1932

Abstract

For millennia, agriculture has been shaping landscapes on Earth. Technological change has increased agricultural productivity dramatically, especially in the past six decades, but also resulted in trade-offs such as land and soil degradation, emission of greenhouse gases (GHGs), and spreading of toxic substances. In this article we review the impacts of agriculture on the world's arable land. We start by synthesizing information on the extent of arable land and associated agricultural practices, followed by a review of the state of the art of soil health and soil carbon. We review processes of land degradation, emission of GHGs, and threats to biodiversity. To conclude, we review key social and economic aspects of arable land and identify some important concerns for the future. The article ends on a positive note describing a potential new pathway for agriculture—to gradually adopt polycultures of novel perennial grain crops.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112320-113741
2023-11-13
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112320-113741.html?itemId=/content/journals/10.1146/annurev-environ-112320-113741&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS et al. 2011. Solutions for a cultivated planet. Nature 478:7369337–42
    [Google Scholar]
  2. 2.
    Mottl O, Flantua SGA, Bhatta KP, Felde VA, Giesecke T et al. 2021. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372:6544860–64
    [Google Scholar]
  3. 3.
    Lindstrom MJ, Nelson WW, Schumacher TE. 1992. Quantifying tillage erosion rates due to moldboard plowing. Soil Tillage Res. 24:3243–55
    [Google Scholar]
  4. 4.
    Smil V. 2004. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production Cambridge, MA: MIT Press
  5. 5.
    Evenson RE, Gollin D. 2003. Assessing the impact of the Green Revolution, 1960 to 2000. Science 300:5620758–62
    [Google Scholar]
  6. 6.
    Conner AJ, Glare TR, Nap JP. 2003. The release of genetically modified crops into the environment: Part II. Overview of ecological risk assessment. Plant J. 33:119–46
    [Google Scholar]
  7. 7.
    Meyfroidt P, de Bremond A, Ryan CM, Archer E, Aspinall R et al. 2022. Ten facts about land systems for sustainability. PNAS 119:7e2109217118
    [Google Scholar]
  8. 8.
    Gong P, Liu H, Zhang M, Li C, Wang J et al. 2019. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 64:6370–73
    [Google Scholar]
  9. 9.
    Buchhorn M, Lesiv M, Tsendbazar NE, Herold M, Bertels L, Smets B. 2020. Copernicus global land cover layers—Collection 2. Remote Sens. 12:61044
    [Google Scholar]
  10. 10.
    Liu X, Yu L, Li W, Peng D, Zhong L et al. 2018. Comparison of country-level cropland areas between ESA-CCI land cover maps and FAOSTAT data. Int. J. Remote Sens. 39:206631–45
    [Google Scholar]
  11. 11.
    Liu J, Hull V, Batistella M, deFries R, Dietz T et al. 2013. Framing sustainability in a telecoupled world. Ecol. Soc. 18:226
    [Google Scholar]
  12. 12.
    Smith P, Calvin K, Nkem J, Campbell D, Cherubini F et al. 2020. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification?. Glob. Change Biol. 26:31532–75
    [Google Scholar]
  13. 13.
    Garland G, Edlinger A, Banerjee S, Degrune F, García-Palacios P et al. 2021. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2:128–37
    [Google Scholar]
  14. 14.
    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ et al. 2018. A global atlas of the dominant bacteria found in soil. Science 359:6373320–25
    [Google Scholar]
  15. 15.
    Ogle SM, Alsaker C, Baldock J, Bernoux M, Breidt FJ et al. 2019. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci. Rep. 9:111665
    [Google Scholar]
  16. 16.
    Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA et al. 2014. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 4:8678–83
    [Google Scholar]
  17. 17.
    Guenet B, Gabrielle B, Chenu C, Arrouays D, Balesdent J et al. 2021. Can N2O emissions offset the benefits from soil organic carbon storage?. Glob. Change Biol. 27:2237–56
    [Google Scholar]
  18. 18.
    Olsson L, Barbosa H, Bhadwal S, Cowie A, DeLusca K et al. 2019. Land degradation—special report on climate change and land. IPCC Special Report on Climate Change and Land PR Shukla, J Skea, E Calvo Buendia, V Masson-Delmotte, H-O Pörtner, et al. 345–436. Geneva, Switz.: IPCC
    [Google Scholar]
  19. 19.
    Powlson DS, Gregory PJ, Whalley WR, Quinton JN, Hopkins DW et al. 2011. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 36:Suppl. 1S72–87
    [Google Scholar]
  20. 20.
    Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5:3858
    [Google Scholar]
  21. 21.
    Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. 2012. Closing yield gaps through nutrient and water management. Nature 490:7419254–57
    [Google Scholar]
  22. 22.
    Zhang X, Zou T, Lassaletta L, Mueller ND, Tubiello FN et al. 2021. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2:7529–40
    [Google Scholar]
  23. 23.
    Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E et al. 2016. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11:9095007
    [Google Scholar]
  24. 24.
    Håkansson NT, Widgren M. 2014. Landesque Capital: The Historical Ecology of Enduring Landscape Modifications Milton Park, UK: Routledge
  25. 25.
    Olsson L. 2021. Politics of soils and agriculture in a warming world. Regenerative Agriculture D Dent, B Boincean 21–30. Cham, Switz.: Springer
    [Google Scholar]
  26. 26.
    Faulkner EH. 1944. Ploughman's Folly London: Michael Joseph Ltd.
  27. 27.
    Kassam A, Friedrich T, Derpsch R. 2019. Global spread of conservation agriculture. Int. J. Environ. Stud. 76:129–51
    [Google Scholar]
  28. 28.
    Margulis J. 2012. No-till agriculture in the USA. Sustainable Agriculture Review: Organic Fertilisation, Soil Quality and Human Health E Lichtfouse 11–30. Dordrecht, Neth.: Springer
    [Google Scholar]
  29. 29.
    Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC. 2020. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1:10544–53
    [Google Scholar]
  30. 30.
    Lugato E, Lavallee JM, Haddix ML, Panagos P, Cotrufo MF. 2021. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14:5295–300
    [Google Scholar]
  31. 31.
    Bünemann EK, Bongiorno G, Bai Z, Creamer RE, de Deyn G et al. 2018. Soil quality—a critical review. Soil Biol. Biochem. 120:105–25
    [Google Scholar]
  32. 32.
    Fine AK, van Es HM, Schindelbeck RR. 2017. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81:3589–681
    [Google Scholar]
  33. 33.
    Oldfield EE, Bradford MA, Wood SA. 2019. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5:115–32
    [Google Scholar]
  34. 34.
    Kane DA, Bradford MA, Fuller E, Oldfield EE, Wood SA. 2021. Soil organic matter protects US maize yields and lowers crop insurance payouts under drought. Environ. Res. Lett. 16:4044018
    [Google Scholar]
  35. 35.
    Pan G, Smith P, Pan W. 2009. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric. Ecosyst. Environ. 129:1–3344–48
    [Google Scholar]
  36. 36.
    Oldfield EE, Bradford MA, Augarten AJ, Cooley ET, Radatz AM et al. 2022. Positive associations of soil organic matter and crop yields across a regional network of working farms. Soil Sci. Soc. Am. J. 86:2384–97
    [Google Scholar]
  37. 37.
    Cotrufo MF, Lavallee JM. 2022. Soil organic matter formation, persistence, and functioning: a synthesis of current understanding to inform its conservation and regeneration. Advances in Agronomy, Vol. 172 DL Sparks 1–66. Amsterdam: Elsevier
    [Google Scholar]
  38. 38.
    Bagnall DK, Morgan CLS, Cope M, Bean GM, Cappellazzi S et al. 2022. Carbon-sensitive pedotransfer functions for plant available water. Soil Sci. Soc. Am. J. 86:3612–29
    [Google Scholar]
  39. 39.
    King AE, Ali GA, Gillespie AW, Wagner-Riddle C. 2020. Soil organic matter as catalyst of crop resource capture. Front. Environ. Sci. 8:50
    [Google Scholar]
  40. 40.
    Rui Y, Jackson RD, Cotrufo MF, Sanford GR, Spiesman BJ et al. 2022. Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. PNAS 119:7e2118931119
    [Google Scholar]
  41. 41.
    Jian J, Du X, Reiter MS, Stewart RD. 2020. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol. Biochem. 143:107735
    [Google Scholar]
  42. 42.
    Prairie AM, King AE, Cotrufo MF. 2021.. Soil organic carbon response to regenerative management: a meta-analysis Abstract presented at the ASA, CSSA SSSA International Annual Meeting Salt Lake City, UT: https://scisoc.confex.com/scisoc/2021am/meetingapp.cgi/Paper/133856
  43. 43.
    Garba II, Bell LW, Williams A. 2022. Cover crop legacy impacts on soil water and nitrogen dynamics, and on subsequent crop yields in drylands: a meta-analysis. Agron. Sustain. Dev. 42:34
    [Google Scholar]
  44. 44.
    Wade J, Culman SW, Logan JAR, Poffenbarger H, Demyan MS et al. 2020. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Sci. Rep. 10:3917
    [Google Scholar]
  45. 45.
    Lavallee JM, Soong JL, Cotrufo MF. 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 26:1261–73
    [Google Scholar]
  46. 46.
    Arneth A, Olsson L, Cowie A, Erb KH, Hurlbert M et al. 2021. Restoring degraded lands. Annu. Rev. Environ. Resour. 46:569–99
    [Google Scholar]
  47. 47.
    Prăvălie R. 2021. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 220:103689
    [Google Scholar]
  48. 48.
    Pacheco FAL, Sanches Fernandes LF, Valle Junior RF, Valera CA, Pissarra TCT. 2018. Land degradation: multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 5:79–86
    [Google Scholar]
  49. 49.
    Cherlet M, Hutchinson C, Reynolds J, Hill J, Sommer S, von Malitz G. 2018. World Atlas of Desertification Luxmb.: Publ. Off. Eur. Union
  50. 50.
    Montanarella L, Scholes R, Brainich A. 2018. The assessment report on land degradation and restoration. Summary for policymakers Rep. Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv. Bonn, Ger.:
  51. 51.
    Yengoh G, Dent D, Olsson L, Tengberg AE, Tucker CJ III 2015. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales. Current Status, Future Trends, and Practical Considerations Heidelberg, Ger.: Springer
  52. 52.
    Prăvălie R, Patriche C, Borrelli P, Panagos P, Roșca B et al. 2021. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 194:110697
    [Google Scholar]
  53. 53.
    Quarrier CL, Kwang JS, Quirk BJ, Thaler EA, Larsen IJ. 2023. Pre-agricultural soil erosion rates in the midwestern United States. Geology 51:144–48
    [Google Scholar]
  54. 54.
    Borrelli P, Alewell C, Alvarez P, Anache JAA, Baartman J et al. 2021. Soil erosion modelling: a global review and statistical analysis. Sci. Total Environ. 780:146494
    [Google Scholar]
  55. 55.
    Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C et al. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8:2013
    [Google Scholar]
  56. 56.
    Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S. 2018. The state of the world's beaches. Sci. Rep. 8:16641
    [Google Scholar]
  57. 57.
    Murray NJ, Worthington TA, Bunting P, Duce S, Hagger V et al. 2022. High-resolution mapping of losses and gains of Earth's tidal wetlands. Science 376:6594744–49
    [Google Scholar]
  58. 58.
    Nienhuis JH, Ashton AD, Edmonds DA, Hoitink AJF, Kettner AJ et al. 2020. Global-scale human impact on delta morphology has led to net land area gain. Nature 577:7791514–18
    [Google Scholar]
  59. 59.
    Dunn FE, Darby SE, Nicholls RJ, Cohen S, Zarfl C, Fekete BM. 2019. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14:8084034
    [Google Scholar]
  60. 60.
    Nicholls RJ, Lincke D, Hinkel J, Brown S, Vafeidis AT et al. 2021. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change 11:4338–42
    [Google Scholar]
  61. 61.
    Herrera-García G, Ezquerro P, Tomás R, Béjar-Pizarro M, López-Vinielles J et al. 2021. Mapping the global threat of land subsidence: Nineteen percent of the global population may face a high probability of subsidence. Science 371:652434–36
    [Google Scholar]
  62. 62.
    Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S et al. 2016. Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 6:119355
    [Google Scholar]
  63. 63.
    Padilla FM, Gallardo M, Manzano-Agugliaro F. 2018. Global trends in nitrate leaching research in the 1960–2017 period. Sci. Total Environ. 643:400–13
    [Google Scholar]
  64. 64.
    MacDonald GK, Bennett EM, Potter PA, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world's croplands. PNAS 108:73086–91
    [Google Scholar]
  65. 65.
    Lu C, Tian H. 2017. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9:1181–92
    [Google Scholar]
  66. 66.
    Tengberg A, Valencia S. 2018. Integrated approaches to natural resources management—theory and practice. Land Degrad. Dev. 29:61845–57
    [Google Scholar]
  67. 67.
    Nkonya E, Mirzabaev A, von Braun J. 2016. Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development Cham, Switz: Springer
  68. 68.
    Piemontese L, Kamugisha RN, Tukahirwa JMB, Tengberg A, Pedde S, Jaramillo F. 2021. Barriers to scaling sustainable land and water management in Uganda: a cross-scale archetype approach. Ecol. Soc. 26:36
    [Google Scholar]
  69. 69.
    Tubiello FN, Rosenzweig C, Conchedda G, Karl K, Gütschow J et al. 2021. Greenhouse gas emissions from food systems: building the evidence base. Environ. Res. Lett. 16:6065007
    [Google Scholar]
  70. 70.
    Chapin FS, Matson PA, Morrison Vitousek P, Chapin MC 2011. Principles of Terrestrial Ecosystem Ecology Springer, , 2nd ed..
  71. 71.
    Powlson DS, Poulton PR, Glendining MJ, Macdonald AJ, Goulding KWT. 2022. Is it possible to attain the same soil organic matter content in arable agricultural soils as under natural vegetation?. Outlook Agric. 51:191–104
    [Google Scholar]
  72. 72.
    Davidson EA, Ackerman IL. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:3161–93
    [Google Scholar]
  73. 73.
    Crews TE, Rumsey BE. 2017. What agriculture can learn from native ecosystems in building soil organic matter: a review. Sustainability 9:4578
    [Google Scholar]
  74. 74.
    Saugier B, Roy J, Mooney HA 2001. Estimations of global terrestrial productivity: Converging toward a single number?. Terrestrial Global Productivity J Roy, B Saugier, HA Mooney 543–57. Cambridge, MA: Academic Press
    [Google Scholar]
  75. 75.
    Goudriaan J, Groot JJR, Uithol PWJ 2001. Productivity of agro-ecosystems. Terrestrial Global Productivity J Roy, B Saugier, HA Mooney 301–14. Cambridge, MA: Academic Press
    [Google Scholar]
  76. 76.
    Strock JS, Johnson JMF, Tollefson D, Ranaivoson A. 2022. Rapid change in soil properties after converting grasslands to crop production. Agron. J. 114:31642–54
    [Google Scholar]
  77. 77.
    Bai Y, Cotrufo MF. 2022. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377:6606603–8
    [Google Scholar]
  78. 78.
    Sanderman J, Hengl T, Fiske GJ. 2017. Soil carbon debt of 12,000 years of human land use. PNAS 114:369575–80
    [Google Scholar]
  79. 79.
    Lal R. 2020. Soil erosion and gaseous emissions. Appl. Sci. 10:82784
    [Google Scholar]
  80. 80.
    Wang Z, Hoffmann T, Six J, Kaplan JO, Govers G et al. 2017. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nat. Clim. Change 7:5345–49
    [Google Scholar]
  81. 81.
    Hawken P. 2017. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming New York: Penguin
  82. 82.
    Paustian K. 2014. Carbon sequestration in soil and vegetation and greenhouse gases emissions reduction. Handbook of Global Environmental Pollution, Vol. 1 Global Environmental Change B Freedman 399–406. Dordrecht, Neth.: Springer
    [Google Scholar]
  83. 83.
    Paustian K, Larson E, Kent J, Marx E, Swan A. 2019. Soil C sequestration as a biological negative emission strategy. Front. Clim. 1:81–11
    [Google Scholar]
  84. 84.
    Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nat. Commun. 1:56
    [Google Scholar]
  85. 85.
    Wang C, Amon B, Schulz K, Mehdi B. 2021. Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: a review. Agronomy 11:4770
    [Google Scholar]
  86. 86.
    Tian H, Xu R, Canadell JG, Thompson RL, Winiwarter W et al. 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586:7828248–56
    [Google Scholar]
  87. 87.
    Crews TE, Peoples MB. 2005. Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr. Cycl. Agroecosyst. 72:2101–20
    [Google Scholar]
  88. 88.
    Kritee K, Nair D, Zavala-Araiza D, Proville J, Rudek J et al. 2018. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. PNAS 115:399720–25
    [Google Scholar]
  89. 89.
    IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.) 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Rep. IPBES Bonn, Ger:.
  90. 90.
    Dudley N, Alexander S. 2017. Agriculture and biodiversity: a review. Biodiversity 18:2–345–49
    [Google Scholar]
  91. 91.
    Mayer AL, Buma B, Davis AD, Gagné SA, Loudermilk EL et al. 2016. How landscape ecology informs global land-change science and policy. Bioscience 66:6458–69
    [Google Scholar]
  92. 92.
    Ortiz AMD, Outhwaite CL, Dalin C, Newbold T. 2021. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth 4:188–101
    [Google Scholar]
  93. 93.
    Phalan B, Bertzky M, Butchart SHM, Donald PF, Scharlemann JPW et al. 2013. Crop expansion and conservation priorities in tropical countries. PLOS ONE 8:1e51759
    [Google Scholar]
  94. 94.
    Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:6160850–53
    [Google Scholar]
  95. 95.
    Semper-Pascual A, Macchi L, Sabatini FM, Decarre J, Baumann M et al. 2018. Mapping extinction debt highlights conservation opportunities for birds and mammals in the South American Chaco. J. Appl. Ecol. 55:31218–29
    [Google Scholar]
  96. 96.
    Barral MP, Villarino S, Levers C, Baumann M, Kuemmerle T, Mastrangelo M. 2020. Widespread and major losses in multiple ecosystem services as a result of agricultural expansion in the Argentine Chaco. J. Appl. Ecol. 57:122485–98
    [Google Scholar]
  97. 97.
    Ceddia MG. 2019. The impact of income, land, and wealth inequality on agricultural expansion in Latin America. PNAS 116:72527–32
    [Google Scholar]
  98. 98.
    Vijay V, Pimm SL, Jenkins CN, Smith SJ. 2016. The impacts of oil palm on recent deforestation and biodiversity loss. PLOS ONE 11:7e0159668
    [Google Scholar]
  99. 99.
    Azhar B, Saadun N, Prideaux M, Lindenmayer DB. 2017. The global palm oil sector must change to save biodiversity and improve food security in the tropics. J. Environ. Manag. 203:457–66
    [Google Scholar]
  100. 100.
    Ellis EC, Gauthier N, Goldewijk KK, Bird RB, Boivin N et al. 2021. People have shaped most of terrestrial nature for at least 12,000 years. PNAS 118:17e2023483118
    [Google Scholar]
  101. 101.
    Decocq G, Guiller A, Kichey T, van de Pitte K, Gallet-Moron E et al. 2021. Drivers of species and genetic diversity within forest metacommunities across agricultural landscapes of different permeability. Landsc. Ecol. 36:113269–86
    [Google Scholar]
  102. 102.
    Ceddia MG, Sedlacek S, Bardsley NO, Gomez-y-Paloma S. 2013. Sustainable agricultural intensification or Jevons paradox? The role of public governance in tropical South America. Glob. Environ. Change 23:51052–63
    [Google Scholar]
  103. 103.
    Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J et al. 2014. Land sparing versus land sharing: moving forward. Conserv. Lett. 7:3149–57
    [Google Scholar]
  104. 104.
    Herzog F, Franklin J. 2016. State-of-the-art practices in farmland biodiversity monitoring for North America and Europe. Ambio 45:8857–71
    [Google Scholar]
  105. 105.
    Mastrangelo ME, Weyland F, Villarino SH, Barral MP, Nahuelhual L, Laterra P. 2014. Concepts and methods for landscape multifunctionality and a unifying framework based on ecosystem services. Landsc. Ecol. 29:2345–58
    [Google Scholar]
  106. 106.
    Grau R, Kuemmerle T, Macchi L. 2013. Beyond ‘land sparing versus land sharing’: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr. Opin. Environ. Sustain. 5:5477–83
    [Google Scholar]
  107. 107.
    Luskin MS, Lee JSH, Edwards DP, Gibson L, Potts MD. 2018. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Secur. 16:29–35
    [Google Scholar]
  108. 108.
    Machovina B, Feeley KJ, Ripple WJ. 2015. Biodiversity conservation: The key is reducing meat consumption. Sci. Total Environ. 536:419–31
    [Google Scholar]
  109. 109.
    Schulz R, Bub S, Petschick LL, Stehle S, Wolfram J. 2021. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372:653781–84
    [Google Scholar]
  110. 110.
    Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. 2021. Insect decline in the Anthropocene: death by a thousand cuts. PNAS 118:2e2023989118
    [Google Scholar]
  111. 111.
    Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V et al. 2015. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80
    [Google Scholar]
  112. 112.
    Parizadeh M, Mimee B, Kembel SW. 2021. Neonicotinoid seed treatments have significant non-target effects on phyllosphere and soil bacterial communities. Front. Microbiol. 11:3445
    [Google Scholar]
  113. 113.
    Pleasants JM, Oberhauser KS. 2013. Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv. Divers. 6:2135–44
    [Google Scholar]
  114. 114.
    Ye Z, Wu F, Hennessy DA. 2021. Environmental and economic concerns surrounding restrictions on glyphosate use in corn. PNAS 118:18e2017470118
    [Google Scholar]
  115. 115.
    Tang FHM, Maggi F. 2021. Pesticide mixtures in soil: a global outlook. Environ. Res. Lett. 16:4044051
    [Google Scholar]
  116. 116.
    Maggi F, la Cecilia D, Tang FHM, McBratney A. 2020. The global environmental hazard of glyphosate use. Sci. Total Environ. 717:137167
    [Google Scholar]
  117. 117.
    Battisti L, Potrich M, Sampaio AR, de Castilhos Ghisi N, Costa-Maia FM et al. 2021. Is glyphosate toxic to bees? A meta-analytical review. Sci. Total Environ. 767:145397
    [Google Scholar]
  118. 118.
    Schneider F, Steiger D, Ledermann T, Fry P, Rist S. 2012. No-tillage farming: co-creation of innovation through network building. Land Degrad. Dev. 23:3242–55
    [Google Scholar]
  119. 119.
    USGS (US Geol. Survey) 2018. Pesticide Use Maps: Paraquat—Estimated annual agricultural pesticide use US Dep. Interior, USGS Natl. Water-Quality Assess. Proj. Pesticide Natl. Synth. Proj https://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2018&map=PARAQUAT&hilo=L&disp=Paraquat
  120. 120.
    Shaner DL. 2014. Lessons learned from the history of herbicide resistance. Weed Sci. 62:2427–31
    [Google Scholar]
  121. 121.
    Hazell P, Poulton C, Wiggins S, Dorward A. 2010. The future of small farms: trajectories and policy priorities. World Dev. 38:101349–61
    [Google Scholar]
  122. 122.
    Barbier EB, Hochard JP. 2018. Land degradation and poverty. Nat. Sustain. 1:11623–31
    [Google Scholar]
  123. 123.
    von Braun J, Mirzabaev A. 2015. Small farms: changing structures and roles in economic development. ZEF Discuss. Pap. Dev. Policy 204:1–38
    [Google Scholar]
  124. 124.
    Ivanic M, Martin W. 2018. Sectoral productivity growth and poverty reduction: national and global impacts. World Dev. 109:429–39
    [Google Scholar]
  125. 125.
    Jayne TS, Snapp S, Place F, Sitko N. 2019. Sustainable agricultural intensification in an era of rural transformation in Africa. Glob. Food Secur. 20:105–13
    [Google Scholar]
  126. 126.
    Kleijn D, Bommarco R, Fijen TPM, Garibaldi LA, Potts SG, van der Putten WH. 2019. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34:2154–66
    [Google Scholar]
  127. 127.
    Boserup E. 1965. The Conditions of Agricultural Growth: The Economics of Agrarian Change Under Population Pressure London: Routledge
  128. 128.
    Ruttan VW. 1977. Induced innovation and agricultural development. Food Policy 2:3196–216
    [Google Scholar]
  129. 129.
    Pingali PL. 2012. Green Revolution: impacts, limits, and the path ahead. PNAS 109:3112302–8
    [Google Scholar]
  130. 130.
    Merriott D. 2016. Factors associated with the farmer suicide crisis in India. J. Epidemiol. Glob. Health 6:4217–27
    [Google Scholar]
  131. 131.
    Tittonell P, Giller KE. 2013. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143:76–90
    [Google Scholar]
  132. 132.
    Hendrickson MK, Howard PH, Miller EM, Constance DH. 2020. The food system: concentration and its impacts Rep. Family Farms Action Alliance Klamath Falls, OR:
  133. 133.
    von Braun J, Gatzweiler FW. 2014. Marginality—an overview and implications for policy. Marginality—Addressing the Nexus of Poverty, Exclusion and Ecology J von Braun, FW Gatzweiler 1–23. Dordrecht, Neth.: Springer
    [Google Scholar]
  134. 134.
    Batterbury SPJ, Ndi F 2018. Land grabbing in Africa. The Routledge Handbook of African Development T Binns, K Lynch, E Nel 573–82. London: Routledge
    [Google Scholar]
  135. 135.
    Yang B, He J. 2021. Global land grabbing: a critical review of case studies across the world. Land 10:3324
    [Google Scholar]
  136. 136.
    Higgins D, Balint T, Liversage H, Winters P. 2018. Investigating the impacts of increased rural land tenure security: a systematic review of the evidence. J. Rural Stud. 61:34–62
    [Google Scholar]
  137. 137.
    Lipton M. 2009. Land Reform in Developing Countries: Property Rights and Property Wrongs London: Routledge
  138. 138.
    Crews TE, Carton W, Olsson L. 2018. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 1:e11
    [Google Scholar]
  139. 139.
    Laborde D, Mamun A, Martin W, Piñeiro V, Vos R. 2021. Agricultural subsidies and global greenhouse gas emissions. Nat. Commun. 12:2601
    [Google Scholar]
  140. 140.
    Head JW. 2019. A Global Corporate Trust for Agroecological Integrity Abingdon, UK: Earthscan
  141. 141.
    Scown MW, Brady MV, Nicholas KA. 2020. Billions in misspent EU agricultural subsidies could support the sustainable development goals. One Earth 3:2237–50
    [Google Scholar]
  142. 142.
    Crews TE, Rumsey BE. 2017. What agriculture can learn from native ecosystems in building soil organic matter: a review. Sustainability 9:4578
    [Google Scholar]
  143. 143.
    Huddell A, Ernfors M, Crews T, Vico G, Menge DNL. 2023. Nitrate leaching losses and the fate of 15N fertilizer in perennial intermediate wheatgrass and annual wheat—a field study. Sci. Total Environ. 857:159255
    [Google Scholar]
  144. 144.
    Zimbric JW, Stoltenberg DE, Picasso VD. 2020. Effective weed suppression in dual-use intermediate wheatgrass systems. Agron. J. 112:32164–75
    [Google Scholar]
  145. 145.
    Crews TE, Cattani DJ. 2018. Strategies, advances, and challenges in breeding perennial grain crops. Sustainability 10:72192
    [Google Scholar]
  146. 146.
    Zhang S, Huang G, Zhang Y, Lv X, Wan K et al. 2022. Sustained productivity and agronomic potential of perennial rice. Nat. Sustain. 6:128–38
    [Google Scholar]
  147. 147.
    Bajgain P, Crain JL, Cattani DJ, Larson SR, Altendorf KR et al. 2023. Breeding intermediate wheatgrass for grain production. Plant Breed. Rev. 46:119–217
    [Google Scholar]
  148. 148.
    Chapman EA, Thomsen HC, Tulloch S, Correia P, Luo G et al. 2022. Perennials as future crops: opportunities and challenges. Front. Plant Sci. 13:898769
    [Google Scholar]
  149. 149.
    Luo G, Najafi J, Correia PMP, Trinh MDL, Chapman EA et al. 2022. Accelerated domestication of new crops: Yield is key. Plant Cell Physiol. 63:111624–40
    [Google Scholar]
  150. 150.
    Batjes NH. 2016. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269:61–68
    [Google Scholar]
  151. 151.
    Hoang NT, Taherzadeh O, Ohashi H, Yonekura Y, Nishijima Set al 2023. Mapping potential conflicts between global agriculture and terrestrial conservation. PNAS 120:23e2208376120
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112320-113741
Loading
/content/journals/10.1146/annurev-environ-112320-113741
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error