1932

Abstract

Urban overheating is the most documented phenomenon of climate change impacting humans. This article presents the most recent developments on the magnitude and characteristics of urban overheating and the potential synergies with global climatic change. It analyses the latest qualitative and quantitative data on the impact of higher urban temperatures on buildings’ energy supply and demand, heat-related mortality, morbidity and wellbeing, human productivity, survivability of low-income populations, and environmental quality of cities. It describes the state of the art on the development of innovative mitigation materials, advanced urban greenery, heat dissipation, and evaporative techniques as the main mitigation and adaptation technologies to offset the impact of urban overheating. It also analyses the current knowledge on the impact of each mitigation technology on energy, health, environmental quality, urban economy, and survivability. Finally, this article presents the main future challenges related to urban overheating and proposes a specific research agenda to alleviate and counterbalance its impact on human life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112321-093021
2023-11-13
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112321-093021.html?itemId=/content/journals/10.1146/annurev-environ-112321-093021&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Oke TR, Johnson GT, Steyn DG, Watson ID. 1991. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Bound.-Layer Meteorol 56:339–58
    [Google Scholar]
  2. 2.
    Tuholske C, Caylor C, Funk C, Verdin A, Sweeney S, Grace K et al. 2021. Global urban population exposure to extreme heat. PNAS 118:41e2024792118
    [Google Scholar]
  3. 3.
    Santamouris M. 2015. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 512–13:582–98
    [Google Scholar]
  4. 4.
    Giridharan R, Ganesan S, Lau SSY. 2004. Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy Build 36:6525–34
    [Google Scholar]
  5. 5.
    Charabi Y, Bakhit A. 2011. Assessment of the canopy urban heat island of a coastal arid tropical city: the case of Muscat, Oman. Atmos. Res. 101:1–2215–27
    [Google Scholar]
  6. 6.
    Akbari H, Cartalis C, Kolokotsa D, Muscio A, Pisello AL et al. 2016. Local climate change and urban heat island mitigation techniques - the state of the art. J. Civ. Eng. Manag. 22:11–16
    [Google Scholar]
  7. 7.
    Englehart PJ, Douglas AV. 2003. Urbanization and seasonal temperature trends: observational evidence from a data-sparse part of North America. Int. J. Climatol. 23:101253–63
    [Google Scholar]
  8. 8.
    Khan HS, Santamouris M, Paolini R, Caccetta P, Kassomenos P. 2021. Analyzing the local and climatic conditions affecting the urban overheating magnitude during the Heatwaves (HWs) in a coastal city: a case study of the greater Sydney region. Sci. Total Environ. 755:142515
    [Google Scholar]
  9. 9.
    Santamouris M, Vasilakopoulou K. 2021. Present and future energy consumption of buildings: challenges and opportunities towards decarbonisation. e-Prime 1:Oct.100002
    [Google Scholar]
  10. 10.
    Gilbert H, Mandel B, Levinson R. 2016. Keeping California cool: recent cool community developments. Energy Build 114:20–26
    [Google Scholar]
  11. 11.
    Santamouris M, Ding L, Fiorito F, Oldfield P, Osmond P et al. 2017. Passive and active cooling for the outdoor built environment - analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol. Energy 154:14–33
    [Google Scholar]
  12. 12.
    Yang J, Mohan Kumar DI, Pyrgou A, Chong A, Santamouris M et al. 2018. Green and cool roofs’ urban heat island mitigation potential in tropical climate. Sol. Energy 173:Febr.597–609
    [Google Scholar]
  13. 13.
    Voogt J. 2014. How researchers measure urban heat islands Rep. Dep. Geogr., Univ. W. Ont., Lond. Ont., Can.:
  14. 14.
    Stewart ID. 2011. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 31:2200–17
    [Google Scholar]
  15. 15.
    Van Oldenborgh GJ, Wehner MF, Vautard R, Otto FEL, Seneviratne SI et al. 2022. Attributing and projecting heatwaves is hard: We can do better. Earth's Future 10:6e2021EF002271
    [Google Scholar]
  16. 16.
    Pyrgou A, Hadjinicolaou P, Santamouris M. 2020. Urban-rural moisture contrast: regulator of the urban heat island and heatwaves’ synergy over a Mediterranean city. Environ. Res. 182:March109102
    [Google Scholar]
  17. 17.
    Zhao L, Oppenheimer M, Zhu Q, Baldwin JW, Ebi KL et al. 2018. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 13:39326
    [Google Scholar]
  18. 18.
    Vahmani P, Ban-Weiss GA. 2016. Impact of remotely sensed albedo and vegetation fraction on simulation of urban climate in WRF-urban canopy model: a case study of the urban heat island in Los Angeles. J. Geophys. Res. Atmos. 121:41511–31
    [Google Scholar]
  19. 19.
    Founda D, Santamouris M. 2017. Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Sci. Rep. 7:10973
    [Google Scholar]
  20. 20.
    Ao X, Wang L, Zhi X, Gu W, Yang H, Li D. 2019. Observed synergies between urban heat islands and heat waves and their controlling factors in Shanghai, China. J. Appl. Meteorol. Climatol. 58:91955–72
    [Google Scholar]
  21. 21.
    Ngarambe J, Nganyiyimana J, Kim I, Santamouris M, Young Yun G. 2020. Synergies between urban heat island and heat waves in Seoul: the role of wind speed and land use characteristics. PLOS ONE 15:12e0243571
    [Google Scholar]
  22. 22.
    Li D, Sun T, Liu M, Wang L, Gao Z. 2016. Changes in wind speed under heat waves enhance urban heat islands in the Beijing metropolitan area. J. Appl. Meteorol. Climatol. 55:112369–75
    [Google Scholar]
  23. 23.
    Rogers CDW, Gallant AJE, Tapper NJ. 2019. Is the urban heat island exacerbated during heatwaves in southern Australian cities?. Theor. Appl. Climatol. 137:1–2441–57
    [Google Scholar]
  24. 24.
    Imran HM, Shammas MI, Rahman A, Jacobs SJ, Ng AWM, Muthukumaran S. 2021. Causes, modeling and mitigation of urban heat island: a review. Earth 10:6244–64
    [Google Scholar]
  25. 25.
    Mosteiro Romero M. 2020. Stochastic sources of uncertainty in urban energy systems: occupancy and microclimate Doctoral Thesis ETH Zurich
  26. 26.
    Allam Z, Dhunny ZA. 2019. On big data, artificial intelligence and smart cities. Cities 89:80–91
    [Google Scholar]
  27. 27.
    van Raalte L, Nolan M, Thakur P, Xue S, Parker N 2012. Economic assessment of the urban heat island effect Rep. AECOM, Melb. Vic., Aust.:
  28. 28.
    Santamouris M. 2020. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change italicEnergy Build 207109482
    [Google Scholar]
  29. 29.
    Santamouris M, Cartalis C, Synnefa A, Kolokotsa D. 2015. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—a review. Energy Build 98:119–24
    [Google Scholar]
  30. 30.
    Akbari H, Davis S, Dorsano S, Huang J, Winnett S. 1992. Cooling Our Communities: A Guidebook on Tree Planting and Light-Colored Surfacing Washington, DC: Environ. Prot. Agency
  31. 31.
    Bartos M, Chester M, Johnson N, Gorman B, Eisenberg D et al. 2016. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States. Environ. Res. Lett. 11:11114008
    [Google Scholar]
  32. 32.
    Bloomberg 2022. Bloomberg Green Newsletter. New York: Bloomberg https://www.bloomberg.com/green
  33. 33.
    Reid CE, Snowden JM, Kontgis C, Tager IB. 2012. The role of ambient ozone in epidemiologic studies of heat-related mortality. Environ. Health Perspect. 120:121627–30
    [Google Scholar]
  34. 34.
    Tressol M, Ordonez C, Zbinden R, Brioude J, Thouret V et al. 2008. Air pollution during the 2003 European heat wave as seen by MOZAIC airliners. Atmos. Chem. Phys. 8:82133–50
    [Google Scholar]
  35. 35.
    Yoshikado H, Tsuchida M. 1996. High level of winter air pollution under the influence of the urban heat island along the shore of Tokyo Bay. J. Appl. Meteorol. 35:1804–13
    [Google Scholar]
  36. 36.
    Aw J, Kleeman MJ. 2003. Evaluating the first-order effect of intraannual temperature variability on urban air pollution. J. Geophys. Res. Atmos. 108:124365
    [Google Scholar]
  37. 37.
    Abel D, Holloway T, Kladar RM, Meier P, Ahl D et al. 2017. Response of power plant emissions to ambient temperature in the eastern United States. Environ. Sci. Technol. 51:105838–46
    [Google Scholar]
  38. 38.
    Meier P, Holloway T, Patz J, Harkey M, Ahl D et al. 2017. Impact of warmer weather on electricity sector emissions due to building energy use. Environ. Res. Lett. 12:6064014
    [Google Scholar]
  39. 39.
    Kolokotsa D, Santamouris M. 2015. Review of the indoor environmental quality and energy consumption studies for low income households in Europe. Sci. Total Environ. 536:316–30
    [Google Scholar]
  40. 40.
    Taylor J, Wilkinson P, Davies M, Armstrong B, Chalabi Z et al. 2015. Mapping the effects of urban heat island, housing, and age on excess heat-related mortality in London. Urban Clim. 14:517–28
    [Google Scholar]
  41. 41.
    Santamouris M, Alevizos SM, Aslanoglou L, Mantzios D, Milonas P et al. 2014. Freezing the poor - indoor environmental quality in low and very low income households during the winter period in Athens. Energy Build 70:61–70
    [Google Scholar]
  42. 42.
    Mavrogianni A, Davies M, Wilkinson P, Pathan A. 2010. London housing and climate change: impact on comfort and health - preliminary results of a summer overheating study. Open House Int 35:249–59
    [Google Scholar]
  43. 43.
    Gouveia JP, Seixas J, Long G. 2018. Mining households’ energy data to disclose fuel poverty: lessons for Southern Europe. J. Clean. Prod. 178:534–50
    [Google Scholar]
  44. 44.
    Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. 2005. Impact of regional climate change on human health. Nature 438:7066310–17
    [Google Scholar]
  45. 45.
    Li M, Shaw BA, Zhang W, Vásquez E, Lin S. 2019. Impact of extremely hot days on emergency department visits for cardiovascular disease among older adults in New York State. Int. J. Environ. Res. Public Health 16:122119
    [Google Scholar]
  46. 46.
    Knowlton K, Rotkin-Ellman M, King G, Margolis HG, Smith D et al. 2009. The 2006 California heat wave: impacts on hospitalizations and emergency department visits. Environ. Health Perspect. 117:161–67
    [Google Scholar]
  47. 47.
    Bassil KL, Cole DL, Moineddin R, Craig AM, Lou WYW et al. 2009. Temporal and spatial variation of heat-related illness using 911 medical dispatch data. Environ. Res. 109:5600–6
    [Google Scholar]
  48. 48.
    Rydman RJ, Rumoro DP, Silva JC, Hogan TM, Kampe LM. 1999. The rate and risk of heat-related illness in hospital emergency departments during the 1995 Chicago heat disaster. J. Med. Syst. 23:141–56
    [Google Scholar]
  49. 49.
    Hondula DM, Barnett AG. 2014. Heat-related morbidity in Brisbane, Australia: spatial variation and area-level predictors. Environ. Health Perspect. 122:8831–36
    [Google Scholar]
  50. 50.
    Smargiassi A, Goldberg MS, Plante C, Fournier M, Baudouin Y, Kosatsky T. 2009. Variation of daily warm season mortality as a function of micro-urban heat islands. J. Epidemiol. Community Health 63:8659–64
    [Google Scholar]
  51. 51.
    Moghadamnia MT, Ardalan A, Mesdaghinia A, Keshtkar A, Naddafi K, Yekaninejad MS. 2017. Ambient temperature and cardiovascular mortality: a systematic review and meta-analysis. PeerJ 5:e3574
    [Google Scholar]
  52. 52.
    Schinasi LH, Benmarhnia T, De Roos AJ. 2018. Modification of the association between high ambient temperature and health by urban microclimate indicators: a systematic review and meta-analysis. Environ. Res. 161:168–80
    [Google Scholar]
  53. 53.
    Bonafede M, Marinaccio A, Asta F, Schifano P, Michelozzi P, Vecchi S. 2016. The association between extreme weather conditions and work-related injuries and diseases. A systematic review of epidemiological studies. Ann. Ist Super Sanità 52:3357–67
    [Google Scholar]
  54. 54.
    Kjellstrom T, Holmer I, Lemke B. 2009. Workplace heat stress, health and productivity—an increasing challenge for low and middle-income countries during climate change. Glob. Health Action 2:PMC2799237
    [Google Scholar]
  55. 55.
    Bridger RS. 2008. Introduction to Ergonomics. Boca Raton, FL: CRC Press., Int. ed..
  56. 56.
    Wästerlund DS. 1998. A review of heat stress research with application to forestry. Appl. Ergon. 29:3179–83
    [Google Scholar]
  57. 57.
    Flouris AD, Dinas PC, Iaonnou LG, Nyb L, Havenith G et al. 2018. Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis. Lancet Planet. Health 2:12e521–31
    [Google Scholar]
  58. 58.
    Graff Zivin J, Neidell M. 2014. Temperature and the allocation of time: implications for climate change. J. Labor Econ. 32:11–26
    [Google Scholar]
  59. 59.
    Xiang J, Bi P, Pisaniello D, Hansen A. 2014. Health impacts of workplace heat exposure: an epidemiological review. Ind. Health 52:291–101
    [Google Scholar]
  60. 60.
    Fogleman M, Fakhrzadeh L, Bernard TE. 2005. The relationship between outdoor thermal conditions and acute injury in an aluminum smelter. Int. J. Ind. Ergon. 35:147–55
    [Google Scholar]
  61. 61.
    Hübler M, Klepper G, Peterson S. 2008. Costs of climate change. The effects of rising temperatures on health and productivity in Germany. Ecol. Econ. 68:1–2381–93
    [Google Scholar]
  62. 62.
    Burke M, Hsiang SM, Miguel E 2015. Global non-linear effect of temperature on economic production. Nature 527:7577235–39
    [Google Scholar]
  63. 63.
    Wondmagegn BY, Xiang J, Williams S, Pisaniello D, Bi P. 2019. What do we know about the healthcare costs of extreme heat exposure? A comprehensive literature review. Sci. Total Environ. 657:608–18
    [Google Scholar]
  64. 64.
    Wong NH, Tan CL, Kolokotsa DD, Takebayashi H. 2021. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2:3166–81
    [Google Scholar]
  65. 65.
    Xie N, Akin M, Shi X. 2019. Permeable concrete pavements: a review of environmental benefits and durability. J. Clean. Prod. 210:1605–21
    [Google Scholar]
  66. 66.
    Santamouris M, Yun GY. 2020. Recent development and research priorities on cool and super cool materials to mitigate urban heat island. Renew. Energy 161:792–807
    [Google Scholar]
  67. 67.
    Feng J, Khan A, Van Doan Q, Gao K, Santamouris M. 2021. The heat mitigation potential and climatic impact of super-cool broadband radiative coolers on a city scale. Cell Rep. Phys. Sci. 2:7100485
    [Google Scholar]
  68. 68.
    Tang K, Dong K, Li J, Gordon MP, Reichertz FG et al. 2021. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374:65741504–9
    [Google Scholar]
  69. 69.
    Garshasbi S, Huang S, Valenta J, Santamouris M. 2020. Can quantum dots help to mitigate urban overheating? An experimental and modelling study. Sol. Energy 206:Jan.308–16
    [Google Scholar]
  70. 70.
    Yenneti K, Ding L, Prasad D, Ulpiani G, Paolini R et al. 2020. Urban overheating and cooling potential in Australia: an evidence-based review. Climate 8:11126
    [Google Scholar]
  71. 71.
    Gunawardena KR, Wells MJ, Kershaw T. 2017. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 584–585:1040–55
    [Google Scholar]
  72. 72.
    Santamouris M, Fiorito F. 2021. On the impact of modified urban albedo on ambient temperature and heat related mortality. Solar Energy 216:493–507
    [Google Scholar]
  73. 73.
    Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. 2014. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515:7528540–44
    [Google Scholar]
  74. 74
    Hsu P-C, Song AY, Catrysse PB, Liu C, Peng Y et al. 2016. Radiative human body cooling by nanoporous polyethylene textile. Science 353:63031019–23
    [Google Scholar]
  75. 75.
    Zeng S, Pian S, Su M, Wang Z, Wu M et al. 2021. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373:6555692–96
    [Google Scholar]
  76. 76.
    Zhu B, Li W, Zhang Q, Li D, Liu X et al. 2021. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16:121342–48
    [Google Scholar]
  77. 77.
    Li T, Zhai Y, He S, Gan W, Wei Z et al. 2019. A radiative cooling structural material. Science 364:6442760–63
    [Google Scholar]
  78. 78.
    Yalcin R, Blandre E, Joulain K, Drevillion J. 2021. Colored radiative cooling coatings with fluorescence. J. Photonics Energy 11:3032104
    [Google Scholar]
  79. 79.
    Xue X, Meng Q, Li Y, Zhang QM, Li S et al. 2020. Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32:421906751
    [Google Scholar]
  80. 80.
    Min S, Jeon S, Yun K, Shin J. 2022. All-color sub-ambient radiative cooling based on photoluminescence. ACS Photonics 9:41196–1205
    [Google Scholar]
  81. 81.
    Tiarks F, Frechen T, Kirsch S, Leuninger J, Melan M et al. 2003. Formulation effects on the distribution of pigment particles in paints. Prog. Org. Coat. 48:2–4140–52
    [Google Scholar]
  82. 82.
    Auger JC, Stout B. 2012. Dependent light scattering in white paint films: clarification and application of the theoretical concepts. J. Coat. Technol. Res. 9:3287–95
    [Google Scholar]
  83. 83.
    Costa JRC, Correia C, Goís JR, Silva SMC, Antunes FE et al. 2017. Efficient dispersion of TiO2 using tailor made poly(acrylic acid) − based block copolymers, and its incorporation in water based paint formulation. Prog. Org. Coat. 104:34–42
    [Google Scholar]
  84. 84.
    Dong S, Quek JY, Van Herk AM, Jana S 2020. Polymer-encapsulated TiO2 for the improvement of NIR reflectance and total solar reflectance of cool coatings. Ind. Eng. Chem. Res. 59:4017901–10
    [Google Scholar]
  85. 85.
    Mandal J, Fu Y, Overvig AC, Jia M, Sun K et al. 2018. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362:6412315–19
    [Google Scholar]
  86. 86.
    Zahir M, Benlattar M. 2021. Design of radiative cooler based on porous TiO2 for improving solar cells’ performance. Appl. Opt. 60:2445–51
    [Google Scholar]
  87. 87.
    Liu J, Tang H, Jiang C, Wu S, Ye L et al. 2022. Micro-nano porous structure for efficient daytime radiative sky cooling. Adv. Funct. Mater. 32:442206962
    [Google Scholar]
  88. 88.
    Li D, Liu X, Li W, Lin Z, Zhu B et al. 2021. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16:2153–58
    [Google Scholar]
  89. 89.
    Wang T, Wu Y, Shi L, Hu X, Chen M, Wu L. 2021. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12:365
    [Google Scholar]
  90. 90.
    Gao Y, Song X, Farooq AS, Zhang P. 2021. Cooling performance of porous polymer radiative coating under different environmental conditions throughout all-year. Sol. Energy 228:474–85
    [Google Scholar]
  91. 91.
    Liu K, Li X, Wang S, Gao X. 2022. Assessing the effects of urban green landscape on urban thermal environment dynamic in a semiarid city by integrated use of airborne data, satellite imagery and land surface model. Int. J. Appl. Earth Obs. Geoinf. 107:102674
    [Google Scholar]
  92. 92.
    Song J, Zhang W, Sun W, Pan M, Tian F et al. 2022. Durable radiative cooling against environmental aging. Nat. Commun. 13:14805
    [Google Scholar]
  93. 93.
    Mohammed A, Khan A, Santamouris M. 2021. On the mitigation potential and climatic impact of modified urban albedo on a subtropical desert city. Build. Environ. 206:4108276
    [Google Scholar]
  94. 94.
    Eur. Comm 2023. Green infrastructure. European Commission https://environment.ec.europa.eu/topics/nature-and-biodiversity/green-infrastructure_en
    [Google Scholar]
  95. 95.
    Ballinas M, Barradas VL. 2016. The urban tree as a tool to mitigate the urban heat island in Mexico City: a simple phenomenological model. J. Environ. Qual. 45:1157–66
    [Google Scholar]
  96. 96.
    Jones H. 2013. Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology Cambridge, UK: Cambridge Univ. Press. , 3rd ed..
  97. 97.
    Lu Y, Kueppers L. 2015. Increased heat waves with loss of irrigation in the United States. Environ. Res. Lett. 10:6064010
    [Google Scholar]
  98. 98.
    Elsayed ISM. 2012. Mitigation of the urban heat island of the city of Kuala Lumpur, Malaysia. Middle East J. Sci. Res. 11:111602–13
    [Google Scholar]
  99. 99.
    Jonsson P. 2004. Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana. Int. J. Climatol. 24:101307–22
    [Google Scholar]
  100. 100.
    Santamouris M, Osmond P. 2020. Increasing green infrastructure in cities: impact on ambient temperature, air quality and heat-related mortality and morbidity. Buildings 10:12233
    [Google Scholar]
  101. 101.
    Hamada S, Ohta T. 2010. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For. Urban Green. 9:115–24
    [Google Scholar]
  102. 102.
    Drake JE, Tjoelker MG, Vårhammar A, Medlyn BE, Reich PB et al. 2018. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Change Biol. 24:62390–402
    [Google Scholar]
  103. 103.
    Schwaab J, Meier R, Mussetti G, Seneviratne S, Bürgi C, Davin EL 2021. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 12:16763
    [Google Scholar]
  104. 104.
    Saaroni H, Amorim JH, Hiemstra JA, Pearlmutter D. 2018. Urban Green Infrastructure as a tool for urban heat mitigation: survey of research methodologies and findings across different climatic regions. Urban Clim. 24:94–110
    [Google Scholar]
  105. 105.
    Vahmani P, Ban-Weiss G. 2016. Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought. Geophys. Res. Lett. 43:158240–49
    [Google Scholar]
  106. 106.
    Santamouris M, Kolokotsa D. 2016. Urban Climate Mitigation Techniques London: Routledge. , 1st ed..
  107. 107.
    Qin Y. 2015. A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 52:445–59
    [Google Scholar]
  108. 108.
    Yinfei D, Qin S, Shengyue W. 2015. Bidirectional heat induced structure of asphalt pavement for reducing pavement temperature. Appl. Therm. Eng. 75:298–306
    [Google Scholar]
  109. 109.
    Peretti C, Zarrella A, De Carli M, Zecchin R. 2013. The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review. Renew. Sustain. Energy Rev. 28:107–16
    [Google Scholar]
  110. 110.
    Tiedje EW, Guo P. 2014. Modeling the influence of particulate geometry on the thermal conductivity of composites. J. Mater. Sci. 49:165586–97
    [Google Scholar]
  111. 111.
    Zoras S, Dimoudi A 2016. Exploiting earth cooling to mitigate heat on cities’ scale. Urban Climate Mitigation Techniques M Santamouris, D Kolokotsa 134–45 London: Routledge
    [Google Scholar]
  112. 112.
    Jiang W, Xiao J, Yuan D, Lu H, Xu S, Huang Y. 2018. Design and experiment of thermoelectric asphalt pavements with power-generation and temperature-reduction functions. Energy Build 169:39–47
    [Google Scholar]
  113. 113.
    Efthymiou C, Santamouris M, Kolokotsa D, Koras A. 2016. Development and testing of photovoltaic pavement for heat island mitigation. Sol. Energy 130:148–60
    [Google Scholar]
  114. 114.
    Wang J, Meng Q, Tan K, Santamouris M. 2022. Evaporative cooling performance estimation of pervious pavement based on evaporation resistance. Build. Environ. 217:109083
    [Google Scholar]
  115. 115.
    Chatzidimitriou A, Liveris P, Bruse M, Topli L. 2013. Urban redevelopment and microclimate improvement: a design project in Thessaloniki, Greece. Conference: PLEA2013 - 29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany 10–12 September 2013 Munich: PLEA
    [Google Scholar]
  116. 116.
    Santamouris M. 2013. Using cool pavements as a mitigation strategy to fight urban heat island—a review of the actual developments. Renew. Sustain. Energy Rev. 26:224–40
    [Google Scholar]
  117. 117.
    Liu Y, Li T, Yu L. 2020. Urban heat island mitigation and hydrology performance of innovative permeable pavement: a pilot-scale study. J. Clean. Prod. 244:118938
    [Google Scholar]
  118. 118.
    Bao T, Liu Z(L), Zhang X, He Y. 2019. A drainable water-retaining paver block for runoff reduction and evaporation cooling. J. Clean. Prod. 228:418–24
    [Google Scholar]
  119. 119.
    Salamanca F, Georgescu M, Mahalov A, Moustaoui M, Martilli A. 2016. Citywide impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand. Bound.-Layer Meteorol 161:1203–21
    [Google Scholar]
  120. 120.
    Erell E, Zhou B. 2022. The effect of increasing surface cover vegetation on urban microclimate and energy demand for building heating and cooling. Build. Environ. 213:108867
    [Google Scholar]
  121. 121.
    Santamouris M, Paolini R, Haddad S, Synnefa A, Garshasbi S et al. 2020. Heat mitigation technologies can improve sustainability in cities. An holistic experimental and numerical impact assessment of urban overheating and related heat mitigation strategies on energy consumption, indoor comfort, vulnerability and heat-related mortality and morbidity in cities. Energy Build 217:110002
    [Google Scholar]
  122. 122.
    Garshasbi S, Feng J, Paolini R, Duverge JJ, Bartesaghi-Koc C et al. 2023. On the energy impact of cool roofs in Australia. Energy Build 278:1112577
    [Google Scholar]
  123. 123.
    Santamouris M, Paolini R, Haddad S, Gao K, Feng J et al. 2022. Urban heat and mitigation potential in Riyadh, KSA Pap UNSW Sydney, Aus.:
  124. 124.
    Di Nardo F, Saulle R, La Torre G. 2010. Green areas and health outcomes: a systematic review of the scientific literature. Ital. J. Public Health 7:4402–13
    [Google Scholar]
  125. 125.
    Silva HR, Phelan PE, Golden JS. 2010. Modeling effects of urban heat island mitigation strategies on heat-related morbidity: a case study for Phoenix, Arizona, USA. Int. J. Biometeorol. 54:113–22
    [Google Scholar]
  126. 126.
    Garshasbi S, Haddad S, Paolini R, Santamouris M, Papangelis G et al. 2020. Urban mitigation and building adaptation to minimize the future cooling energy needs. Sol. Energy 204:708–19
    [Google Scholar]
  127. 127.
    Zhao L, Oleson K, Bou-Zeid E, Krayenhoff ES, Bray A et al. 2021. Global multi-model projections of local urban climates. Nat. Clim. Change 11:2152–57
    [Google Scholar]
  128. 128.
    Oleson K. 2012. Contrasts between Urban and rural climate in CCSM4 CMIP5 climate change scenarios. J. Clim. 25:51390–412
    [Google Scholar]
  129. 129.
    Roberge F, Sushama L. 2018. Urban heat island in current and future climates for the island of Montreal. Sustain. Cities Soc.40501–12
    [Google Scholar]
  130. 130.
    Lo YTE, Mitchell DM, Bohnenstengel SI, Collins M, Hawkins E et al. 2020. U.K. climate projections: summer daytime and nighttime urban heat island changes in England's major cities. J. Clim. 33:209015–30
    [Google Scholar]
  131. 131.
    Lemonsu A, Viguié V, Daniel M, Masson V. 2015. Vulnerability to heat waves: impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Clim. 14:586–605
    [Google Scholar]
  132. 132.
    USGCRP (US Glob. Change Res. Progr.) 2018. Fourth National Climate Assessment, Vol. 2 Impacts, Risks, and Adaptation in the United States. Washington, DC: USGCRP
  133. 133.
    Chen L, Frauenfeld OW. 2016. Impacts of urbanization on future climate in China. Clim. Dyn. 47:1–2345–57
    [Google Scholar]
  134. 134.
    Imran HM, Kala J, Ng AWM, Muthukumaran S. 2019. Impacts of future urban expansion on urban heat island effects during heatwave events in the city of Melbourne in southeast Australia. Q. J. R. Meteorol. Soc. 145:7232586–602
    [Google Scholar]
  135. 135.
    Haddad S, Paolini R, Synnefa A, Santamouris M 2018. Mitigation of urban overheating in three Australian cities (Darwin, Alice Springs and Western Sydney). Engaging Architectural Science: Meeting the Challenges of Higher Density P Rajagopalan, MM Andamon 577–84. Melb., Aus.: ANZAScA
    [Google Scholar]
  136. 136.
    Santamouris M. 2016. Cooling the buildings - past, present and future. Energy Build 128:617–38
    [Google Scholar]
  137. 137.
    Huang C, Barnett AG, Wang X, Vaneckova P, Fitzgerald G, Tong S. 2011. Projecting future heat-related mortality under climate change scenarios: a systematic review. Environ. Health Perspect. 119:121681–90
    [Google Scholar]
  138. 138.
    Gosling SN, Hondula DM, Bunker A, Ibarreta D, Liu J et al. 2017. Adaptation to climate change: a comparative analysis of modeling methods for heat-related mortality. Environ. Health Perspect. 125:8087008
    [Google Scholar]
  139. 139.
    Poyatos R, Granda V, Molowny-Horas R, Mencuccini M, Steppe K, Martínez-Vilalta J. 2016. SAPFLUXNET: towards a global database of sap flow measurements. Tree Physiol 36:121449–55
    [Google Scholar]
  140. 140.
    Georgescu M, Arabi M, Chow WTL, Mack E, Seto KC. 2021. Focus on sustainable cities: urban solutions toward desired outcomes. Environ. Res. Lett. 16:12120201
    [Google Scholar]
  141. 141.
    Gupta G. 2012.. ‘ Cool roofs’ mandatory for all new buildings. The Indian Express Aug. 16. http://archive.indianexpress.com/news/-cool-roofs-mandatory-for-all-new-buildings/988898/
    [Google Scholar]
  142. 142.
    US Environ. Prot. Agency. Heat island effect. United States Environmental Protection Agency https://www.epa.gov/heatislands
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112321-093021
Loading
/content/journals/10.1146/annurev-environ-112321-093021
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error