Nat. Geosci. 10:741–47
    [Google Scholar]
  118. 118.
    Zickfeld K, Arora VK, Gillett NP. 2012. Is the climate response to CO2 emissions path dependent?. Geophys. Res. Lett. 39:L05703
    [Google Scholar]
  119. 119.
    Allen MR, Ingram WJ. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–32
    [Google Scholar]
  120. 120.
    Mengel M, Nauels A, Rogelj J, Schleussner C-F. 2018. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9:601
    [Google Scholar]
  121. 121.
    Girardin CAJ, Jenkins S, Seddon N, Allen M, Lewis SL et al. 2021. Nature-based solutions can help cool the planet—if we act now. Nature 593:191–94
    [Google Scholar]
  122. 122.
    IUCN (Int. Union Conserv. Nat.) 2020. Guidance for using the IUCN Global Standard for Nature-based Solutions: a user-friendly framework for the verification, design and scaling up of Nature-based Solutions. Gland, Switz: IUCN https://portals.iucn.org/library/sites/library/files/documents/2020-021-En.pdf
  123. 123.
    Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G et al. 2017. Natural climate solutions. PNAS 114:11645–50
    [Google Scholar]
  124. 124.
    Seddon N, Smith A, Smith P, Key I, Chausson A et al. 2021. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27:1518–46
    [Google Scholar]
  125. 125.
    Anderson CM, DeFries RS, Litterman R, Matson PA, Nepstad DC et al. 2019. Natural climate solutions are not enough. Science 363:933–34
    [Google Scholar]
  126. 126.
    Friedlingstein P, Allen M, Canadell JG, Peters GP, Seneviratne SI. 2019. Comment on “The global tree restoration potential.”. Science 366:eaay8060
    [Google Scholar]
  127. 127.
    Lewis SL, Wheeler CE, Mitchard ETA, Koch A. 2019. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568:25–28
    [Google Scholar]
  128. 128.
    Roe S, Streck C, Obersteiner M, Frank S, Griscom B et al. 2019. Contribution of the land sector to a 1.5°C world. Nat. Clim. Change 9:817–28
    [Google Scholar]
  129. 129.
    Requena Suarez D, Rozendaal DMA, De Sy V, Phillips OL, Alvarez-Dávila E et al. 2019. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Change Biol. 25:3609–24
    [Google Scholar]
  130. 130.
    Cook-Patton SC, Leavitt SM, Gibbs D, Harris NL, Lister K et al. 2020. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585:545–50
    [Google Scholar]
  131. 131.
    Holl KD, Brancalion PHS. 2020. Tree planting is not a simple solution. Science 368:580–81
    [Google Scholar]
  132. 132.
    Busch J, Engelmann J, Cook-Patton SC, Griscom BW, Kroeger T et al. 2019. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9:463–66
    [Google Scholar]
  133. 133.
    Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D et al. 2008. Old-growth forests as global carbon sinks. Nature 455:213–15
    [Google Scholar]
  134. 134.
    Zeng J, Matsunaga T, Tan ZH, Saigusa N, Shirai T et al. 2020. Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Sci. Data 7:313
    [Google Scholar]
  135. 135.
    Howard J, Sutton-Grier A, Herr D, Kleypas J, Landis E et al. 2017. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15:42–50
    [Google Scholar]
  136. 136.
    Solan M, Archambault P, Renaud PE, März C. 2020. The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning. Philos. Trans. R. Soc. A 378:20200266
    [Google Scholar]
  137. 137.
    Rifai SW, Li S, Malhi Y. 2019. Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environ. Res. Lett. 14:105002
    [Google Scholar]
  138. 138.
    Fankhauser S, Smith SM, Allen M, Axelsson K, Hale T et al. 2022. The meaning of net zero and how to get it right. Nat. Clim. Change 12:15–21
    [Google Scholar]
  139. 139.
    Allen MR, Axelsson K, Caldecott B, Hale T, Hepburn C et al. 2020. The Oxford Principles for Net Zero Aligned Carbon Offsetting Rep., Univ Oxford, UK: https://www.smithschool.ox.ac.uk/sites/default/files/2022-01/Oxford-Offsetting-Principles-2020.pdf
  140. 140.
    Smith P, Adams J, Beerling DJ, Beringer T, Calvin KV et al. 2019. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu. Rev. Environ. Resour. 44:255–86
    [Google Scholar]
  141. 141.
    IPBES (Intergov. Sci.-Policy Platform Biodivers. Ecosyst. Serv.) 2019. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policymakers Bonn, Ger.: IPBES https://ipbes.net/sites/default/files/inline/files/ipbes_global_assessment_report_summary_for_policymakers.pdf
  142. 142.
    Seddon N, Chausson A, Berry P, Girardin CAJ, Smith A et al. 2020. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 375:20190120
    [Google Scholar]
  143. 143.
    Maes J, Zulian G, Guenther S, Thijssen M, Raynal J. 2019. Enhancing Resilience of Urban Ecosystems through Green Infrastructure (EnRoute): final report. Tech. Rep. EUR 29630 EN, Publ. Off. Eur. Union Luxembourg:
    [Google Scholar]
  144. 144.
    Chausson A, Turner B, Seddon D, Chabaneix N, Girardin CAJ et al. 2020. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Change Biol. 26:6134–55
    [Google Scholar]
  145. 145.
    Fuglestvedt J, Rogelj J, Millar RJ, Allen M, Boucher O et al. 2018. Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement. Philos. Trans. R. Soc. A 376:20160445
    [Google Scholar]
  146. 146.
    Etminan M, Myhre G, Highwood EJ, Shine KP. 2016. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43:12614–23
    [Google Scholar]
  147. 147.
    Jenkins S, Millar RJ, Leach N, Allen MR. 2018. Framing climate goals in terms of cumulative CO2-forcing-equivalent emissions. Geophys. Res. Lett. 45:2795–804
    [Google Scholar]
  148. 148.
    Allen MR, Shine KP, Fuglestvedt JS, Millar RJ, Cain M et al. 2018. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. NPJ Clim. Atmos. Sci. 1:16
    [Google Scholar]
  149. 149.
    Collins WJ, Frame DJ, Fuglestvedt JS, Shine KP. 2020. Stable climate metrics for emissions of short and long-lived species—combining steps and pulses. Environ. Res. Lett. 15:024018
    [Google Scholar]
  150. 150.
    Matthews HD, Zickfeld K. 2012. Climate response to zeroed emissions of greenhouse gases and aerosols. Nat. Clim. Change 2:338–341
    [Google Scholar]
  151. 151.
    Daniel JS, Solomon S, Sanford TJ, McFarland M, Fuglestvedt JS, Friedlingstein P. 2012. Limitations of single-basket trading: lessons from the Montreal Protocol for climate policy. Clim. Change 111:241–48
    [Google Scholar]
  152. 152.
    Forster PM, Storelvmo T, Armour K, Collins W, Dufresne JL et al. 2021. The Earth's energy budget, climate feedbacks, and climate sensitivity. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan et al.923–1054 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  153. 153.
    IPCC (Intergov. Panel Clim. Change) 2022. Summary for policymakers. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change J Skea, PR Shukla, A Reisinger, R Slade, M Pathak et al. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  154. 154.
    Tanaka K, O'Neill BC 2018. The Paris Agreement zero-emissions goal is not always consistent with the 1.5°C and 2°C temperature targets. Nat. Clim. Change 8:319–24
    [Google Scholar]
  155. 155.
    Schleussner C-F, Nauels A, Schaeffer M, Hare W, Rogelj J. 2019. Inconsistencies when applying novel metrics for emissions accounting to the Paris Agreement. Environ. Res. Lett. 14:124055
    [Google Scholar]
  156. 156.
    Jackson RB, Solomon EI, Canadell JG, Cargnello M, Field CB. 2019. Methane removal and atmospheric restoration. Nat. Sustain. 2:436–38
    [Google Scholar]
  157. 157.
    Allen M, Tanaka K, Macey A, Cain M, Jenkins S et al. 2021. Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming. Environ. Res. Lett. 16:074009
    [Google Scholar]
  158. 158.
    Allen MR, Fuglestvedt JS, Shine KP, Reisinger A, Pierrehumbert RT, Forster PM. 2016. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Change 6:773–76
    [Google Scholar]
  159. 159.
    Rajamani L, Werksman J. 2018. The legal character and operational relevance of the Paris Agreement's temperature goal. Philos. Trans. R. Soc. A 376:20160458
    [Google Scholar]
  160. 160.
    UNFCCC (U. N. Framew. Conv. Clim. Change) 2021. Decision/CMA.3 Glasgow Climate Pact. Nov. 13. https://unfccc.int/sites/default/files/resource/cma3_auv_2_cover%20decision.pdf
  161. 161.
    Schleussner CF, Rogelj J, Schaeffer M, Lissner T, Licker R et al. 2016. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6:827–35
    [Google Scholar]
  162. 162.
    Mace MJ. 2016. Mitigation commitments under the Paris Agreement and the way forward. Clim. Law 6:21–39
    [Google Scholar]
  163. 163.
    Lang J. 2021. Net zero: the scorecard - ECIU. Energy & Climate Intelligence Unit https://eciu.net/analysis/briefings/net-zero/net-zero-the-scorecard
    [Google Scholar]
  164. 164.
    UNFCCC (U. N. Framew. Conv. Clim. Change) 2021. Nationally determined contributions under the Paris Agreement Rep. Bonn, Ger. UNFCCC https://unfccc.int/sites/default/files/resource/cma2021_08r01_E.pdf
  165. 165.
    Grassi G, House J, Kurz WA, Cescatti A, Houghton RA et al. 2018. Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nat. Clim. Change 8:914–20
    [Google Scholar]
  166. 166.
    Grassi G, Stehfest E, Rogelj J, van Vuuren D, Cescatti A et al. 2021. Critical adjustment of land mitigation pathways for assessing countries’ climate progress. Nat. Clim. Change 11:425–34
    [Google Scholar]
  167. 167.
    Higgins G. 2021. PAS 2060:2014 – specification for the demonstration of carbon neutrality. Antaris Blog Aug. 3. https://antarisconsulting.com/pas-20602014-specification-for-the-demonstration-of-carbon-neutrality/
    [Google Scholar]
  168. 168.
    Matthews HS, Hendrickson CT, Weber CL. 2008. The importance of carbon footprint estimation boundaries. Environ. Sci. Technol. 42:5839–42
    [Google Scholar]
  169. 169.
    Pike H, Khan F, Amyotte P. 2020. Precautionary principle (PP) versus as low as reasonably practicable (ALARP): which one to use and when. Process Saf. Environ. Prot. 137:158–68
    [Google Scholar]
  170. 170.
    Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D et al. 2018. Net-zero emissions energy systems. Science 360:eaas9793
    [Google Scholar]
  171. 171.
    SBTi (Science Based Targets initiative) 2021. SBTi Corporate Net-Zero Standard https://sciencebasedtargets.org/resources/files/Net-Zero-Standard.pdf
  172. 172.
    Mitchell-Larson E, Bushman T. 2021. Carbon Direct Commentary: Release of the Voluntary Registry Offsets Database https://carbon-direct.com/wp-content/uploads/2021/04/CD-Commentary-on-Voluntary-Registry-Offsets-Database_April-2021.pdf
  173. 173.
    Warnecke C, Schneider L, Day T, La Hoz Theuer S, Fearnehough H 2019. Robust eligibility criteria essential for new global scheme to offset aviation emissions. Nat. Clim. Change 9:218–21
    [Google Scholar]
  174. 174.
    Haya B, Cullenward D, Strong AL, Grubert E, Heilmayr R et al. 2020. Managing uncertainty in carbon offsets: insights from California's standardized approach. Clim. Policy 20:1112–26
    [Google Scholar]
  175. 175.
    Cames M, Harthan RO, Füssler J, Lazarus M, Lee CM et al. 2016. How additional is the Clean Development Mechanism? Rep., Oeko-Institut e.V Freiburg, Ger: 173 pp. https://ec.europa.eu/clima/system/files/2017-04/clean_dev_mechanism_en.pdf
  176. 176.
    Shankleman J, Rathi A. 2021. Mark Carney walks back Brookfield net-zero claim after criticism. Bloomberg.com Feb. 25. https://www.bloomberg.com/news/articles/2021-02-25/mark-carney-s-brookfield-net-zero-claim-confounds-climate-experts
    [Google Scholar]
  177. 177.
    Donofrio S, Maguire P, Myers K, Daley C, Lin K 2021. State of the Voluntary Carbon Markets 2021. Installment 1: Market in Motion Forests Trends Association Washington, DC: Sep. 15. https://www.forest-trends.org/publications/state-of-the-voluntary-carbon-markets-2021/
    [Google Scholar]
  178. 178.
    UNFCCC (U. N. Framew. Conv. Clim. Change) 2021. Race to Zero Lexicon Bonn, Ger., UNFCCC https://racetozero.unfccc.int/wp-content/uploads/2021/04/Race-to-Zero-Lexicon.pdf
  179. 179.
    Joppa L. 2020. Progress on our goal to be carbon negative by 2030. Microsoft on the Issues Blog Jul 21. https://blogs.microsoft.com/on-the-issues/2020/07/21/carbon-negative-transform-to-net-zero/
    [Google Scholar]
  180. 180.
    Broekhoff D. 2021. For corporate net-zero targets, focus on the big picture. SEI Nov. 5. https://www.sei.org/perspectives/corporate-net-zero-targets/
    [Google Scholar]
  181. 181.
    VCMII (Volunt. Carbon Mark. Integr. Initiat.) 2021. VCM related claims categorization, utilization, & transparency criteria Work. Pap., VCMII https://vcmintegrity.org/wp-content/uploads/2021/07/Criteria-for-Voluntary-Carbon-Markets-Related-Claims.pdf
  182. 182.
    Raupach MR, Canadell JG, Ciais P, Friedlingstein P, Rayner PJ, Trudinger CM 2011. The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon–climate–human system. Tellus B Chem. Phys. Meteorol 63:14564
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112320-105050
Loading
/content/journals/10.1146/annurev-environ-112320-105050
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error