Renewable electricity generation will need to be rapidly scaled to address climate change and other environmental challenges. Doing so effectively will require an understanding of resource availability. We review estimates for renewable electricity of the global technical potential, defined as the amount of electricity that could be produced with current technologies when accounting for geographical and technical limitations as well as conversion efficiencies; economic potential, which also includes cost; and feasible potential, which accounts for societal and environmental constraints. We consider utility-scale and rooftop solar photovoltaics, concentrated solar power, onshore and offshore wind, hydropower, geothermal electricity, and ocean (wave, tidal, ocean thermal energy conversion, and salinity gradient energy) technologies. We find that the reported technical potential for each energy resource ranges over several orders of magnitude across and often within technologies. Therefore, we also discuss the main factors explaining why authors find such different results. According to this review and on the basis of the most robust studies, we find that technical potentials for utility-scale solar photovoltaic, concentrated solar power, onshore wind, and offshore wind are above 100 PWh/year. Hydropower, geothermal electricity, and ocean thermal energy conversion have technical potentials above 10 PWh/year. Rooftop solar photovoltaic, wave, and tidal have technical potentials above 1 PWh/year. Salinity gradient has a technical potential above 0.1 PWh/year. The literature assessing the global economic potential of renewables, which considers the cost of each renewable resource, shows that the economic potential is higher than current and near-future electricity demand. Fewer studies have calculated the global feasible potential, which considers societal and environmental constraints. While these ranges are useful for assessing the magnitude of available energy sources, they may omit challenges for large-scale renewable portfolios.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1.
    IEA (Int. Energy Agency) 2022. World Energy Outlook 2022 Paris: IEA
  2. 2.
    UNDP (UN Dev. Progr.) 2000. Energy and the Challenge of Sustainability New York: UNDP
  3. 3.
    Hoogwijk M, de Vries B, Turkenburg W. 2004. Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econ. 26:5889–919
    [Google Scholar]
  4. 4.
    de Vries BJM, Hoogwijk MM 2007. Renewable energy sources: their global potential for the first half of the 21st century at a global level: an integrated approach. Energy Policy 35:42590–610
    [Google Scholar]
  5. 5.
    Hoogwijk M, Graus W. 2008. Global potential of renewable energy sources: a literature assessment Backgr. Rep. Ecofys Utrecht, Neth.:
  6. 6.
    Krewitt W, Nienhaus K, Kleßmann C, Capone C, Stricker E et al. 2009. Role and potential of renewable energy and energy efficiency for global energy supply Rep. 18/2009 Fed. Environ. Agency Dessau-Roßlau, Ger.:
  7. 7.
    Moomaw W, Yamba F, Kamimoto M, Maurice L, Nyboer J et al. 2011. Renewable energy and climate change. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation O Edenhofer, R Pichs-Madruga, Y Sokona, K Seyboth, P Matschoss et al.161–208. Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  8. 8.
    Rogner H-H, Aguilera RF, Archer C, Bertani R, Bhattacharya SC et al. 2012. Energy resources and potentials. Global Energy Assessment: Toward a Sustainable Future TB Johanssen, A Patwardhan, N Nakicenovic, L Gomez-Echeverri 423–512. Cambridge, UK/Laxenburg, Austria: Cambridge Univ. Press/Int. Inst. Appl. Syst. Anal.
    [Google Scholar]
  9. 9.
    Stetter D. 2012. Enhancement of the REMix energy system model: global renewable energy potentials, optimized power plant siting and scenario validation PhD Thesis Univ. Stuttgart Stuttgart, Ger.:
  10. 10.
    Köberle AC, Gernaat DEHJ, van Vuuren DP. 2015. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy 89:739–56
    [Google Scholar]
  11. 11.
    Raabe J. 1985. Hydro Power Düsseldorf, Ger.: VDI
  12. 12.
    Zhou Y, Hejazi M, Smith S, Edmonds J, Li H et al. 2015. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 8:2622–33
    [Google Scholar]
  13. 13.
    Björnsson J, Fridleifsson B, Helgason T, Jonatansson H, Mariusson J et al. 1998. The potential role of geothermal energy and hydropower in the world energy scenario in year 2020. Proceedings of the 17th Congress of the World Energy Council, Vol. 569–87. London: World Energy Counc.
    [Google Scholar]
  14. 14.
    Aghahosseini A, Breyer C. 2020. From hot rock to useful energy: a global estimate of enhanced geothermal systems potential. Appl. Energy 279:115769
    [Google Scholar]
  15. 15.
    Stenzel P, Wagner H. 2010. Osmotic power plants: potential analysis and site criteria. Proceedings of the 3rd International Conference on Ocean Energy1–5. Lisbon: Ocean Energy Syst.
    [Google Scholar]
  16. 16.
    Korfiaty A, Gkonos C, Veronesi F, Gaki A, Grassi S. 2016. Estimation of the global solar energy potential and photovoltaic cost with the use of open data. Int. J. Sustain. Energy Plan. Manag. 9:17–30
    [Google Scholar]
  17. 17.
    Bruckner T, Bashmakov IA, Mulugetta Y, Chum H, de la Vega Navarro A et al. 2014. Energy systems. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the 5th Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner, et al. 511–97. Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  18. 18.
    Bosch J, Staffell I, Hawkes AD. 2017. Temporally-explicit and spatially-resolved global onshore wind energy potentials. Energy 131:207–17
    [Google Scholar]
  19. 19.
    Eurek K, Sullivan P, Gleason M, Hettinger D, Heimiller D, Lopez A. 2017. An improved global wind resource estimate for integrated assessment models. Energy Econ. 64:552–67
    [Google Scholar]
  20. 20.
    Moriarty P, Honnery D. 2012. What is the global potential for renewable energy?. Renew. Sustain. Energy Rev. 16:244–52
    [Google Scholar]
  21. 21.
    Trieb F, Schillings C, O'Sullivan M, Pregger T, Hoyer-Klick C 2009. Global potential of concentrating solar power Paper presented at 15th SolarPACES Conference Berlin: Sept. 15–18
  22. 22.
    Lu X, McElroy MB, Kiviluoma J. 2009. Global potential for wind-generated electricity. PNAS 106:2710933–38
    [Google Scholar]
  23. 23.
    Arent D, Sullivan P, Heimiller D, Lopez A, Eurek K et al. 2012. Improved offshore wind resource assessment in global climate stabilization scenarios Tech. Rep. NREL/TP-6A20-55049 Natl. Renew. Energy Lab. Washington, DC:
  24. 24.
    Zhou Y, Luckow P, Smith SJ, Clarke L. 2012. Evaluation of global onshore wind energy potential and generation costs. Environ. Sci. Technol. 46:7857–64
    [Google Scholar]
  25. 25.
    Bosch J, Staffell I, Hawkes AD. 2018. Temporally explicit and spatially resolved global offshore wind energy potentials. Energy 163:766–81
    [Google Scholar]
  26. 26.
    Gernaat DEHJ, Bogaart PW, van Vuuren DP, Biemans H, Niessink R. 2017. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2:821–28
    [Google Scholar]
  27. 27.
    Killingtveit Å. 2019. Hydropower. Managing Global Warming: An Interface of Technology and Human Issues TM Letcher 265–315. San Diego, CA: Academic
    [Google Scholar]
  28. 28.
    Stefánsson V. 1998. Estimate of the world geothermal potential. Proceedings of the 20th Anniversary Workshop of the United Nations University Geothermal Training Programme111–21. Reykjavik: U. N. Univ.
    [Google Scholar]
  29. 29.
    Bertani R. 2003. What is geothermal potential?. IGA News 53:1–3
    [Google Scholar]
  30. 30.
    Skilhagen SE, Dugstad JE, Aaberg RJ. 2008. Osmotic power—power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination 220:1–3476–82
    [Google Scholar]
  31. 31.
    Johansson TB, McCormick NL, Turkenburg W. 2004. The potentials of renewable energy Themat. Backgr. Pap., Int. Conf. Renew. Energ. Bonn, Ger.: https://ren21.net/Portals/0/documents/irecs/renew2004/The%20Potentials%20of%20Renewable%20Energy.pdf
  32. 32.
    Sims REH, Schock RN, Adegbululgbe A, Fenhann J, Konstantinaviciute I et al. 2007. Energy supply. Climate Change 2007: Mitigation. Contribution of Working Group III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change B Metz, OR Davidson, PR Bosch, R Dave, LA Meyer 251–322. Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  33. 33.
    Dupont E, Koppelaar R, Jeanmart H. 2020. Global available solar energy under physical and energy return on investment constraints. Appl. Energy 257:113968
    [Google Scholar]
  34. 34.
    Dupont E, Koppelaar R, Jeanmart H. 2018. Global available wind energy with physical and energy return on investment constraints. Appl. Energy 209:322–38
    [Google Scholar]
  35. 35.
    Archer CL, Jacobson MZ. 2005. Evaluation of global wind power. J. Geophys. Res. 110:D12110
    [Google Scholar]
  36. 36.
    Jacobson MZ, Delucchi MA. 2011. Providing all global energy with wind, water, and solar power. Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39:31154–69
    [Google Scholar]
  37. 37.
    Capps SB, Zender CS. 2010. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting. J. Geophys. Res. 115:D09101
    [Google Scholar]
  38. 38.
    de Castro C, Mediavilla M, Miguel LJ, Frechoso F. 2011. Global wind power potential: physical and technological limits. Energy Policy 39:106677–82
    [Google Scholar]
  39. 39.
    Miller LM, Gans F, Kleidon A. 2011. Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst. Dyn. 2:1–12
    [Google Scholar]
  40. 40.
    Jacobson MZ, Archer CL. 2012. Saturation wind power potential and its implications for wind energy. PNAS 109:15679–84
    [Google Scholar]
  41. 41.
    Miller LM, Kleidon A. 2016. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits. PNAS 113:4813570–75
    [Google Scholar]
  42. 42.
    Ivanescu C, Fox R. 2021. Global offshore wind technical potential Data Set, World Bank Washington, DC: https://datacatalog.worldbank.org/search/dataset/0037787/Global-Offshore-Wind-Technical-Potential
  43. 43.
    Kleidon A. 2021. Physical limits of wind energy within the atmosphere and its use as renewable energy: from the theoretical basis to practical implications. arXiv:2010.00982 [physics.ao-ph]
  44. 44.
    Stefánsson V. 2005. World geothermal assessment Paper presented at World Geothermal Conference 2005 Antalya, Turk.: Apr. 24–29
  45. 45.
    Pelc R, Fujita RM. 2002. Renewable energy from the ocean. Mar. Policy 26:471–79
    [Google Scholar]
  46. 46.
    Nihous G. 2005. An order-of-magnitude estimate of ocean thermal energy conversion resources. J. Energy Resour. Technol. 127:4328–33
    [Google Scholar]
  47. 47.
    Nihous G. 2007. A preliminary assessment of ocean thermal energy conversion resources. J. Energy Resour. Technol. 129:110–17
    [Google Scholar]
  48. 48.
    Kuleszo J, Kroeze C, Post J, Fekete BM. 2010. The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases. J. Integr. Environ. Sci. 7:Suppl. 189–96
    [Google Scholar]
  49. 49.
    Gunn K, Stock-Williams C. 2012. Quantifying the global wave power resource. Renew. Energy 44:296–304
    [Google Scholar]
  50. 50.
    Rajagopalan K, Nihous G. 2013. Estimates of global ocean thermal energy conversion (OTEC) resources using an ocean general circulation model. Renew. Energy 50:532–40
    [Google Scholar]
  51. 51.
    Rajagopalan K, Nihous G. 2013. An assessment of global ocean thermal energy conversion resources with a high-resolution ocean general circulation model. J. Energy Resour. Technol. 135:041202
    [Google Scholar]
  52. 52.
    Rajagopalan K, Nihous GC. 2013. An assessment of global ocean thermal energy conversion resources under broad geographical constraints. J. Renew. Sustain. Energy 5:063124
    [Google Scholar]
  53. 53.
    Jia Y, Nihous G, Rajagopalan K. 2018. An evaluation of the large-scale implementation of ocean thermal energy conversion (OTEC) using an ocean general circulation model with low-complexity atmospheric feedback effects. J. Mar. Sci. Eng. 6:12
    [Google Scholar]
  54. 54.
    Jacobson MZ, Delucchi MA, Cameron MA, Coughlin SJ, Hay CA et al. 2019. Impacts of Green New Deal energy plans on grid stability, costs, jobs, health, and climate in 143 countries. ONE Earth 1:4449–63
    [Google Scholar]
  55. 55.
    Hossain J. 2014. World wind resource assessment report Tech. Rep. World Wind Energy Assoc. Bonn. Ger.:
  56. 56.
    Bertani R. 2009. Geothermal energy: an overview on resources and potential Paper presented at International Geothermal Days: Slovakia 2009 Conference and Summer School Častá Papiernička, Slovak.: May 26–29
  57. 57.
    Jacobson MZ, Delucchi MA, Bauer ZAF, Goodman SC, Chapman WE et al. 2017. 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for 139 countries of the world. Joule 1:108–21
    [Google Scholar]
  58. 58.
    AE Solar 2022. History and development of photovoltaics Fact Sheet, AE Solar Koenigsbrunn, Ger.: https://ae-solar.com/history-of-solar-module/#:∼:text=Solar%20Energy%20in%20the%201900's,an%20efficiency%20of%204%25%20only
  59. 59.
    IRENA (Int. Renew. Energy Agency) 2022. Renewable Energy Statistics 2022 Abu Dhabi: IRENA
  60. 60.
    Sahu A, Yadav N, Sudhakar K. 2016. Floating photovoltaic power plant: a review. Renew. Sustain. Energy Rev. 66:815–24
    [Google Scholar]
  61. 61.
    Dinesh H, Pearce JM. 2016. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 54:299–308
    [Google Scholar]
  62. 62.
    Alsema E, van Brummelen M. 1993. Het potentieel van PV-systemen in OECD landen Rep. Utrecht Univ. Utrecht, Neth. (in Dutch):
  63. 63.
    IEA (Int. Energy Agency) 2001. Potential for building integrated photovoltaics Rep. PVPS T7-4 IEA Paris:
  64. 64.
    Melius J, Margolis R, Ong S. 2013. Estimating rooftop suitability for PV: a review of methods, patents, and validation techniques Tech. Rep. NREL/TP-6A20-60593 Natl. Renew. Energy Lab. Washington, DC:
  65. 65.
    Aalborg CSP. 2022. History of concentrated solar power (CSP) Fact Sheet, Aalborg CSP Aalborg, Den.: https://www.aalborgcsp.com/business-areas/solar-district-heating/csp-parabolic-troughs/history-of-csp
    [Google Scholar]
  66. 66.
    NREL (Natl. Renew. Energy Lab.) 2022. Concentrated solar power basics Fact Sheet, NREL Washington, DC: https://www.nrel.gov/research/re-csp.html
  67. 67.
    EIA (Energy Inf. Adm.) 2022. Wind explained: history of wind power Fact Sheet, EIA Washington, DC: https://www.eia.gov/energyexplained/wind/history-of-wind-power.php
  68. 68.
    IRENA (Int. Renew. Energy Agency) 2022. Wind energy Fact Sheet, IRENA Abu Dhabi: https://www.irena.org/Energy-Transition/Technology/Wind-energy
  69. 69.
    Clarke L, Wei Y-M, de la Vega Navarro A, Garg A, Hahmann AN et al. 2022. Energy systems. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the 6th Assessment Report of the Intergovernmental Panel on Climate Change PR Shukla, J Skea, R Slade, A Al Khourdajie, R van Diemen, et al. 613–746. Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  70. 70.
    Hahmann AN, García-Santiago O, Peña A. 2022. Current and future wind energy resources in the North Sea according to CMIP6. Wind Energy Sci. 7:2373–91
    [Google Scholar]
  71. 71.
    Volker PJH, Hahmann AN, Badger J, Jørgensen HE. 2017. Prospects for generating electricity by large onshore and offshore wind farms. Environ. Res. Lett. 12:034022
    [Google Scholar]
  72. 72.
    Ørsted. Making green energy affordable White Pap. Ørsted Fredericia, Den.: https://orsted.com/en/about-us/whitepapers/making-green-energy-affordable/1991-to-2001-the-first-offshore-wind-farms
  73. 73.
    Díaz H, Soares CG. 2020. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng. 209:107381
    [Google Scholar]
  74. 74.
    Ørsted. Hornsea 2 Fact Sheet, Ørsted Fredericia, Den.: https://hornseaprojects.co.uk/hornsea-project-two
  75. 76.
    Principle Power 2022. Kincardine offshore wind farm Fact Sheet, Principle Power Emeryville, CA: https://www.principlepower.com/projects/kincardine-offshore-wind-farm
  76. 77.
    T&D World 2021. Floating offshore wind farm linked to Scotland's power grid. T&D World Blog Oct. 19. https://www.tdworld.com/distributed-energy-resources/article/21178796/floating-offshore-wind-farmlinked-to-scotlands-power-grid
    [Google Scholar]
  77. 78.
    Mathern A, von der Haar C, Marx S. 2021. Concrete support structures for offshore wind turbines: current status, challenges, and future trends. Energies 14:1995
    [Google Scholar]
  78. 79.
    Nunez C. 2019. Hydropower, explained. National Geographic May 13. https://www.nationalgeographic.com/environment/article/hydropower
    [Google Scholar]
  79. 80.
    US Dep. Energy 2022. Types of hydropower plants Fact Sheet, Off. Energy Effic. Renew. Energy, US Dep. Energy Washington, DC: https://www.energy.gov/eere/water/types-hydropower-plants
  80. 81.
    WEC (World Energy Counc.) 2016. World energy resources—waste to energy Rep. WEC London: https://www.worldenergy.org/assets/images/imported/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf
  81. 82.
    Leary D, Esteban M. 2009. How things work: ocean energy making waves. Our World Blog Oct. 5. https://ourworld.unu.edu/en/ocean-energy-making-waves
    [Google Scholar]
  82. 83.
    IRENA (Int. Renew. Energy Agency) 2020. Innovation Outlook: Ocean Energy Technologies Abu Dhabi: IRENA
  83. 84.
    Panicker NN. 1976. Power resource estimate of ocean surface waves. Ocean Eng. 3:6429–39
    [Google Scholar]
  84. 85.
    Marchuk GI, Kagan BA. 1989. Dynamics of Ocean Tides. Dordrecht, Neth: Kluwer Acad.
  85. 86.
    Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45:121977–2010
    [Google Scholar]
  86. 87.
    Mørk G, Barstow S, Kabuth A, Pontes MT. 2010. Assessing the global wave energy potential. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Vol. 3447–54. New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  87. 88.
    Kinsman B. 1965. Wind Waves Hoboken, NJ: Prentice Hall
  88. 89.
    Hammons TJ. 1993. Tidal power. Proc. IEEE 89:3419–33
    [Google Scholar]
  89. 90.
    Baker AC. 1986. The development of functions relating cost and performance of tidal power schemes and their application to small-scale sites. Tidal Power AC Baker 331–44. London: Telford
    [Google Scholar]
  90. 91.
    Avery WH, Wu C. 1994. Renewable Energy from the Ocean: A Guide to OTEC New York: Oxford Univ. Press
  91. 92.
    Daniel T. 2000. Ocean thermal energy conversion: an extensive, environmentally benign source of energy for the future. Sustain. Dev. Int. 3:121–25
    [Google Scholar]
  92. 93.
    Kuleszo J. 2008. The global and regional potential of salinity-gradient power MSc Thesis Wageningen Univ. Wageningen, Neth:.
  93. 94.
    Pathak M, Slade R, Shukla PR, Skea J, Pichs-Madruga R, Ürge-Vorsatz D 2022. Technical summary. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the 6th Assessment Report of the Intergovernmental Panel on Climate Change PR Shukla, J Skea, R Slade, A Al Khourdajie, R van Diemen, et al. 51–147. Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  94. 95.
    de Castro C, Mediavilla M, Miguel LJ, Frechoso F. 2013. Global solar electric potential: a review of their technical and sustainable limits. Renew. Sustain. Energy Rev. 28:824–35
    [Google Scholar]
  95. 96.
    Deng YY, Haigh M, Pouwels W, Ramaekers L, Brandsma R et al. 2015. Quantifying a realistic, worldwide wind and solar electricity supply. Glob. Environ. Change 31:239252
    [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error