1932

Abstract

Buildings are key in supporting human activities and well-being by providing shelter and other important services to their users. Buildings are, however, also responsible for major energy use and greenhouse gas (GHG) emissions during their life cycle. Improving the quality of services provided by buildings while reaching low energy demand (LED) levels is crucial for climate and sustainability targets. Building sector models have become essential tools for decision support on strategies to reduce energy demand and GHG emissions. Yet current models have significant limitations in their ability to assess the transformations required for LED. We review building sector models ranging from the subnational to the global scale to identify best practices and critical gaps in representing transformations toward LED futures. We focus on three key dimensions of intervention (socio-behavioral, infrastructural, and technological), three megatrends (digitalization, sharing economy, and circular economy), and decent living standards. This review recommends the model developments needed to better assess LED transformations in buildings and support decision-making toward sustainability targets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112321-102921
2023-11-13
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112321-102921.html?itemId=/content/journals/10.1146/annurev-environ-112321-102921&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fell MJ. 2017. Energy services: a conceptual review. Energy Res. Soc. Sci. 27:129–40
    [Google Scholar]
  2. 2.
    Kalt G, Wiedenhofer D, Görg C, Haberl H. 2019. Conceptualizing energy services: a review of energy and well-being along the Energy Service Cascade. Energy Res. Soc. Sci. 53:47–58
    [Google Scholar]
  3. 3.
    Rao ND, Min J. 2017. Decent living standards: material prerequisites for human wellbeing. Soc. Indic. Res. 138:1225–44
    [Google Scholar]
  4. 4.
    Rao ND, Wilson C. 2021. Advancing energy and well-being research. Nat. Sustain. 5:298–103
    [Google Scholar]
  5. 5.
    Cabeza LF, Bai Q, Bertoldi P, Kihila J, Lucena AFP et al. 2022. Buildings. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change PR Shukla, J Skea, R Slade, A Al Khourdajie, R van Diemen, et al Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  6. 6.
    IEA (Int. Energy Agency) 2019. Global status report for buildings and construction 2019: towards a zero-emission, efficient and resilient buildings and construction sector Paris: IEA https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019
    [Google Scholar]
  7. 7.
    UN Gen. Assem 2015. Transforming our world: the 2030 Agenda for Sustainable Development Oct. 21 UN Doc A/RES/70/1. UN Gen. Assem., New York, NY. https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf
    [Google Scholar]
  8. 8.
    Scrucca F, Ingrao C, Barberio G, Matarazzo A, Lagioia G. 2023. On the role of sustainable buildings in achieving the 2030 UN Sustainable Development Goals. Environ. Impact Assess. Rev. 100:107069
    [Google Scholar]
  9. 9.
    Creutzig F, Roy J, Devine-Wright P, Díaz-José J, Geels FW et al. 2022. Demand, services and social aspects of mitigation. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change PR Shukla, J Skea, R Slade, A Al Khourdajie, R van Diemen, et al Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  10. 10.
    Creutzig F, Niamir L, Bai X, Callaghan M, Cullen J et al. 2022. Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nat. Clim. Change 12:136–46
    [Google Scholar]
  11. 11.
    Patt A, van Vliet O, Lilliestam J, Pfenninger S. 2019. Will policies to promote energy efficiency help or hinder achieving a 1.5°C climate target?. Energy Effic. 12:2551–65
    [Google Scholar]
  12. 12.
    Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V et al. 2018. A low energy demand scenario for meeting the 1.5°C target and Sustainable Development Goals without negative emission technologies. Nat. Energy 3:515–27
    [Google Scholar]
  13. 13.
    Langevin J, Reyna JL, Ebrahimigharehbaghi S, Sandberg N, Fennell P et al. 2020. Developing a common approach for classifying building stock energy models. Renew. Sustain. Energy Rev. 133:110276
    [Google Scholar]
  14. 14.
    Molnár G, Ürge-Vorsatz D, Chatterjee S. 2022. Estimating the global technical potential of building-integrated solar energy production using a high-resolution geospatial model. J. Clean. Prod. 375:134133
    [Google Scholar]
  15. 15.
    Swan LG, Ugursal VI. 2009. Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew. Sustain. Energy Rev. 13:81819–35
    [Google Scholar]
  16. 16.
    Chatterjee S, Stavrakas V, Oreggioni G, Süsser D, Staffell I et al. 2022. Existing tools, user needs and required model adjustments for energy demand modelling of a carbon-neutral Europe. Energy Res. Soc. Sci. 90:102662
    [Google Scholar]
  17. 17.
    Mahler AG. 2017. Global South Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  18. 18.
    Hayward B, Roy J. 2019. Sustainable living: bridging the North-South divide in lifestyles and consumption debates. Annu. Rev. Environ. Resour. 44:157–75
    [Google Scholar]
  19. 19.
    IPCC (Intergov. Panel Clim. Change) 2022. Annex III: scenarios and modelling methods. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change PR Shukla, J Skea, R Slade, A Al Khourdajie, R van Diemen, et al Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  20. 20.
    Niamir L, Ivanova O, Filatova T. 2020. Economy-wide impacts of behavioral climate change mitigation: linking agent-based and computable general equilibrium models. Environ. Model. Softw. 134:104839
    [Google Scholar]
  21. 21.
    Anderson K, Peters G. 2016. The trouble with negative emissions. Science 354:6309182–83
    [Google Scholar]
  22. 22.
    Di Giulio A, Fuchs D. 2014. Sustainable consumption corridors: concept, objections, and responses. GAIA Ecol. Perspect. Sci. Soc. 23:3184–92
    [Google Scholar]
  23. 23.
    Burke MJ. 2020. Energy-sufficiency for a just transition: a systematic review. Energies 13:102444
    [Google Scholar]
  24. 24.
    Lorek S, Spangenberg JH. 2019. Energy sufficiency through social innovation in housing. Energy Policy 126:287–94
    [Google Scholar]
  25. 25.
    Leach M, Raworth K, Rockström J. 2013. Between social and planetary boundaries: navigating pathways in the safe and just space for humanity. World Social Science Report, 2013: Changing Global Environments84–89. Paris: UNESCO Publ.
    [Google Scholar]
  26. 26.
    O'Neill DW, Fanning AL, Lamb WF, Steinberger JK. 2018. A good life for all within planetary boundaries. Nat. Sustain. 1:288–95
    [Google Scholar]
  27. 27.
    Gilg A, Barr S, Ford N. 2005. Green consumption or sustainable lifestyles? Identifying the sustainable consumer. Futures 37:6481–504
    [Google Scholar]
  28. 28.
    Niamir L, Kiesewetter G, Wagner F, Schöpp W, Filatova T et al. 2020. Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions. Clim. Change 158:2141–60
    [Google Scholar]
  29. 29.
    Nyborg K, Anderies JM, Dannenberg A, Lindahl T, Schill C et al. 2016. Social norms as solutions. Science 354:630842–43
    [Google Scholar]
  30. 30.
    Cialdini RB. 2006. Influence: The Psychology of Persuasion New York: Harper Collins
    [Google Scholar]
  31. 31.
    Henry ML, Ferraro PJ, Kontoleon A. 2019. The behavioural effect of electronic home energy reports: evidence from a randomised field trial in the United States. Energy Policy 132:1256–61
    [Google Scholar]
  32. 32.
    Jachimowicz JM, Hauser OP, O'Brien JD, Sherman E, Galinsky AD 2018. The critical role of second-order normative beliefs in predicting energy conservation. Nat. Hum. Behav. 2:10757–64
    [Google Scholar]
  33. 33.
    Ito K, Ida T, Tanaka M. 2018. Moral suasion and economic incentives: field experimental evidence from energy demand. Am. Econ. J. Econ. Policy 10:1240–67
    [Google Scholar]
  34. 34.
    Karlin B, Zinger JF, Ford R. 2015. The effects of feedback on energy conservation: a meta-analysis. Psychol. Bull. 141:1205–27
    [Google Scholar]
  35. 35.
    Marangoni G, Tavoni M. 2021. Real-time feedback on electricity consumption: evidence from a field experiment in Italy. Energy Effic. 14:113
    [Google Scholar]
  36. 36.
    McKerracher C, Torriti J. 2013. Energy consumption feedback in perspective: integrating Australian data to meta-analyses on in-home displays. Energy Effic. 6:2387–405
    [Google Scholar]
  37. 37.
    Szałek BZ. 2013. Some praxiological reflections on the so-called ‘Overton window of political possibilities’, ‘framing’ and related problems. Real. Politics 4:237–57
    [Google Scholar]
  38. 38.
    Schubert C. 2017. Green nudges: Do they work? Are they ethical?. Ecol. Econ. 132:329–42
    [Google Scholar]
  39. 39.
    Thaler RH, Sunstein CR. 2009. Nudge: Improving Decisions About Health, Wealth, and Happiness New York: Penguin Press
    [Google Scholar]
  40. 40.
    Ebeling F, Lotz S. 2015. Domestic uptake of green energy promoted by opt-out tariffs. Nat. Clim. Change 5:9868–71
    [Google Scholar]
  41. 41.
    Janda KB, Parag Y. 2013. A middle-out approach for improving energy performance in buildings. Build. Res. Inform. 41:139–50
    [Google Scholar]
  42. 42.
    Hicks J, Ison N. 2018. An exploration of the boundaries of ‘community’ in community renewable energy projects: navigating between motivations and context. Energy Policy 113:523–34
    [Google Scholar]
  43. 43.
    Murakami S, Levine MD, Yoshino H, Inoue T, Ikaga T et al. 2009. Overview of energy consumption and GHG mitigation technologies in the building sector of Japan. Energy Effic. 2:2179–94
    [Google Scholar]
  44. 44.
    Hearn AX. 2022. Positive energy district stakeholder perceptions and measures for energy vulnerability mitigation. Appl. Energy 322:119477
    [Google Scholar]
  45. 45.
    Beckage B, Lacasse K, Winter JM, Gross LJ, Fefferman N et al. 2020. The Earth has humans, so why don't our climate models?. Clim. Change 163:1181–88
    [Google Scholar]
  46. 46.
    Farmer JD, Hepburn C, Mealy P, Teytelboym A. 2015. A Third Wave in the economics of climate change. Environ. Resour. Econ. 62:2329–57
    [Google Scholar]
  47. 47.
    Krumm A, Süsser D, Blechinger P. 2022. Modelling social aspects of the energy transition: What is the current representation of social factors in energy models?. Energy 239:121706
    [Google Scholar]
  48. 48.
    Stern N. 2016. Economics: Current climate models are grossly misleading. Nature 530:7591407–9
    [Google Scholar]
  49. 49.
    Niamir L, Filatova T, Voinov A, Bressers H. 2018. Transition to low-carbon economy: assessing cumulative impacts of individual behavioral changes. Energy Policy 118:325–45
    [Google Scholar]
  50. 50.
    Jager W. 2021. Using agent-based modelling to explore behavioural dynamics affecting our climate. Curr. Opin. Psychol. 42:133–39
    [Google Scholar]
  51. 51.
    Moglia M, Podkalicka A, McGregor J. 2018. An agent-based model of residential energy efficiency adoption. J. Artif. Soc. Soc. Simul. 21:33
    [Google Scholar]
  52. 52.
    Rai V, Henry AD. 2016. Agent-based modelling of consumer energy choices. Nat. Clim. Change 6:6556–62
    [Google Scholar]
  53. 53.
    Savin I, Creutzig F, Filatova T, Foramitti J, Konc T et al. 2023. Agent-based modelling to integrate elements from different disciplines for ambitious climate policy. WIREs Clim. Change 14:2e811
    [Google Scholar]
  54. 54.
    Kiesling E, Günther M, Stummer C, Wakolbinger LM. 2012. Agent-based simulation of innovation diffusion: a review. Cent. Eur. J. Oper. Res. 20:2183–230
    [Google Scholar]
  55. 55.
    Gaspard A, Chateau L, Laruelle C, Lafitte B, Léonardon P et al. 2023. Introducing sufficiency in the building sector in net-zero scenarios for France. Energy Build. 278:112590
    [Google Scholar]
  56. 56.
    Niamir L, Ivanova O, Filatova T, Voinov A, Bressers H. 2020. Demand-side solutions for climate mitigation: bottom-up drivers of household energy behavior change in the Netherlands and Spain. Energy Res. Soc. Sci. 62:101356
    [Google Scholar]
  57. 57.
    Creutzig F, Agoston P, Minx JC, Canadell JG, Andrew RM et al. 2016. Urban infrastructure choices structure climate solutions. Nat. Clim. Change 6:121054–56
    [Google Scholar]
  58. 58.
    Lanau M, Liu G, Kral U, Wiedenhofer D, Keijzer E et al. 2019. Taking stock of built environment stock studies: progress and prospects. Environ. Sci. Technol. 53:158499–515
    [Google Scholar]
  59. 59.
    Churkina G, Organschi A, Reyer CPO, Ruff A, Vinke K et al. 2020. Buildings as a global carbon sink. Nat. Sustain. 3:4269–76
    [Google Scholar]
  60. 60.
    Cabrera Serrenho A, Drewniok M, Dunant C, Allwood JM. 2019. Testing the greenhouse gas emissions reduction potential of alternative strategies for the English housing stock. Resour. Conserv. Recycl. 144:267–75
    [Google Scholar]
  61. 61.
    Gregory J, AzariJafari H, Vahidi E, Guo F, Ulm F-J, Kirchain R. 2021. The role of concrete in life cycle greenhouse gas emissions of US buildings and pavements. PNAS 118:37e2021936118
    [Google Scholar]
  62. 62.
    Pauliuk S, Heeren N, Berrill P, Fishman T, Nistad A et al. 2021. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 12:15097
    [Google Scholar]
  63. 63.
    Yang X, Hu M, Tukker A, Zhang C, Huo T, Steubing B. 2022. A bottom-up dynamic building stock model for residential energy transition: a case study for the Netherlands. Appl. Energy 306:118060
    [Google Scholar]
  64. 64.
    Zhong X, Hu M, Deetman S, Steubing B, Lin HX et al. 2021. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 12:16126
    [Google Scholar]
  65. 65.
    Mishra A, Humpenöder F, Churkina G, Reyer CPO, Beier F et al. 2022. Land use change and carbon emissions of a transformation to timber cities. Nat. Commun. 13:14889
    [Google Scholar]
  66. 66.
    Erb K, Haberl H, Le Noë J, Tappeiner U, Tasser E, Gingrich S. 2022. Changes in perspective needed to forge ‘no-regret’ forest-based climate change mitigation strategies. Glob. Change Biol. Bioenergy 14:3246–57
    [Google Scholar]
  67. 67.
    Li VC. 2019. Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure Berlin: Springer
    [Google Scholar]
  68. 68.
    Henrion L, Zhang D, Li V, Sick V. 2021. Built infrastructure renewal and climate change mitigation can both find solutions in CO2. Front. Sustain. 2:733133
    [Google Scholar]
  69. 69.
    Pessoa S, Guimarães AS, Lucas SS, Simões N. 2021. 3D printing in the construction industry - a systematic review of the thermal performance in buildings. Renew. Sustain. Energy Rev. 141:110794
    [Google Scholar]
  70. 70.
    Sakin M, Kiroglu YC. 2017. 3D printing of buildings: construction of the sustainable houses of the future by BIM. Energy Procedia 134:702–11
    [Google Scholar]
  71. 71.
    Levesque A, Pietzcker RC, Luderer G. 2019. Halving energy demand from buildings: the impact of low consumption practices. Technol. Forecast. Soc. Change 146:253–66
    [Google Scholar]
  72. 72.
    Berrill P, Hertwich EG. 2021. Material flows and GHG emissions from housing stock evolution in US counties, 2020–60. Build. Cities 2:1599–617
    [Google Scholar]
  73. 73.
    Privitera R, Evola G, La Rosa D, Costanzo V 2021. Green infrastructure to reduce the energy demand of cities. Urban Microclimate Modelling for Comfort and Energy Studies M Palme, A Salvati 485–503. Cham, Switz: Springer
    [Google Scholar]
  74. 74.
    Vadovics E, Boza-Kiss B. 2013. Voluntary consumption reduction - experience from three consecutive residential programmes in Hungary. Residential energy master as a new carrier?. Bridging Across Communities and Cultures Towards Sustainable Consumption. SCORAI Europe Workshop Proceedings J Backhaus, S Lorek 53–72. Istanbul: SCORAI https://d-nb.info/1079506993/34
    [Google Scholar]
  75. 75.
    Sahakian M, Rau H, Grealis E, Godin L, Wallenborn G et al. 2021. Challenging social norms to recraft practices: a living lab approach to reducing household energy use in eight European countries. Energy Res. Soc. Sci. 72:101881
    [Google Scholar]
  76. 76.
    Elgamal AH, Vahdati M, Shahrestani M. 2022. Assessing the economic and energy efficiency for multi-energy virtual power plants in regulated markets: a case study in Egypt. Sustain. Cities Soc. 83:103968
    [Google Scholar]
  77. 77.
    Boza-Kiss B, Bertoldi P, Della Valle N, Economidou M 2021. One-stop shops for residential building energy renovation in the EU https://publications.jrc.ec.europa.eu/repository/handle/JRC125380
    [Google Scholar]
  78. 78.
    Pauliuk S, Heeren N. 2021. Material efficiency and its contribution to climate change mitigation in Germany: a deep decarbonization scenario analysis until 2060. J. Ind. Ecol. 25:2479–93
    [Google Scholar]
  79. 79.
    Heeren N, Hellweg S. 2019. Tracking construction material over space and time: prospective and geo-referenced modeling of building stocks and construction material flows. J. Ind. Ecol. 23:1253–67
    [Google Scholar]
  80. 80.
    Deetman S, Marinova S, van der Voet E, van Vuuren DP, Edelenbosch O, Heijungs R. 2020. Modelling global material stocks and flows for residential and service sector buildings towards 2050. J. Clean. Prod. 245:118658
    [Google Scholar]
  81. 81.
    Haberl H, Wiedenhofer D, Schug F, Frantz D, Virág D et al. 2021. High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environ. Sci. Technol. 55:53368–79
    [Google Scholar]
  82. 82.
    Marinova S, Deetman S, van der Voet E, Daioglou V. 2020. Global construction materials database and stock analysis of residential buildings between 1970–2050. J. Clean. Prod. 247:119146
    [Google Scholar]
  83. 83.
    Güneralp B, Zhou Y, Ürge-Vorsatz D, Gupta M, Yu S et al. 2017. Global scenarios of urban density and its impacts on building energy use through 2050. PNAS 114:348945–50
    [Google Scholar]
  84. 84.
    Fishman T, Heeren N, Pauliuk S, Berrill P, Tu Q et al. 2021. A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling. J. Ind. Ecol. 25:2305–20
    [Google Scholar]
  85. 85.
    Millward-Hopkins J, Steinberger JK, Rao ND, Oswald Y. 2020. Providing decent living with minimum energy: a global scenario. Glob. Environ. Change 65:102168
    [Google Scholar]
  86. 86.
    Karlen C, Pagani A, Binder CR. 2022. Obstacles and opportunities for reducing dwelling size to shrink the environmental footprint of housing: tenants’ residential preferences and housing choice. J. Hous. Built Environ. 37:31367–408
    [Google Scholar]
  87. 87.
    Edelenbosch O, Rovelli D, Levesque A, Marangoni G, Tavoni M. 2021. Long term, cross-country effects of buildings insulation policies. Technol. Forecast. Soc. Change 170:120887
    [Google Scholar]
  88. 88.
    Mastrucci A, van Ruijven B, Byers E, Poblete-Cazenave M, Pachauri S. 2021. Global scenarios of residential heating and cooling energy demand and CO2 emissions. Clim. Change 168:3–414
    [Google Scholar]
  89. 89.
    Grübler A. 1998. Technology and Global Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  90. 90.
    IEA (Int. Energy Agency) 2017. Energy Technology Perspectives 2017 - Catalysing Energy Technology Transformations Paris: OECD/IEA https://iea.blob.core.windows.net/assets/a6587f9f-e56c-4b1d-96e4-5a4da78f12fa/Energy_Technology_Perspectives_2017-PDF.pdf
    [Google Scholar]
  91. 91.
    Zissis G, Bertoldi P, Ribeiro Serrenho T. 2021. Update on the Status of LED-Lighting World Market Since 2018 Luxembourg: Publ. Off. Eur. Union
    [Google Scholar]
  92. 92.
    Tetri E, Sarvaranta A, Syri S. 2014. Potential of new lighting technologies in reducing household lighting energy use and CO2 emissions in Finland. Energy Effic. 7:4559–70
    [Google Scholar]
  93. 93.
    Alborzi F, Schmitz A, Stamminger R. 2017. Consumers’ comprehension of the EU energy label for washing machines. Tenside Surfactants Deterg. 54:4280–90
    [Google Scholar]
  94. 94.
    Boyano A, Espinosa N, Villanueva A. 2017. Follow-up of the preparatory study for Ecodesign and Energy Label for household washing machines and household washer dryers Tech. Rep. EUR 28807 EN Eur. Comm., Joint Res. Cent. Ispra, Italy:
    [Google Scholar]
  95. 95.
    Brockway PE, Sorrell S, Semieniuk G, Heun MK, Court V. 2021. Energy efficiency and economy-wide rebound effects: a review of the evidence and its implications. Renew. Sustain. Energy Rev. 141:110781
    [Google Scholar]
  96. 96.
    Slorach PC, Stamford L. 2021. Net zero in the heating sector: technological options and environmental sustainability from now to 2050. Energy Convers. Manag. 230:113838
    [Google Scholar]
  97. 97.
    Shimoda Y, Taniguchi-Matsuoka A, Inoue T, Otsuki M, Yamaguchi Y. 2017. Residential energy end-use model as evaluation tool for residential micro-generation. Appl. Thermal Eng. 114:1433–42
    [Google Scholar]
  98. 98.
    Milcarek RJ, Ahn J, Zhang J. 2017. Review and analysis of fuel cell-based, micro-cogeneration for residential applications: current state and future opportunities. Sci. Technol. Built Environ. 23:81224–43
    [Google Scholar]
  99. 99.
    Sadineni SB, Madala S, Boehm RF. 2011. Passive building energy savings: a review of building envelope components. Renew. Sustain. Energy Rev. 15:83617–31
    [Google Scholar]
  100. 100.
    Manzano-Agugliaro F, Montoya FG, Sabio-Ortega A, García-Cruz A. 2015. Review of bioclimatic architecture strategies for achieving thermal comfort. Renew. Sustain. Energy Rev. 49:736–55
    [Google Scholar]
  101. 101.
    Dequaire X. 2012. Passivhaus as a low-energy building standard: contribution to a typology. Energy Effic. 5:3377–91
    [Google Scholar]
  102. 102.
    Ürge-Vorsatz D, Khosla R, Bernhardt R, Chan YC, Vérez D et al. 2020. Advances toward a net-zero global building sector. Annu. Rev. Environ. Resour. 45:227–69
    [Google Scholar]
  103. 103.
    Brown D, Kivimaa P, Sorrell S. 2019. An energy leap? Business model innovation and intermediation in the ‘Energiesprong’ retrofit initiative. Energy Res. Soc. Sci. 58:101253
    [Google Scholar]
  104. 104.
    Mata É, Korpal AK, Cheng SH, Jiménez Navarro JP, Filippidou F et al. 2020. A map of roadmaps for zero and low energy and carbon buildings worldwide. Environ. Res. Lett. 15:11113003
    [Google Scholar]
  105. 105.
    Gaur A, Balyk O, Glynn J, Curtis J, Daly H. 2022. Low energy demand scenario for feasible deep decarbonisation: whole energy systems modelling for Ireland. Renew. Sustain. Energy Transit. 2:100024
    [Google Scholar]
  106. 106.
    Nemet G, Greene J. 2022. Innovation in low-energy demand and its implications for policy. Oxf. Open Energy 1:oiac003
    [Google Scholar]
  107. 107.
    Wilson C, Grubler A, Bento N, Healey S, De Stercke S, Zimm C. 2020. Granular technologies to accelerate decarbonization. Science 368:648636–39
    [Google Scholar]
  108. 108.
    Saunders HD, Roy J, Azevedo IML, Chakravarty D, Dasgupta S et al. 2021. Energy efficiency: What has research delivered in the last 40 years?. Annu. Rev. Environ. Resour. 46:135–65
    [Google Scholar]
  109. 109.
    Giraudet L-G, Guivarch C, Quirion P. 2012. Exploring the potential for energy conservation in French households through hybrid modeling. Energy Econ. 34:2426–45
    [Google Scholar]
  110. 110.
    WBGU 2019. German Advisory Council on Global Change (2019): Towards Our Common Digital Future Berlin: WBGU https://www.wbgu.de/fileadmin/user_upload/wbgu/publikationen/hauptgutachten/hg2019/pdf/WBGU_HGD2019_S.pdf
    [Google Scholar]
  111. 111.
    Kelly K. 2016. The Inevitable: Understanding the 12 Technological Forces that Will Shape Our Future New York: Viking
    [Google Scholar]
  112. 112.
    Creutzig F, Acemoglu D, Bai X, Edwards PN, Hintz MJ et al. 2022. Digitalization and the Anthropocene. Annu. Rev. Environ. Resour. 47:479–509
    [Google Scholar]
  113. 113.
    Wilson C, Kerr L, Sprei F, Vrain E, Wilson M. 2020. Potential climate benefits of digital consumer innovations. Annu. Rev. Environ. Resour. 45:113–44
    [Google Scholar]
  114. 114.
    Royal Society 2020. Digital Technology and the Planet: Harnessing Computing to Achieve Net Zero London: Royal Society
    [Google Scholar]
  115. 115.
    Hook A, Court V, Sovacool BK, Sorrell S. 2020. A systematic review of the energy and climate impacts of teleworking. Environ. Res. Lett. 15:9093003
    [Google Scholar]
  116. 116.
    Larson W, Zhao W. 2017. Telework: urban form, energy consumption, and greenhouse gas implications. Econ. Inq. 55:2714–35
    [Google Scholar]
  117. 117.
    O'Brien W, Yazdani Aliabadi F. 2020. Does telecommuting save energy? A critical review of quantitative studies and their research methods. Energy Build. 225:110298
    [Google Scholar]
  118. 118.
    Shimoda Y, Yamaguchi Y, Kawamoto K, Ueshige J, Iwai Y, Mizuno M. 2007. Effect of telecommuting on energy consumption in residential and non-residential sectors Presented at the 10th Conference of the International Building Performance Simulation Association Beijing: July 27–30. http://www.ibpsa.org/proceedings/bs2007/p653_final.pdf
    [Google Scholar]
  119. 119.
    Hargreaves T, Wilson C. 2017. Smart Homes and Their Users Cham, Switz: Springer
    [Google Scholar]
  120. 120.
    Al-Obaidi KM, Hossain M, Alduais NAM, Al-Duais HS, Omrany H, Ghaffarianhoseini A. 2022. A review of using IoT for energy efficient buildings and cities: a built environment perspective. Energies 15:165991
    [Google Scholar]
  121. 121.
    Yang H, Lee W, Lee H. 2018. IoT smart home adoption: the importance of proper level automation. J. Sens. 2018:1–11
    [Google Scholar]
  122. 122.
    Brown D, Hall S, Davis ME. 2019. Prosumers in the post subsidy era: an exploration of new prosumer business models in the UK. Energy Policy 135:110984
    [Google Scholar]
  123. 123.
    Park E, Kim S, Kim Y, Kwon SJ. 2018. Smart home services as the next mainstream of the ICT industry: determinants of the adoption of smart home services. Univ. Access Inf. Soc. 17:1175–90
    [Google Scholar]
  124. 124.
    Galperova E, Mazurova O. 2019. Digitalization and energy consumption. Proceedings of the VIth International Workshop ‘Critical Infrastructures: Contingency Management, Intelligent, Agent-Based, Cloud Computing and Cyber Security’ (IWCI 2019) Berlin: Springer Nature
    [Google Scholar]
  125. 125.
    Frenken K. 2017. Political economies and environmental futures for the sharing economy. Philos. Trans. R. Soc. A 375(2095):20160367
    [Google Scholar]
  126. 126.
    Pouri MJ. 2021. Eight impacts of the digital sharing economy on resource consumption. Resour. Conserv. Recycl. 168:105434
    [Google Scholar]
  127. 127.
    Zhang Z, Fu RJC. 2020. Accommodation experience in the sharing economy: a comparative study of Airbnb online reviews. Sustainability 12:2410500
    [Google Scholar]
  128. 128.
    Fremstad A, Underwood A, Zahran S. 2018. The environmental impact of sharing: household and urban economies in CO2 emissions. Ecol. Econ. 145:137–47
    [Google Scholar]
  129. 129.
    Ivanova D, Barrett J, Wiedenhofer D, Macura B, Callaghan M, Creutzig F. 2020. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15:9093001
    [Google Scholar]
  130. 130.
    Wiedenhofer D, Smetschka B, Akenji L, Jalas M, Haberl H. 2018. Household time use, carbon footprints, and urban form: a review of the potential contributions of everyday living to the 1.5°C climate target. Curr. Opin. Environ. Sustain. 30:7–17
    [Google Scholar]
  131. 131.
    Ivanova D, Büchs M. 2020. Household sharing for carbon and energy reductions: the case of EU countries. Energies 13:81909
    [Google Scholar]
  132. 132.
    Klint E, Peters G. 2021. Sharing is caring - the importance of capital goods when assessing environmental impacts from private and shared laundry systems in Sweden. Int. J. Life Cycle Assess. 26:61085–99
    [Google Scholar]
  133. 133.
    Gill B, Moeller S. 2018. GHG emissions and the rural-urban divide. A carbon footprint analysis based on the German Official Income and Expenditure Survey. Ecol. Econ. 145:160–69
    [Google Scholar]
  134. 134.
    Poom A, Ahas R. 2016. How does the environmental load of household consumption depend on residential location?. Sustainability 8:9799
    [Google Scholar]
  135. 135.
    Ghisellini P, Cialani C, Ulgiati S. 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 114:11–32
    [Google Scholar]
  136. 136.
    Hossain MdU, Ng ST, Antwi-Afari P, Amor B. 2020. Circular economy and the construction industry: existing trends, challenges and prospective framework for sustainable construction. Renew. Sustain. Energy Rev. 130:109948
    [Google Scholar]
  137. 137.
    Haas W, Krausmann F, Wiedenhofer D, Lauk C, Mayer A. 2020. Spaceship earth's odyssey to a circular economy - a century long perspective. Resour. Conserv. Recycl. 163:105076
    [Google Scholar]
  138. 138.
    Korhonen J, Honkasalo A, Seppälä J. 2018. Circular economy: the concept and its limitations. Ecol. Econ. 143:37–46
    [Google Scholar]
  139. 139.
    Cullen JM. 2017. Circular economy: theoretical benchmark or perpetual motion machine?. J. Ind. Ecol. 21:3483–86
    [Google Scholar]
  140. 140.
    Ghisellini P, Ripa M, Ulgiati S. 2018. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J. Clean. Prod. 178:618–43
    [Google Scholar]
  141. 141.
    Pauliuk S. 2018. Critical appraisal of the circular economy standard BS 8001:2017 and a dashboard of quantitative system indicators for its implementation in organizations. Resour. Conserv. Recycl. 129:81–92
    [Google Scholar]
  142. 142.
    Röck M, Saade MRM, Balouktsi M, Rasmussen FN, Birgisdottir H et al. 2020. Embodied GHG emissions of buildings – the hidden challenge for effective climate change mitigation. Appl. Energy 258:114107
    [Google Scholar]
  143. 143.
    Hertwich EG. 2021. Increased carbon footprint of materials production driven by rise in investments. Nat. Geosci. 14:3151–55
    [Google Scholar]
  144. 144.
    Volk R, Müller R, Reinhardt J, Schultmann F. 2019. An integrated material flows, stakeholders and policies approach to identify and exploit regional resource potentials. Ecol. Econ. 161:292–320
    [Google Scholar]
  145. 145.
    Cao Z, Liu G, Zhong S, Dai H, Pauliuk S. 2019. Integrating dynamic material flow analysis and computable general equilibrium models for both mass and monetary balances in prospective modeling: a case for the Chinese building sector. Environ. Sci. Technol. 53:1224–33
    [Google Scholar]
  146. 146.
    Schiller G, Gruhler K, Ortlepp R. 2017. Quantification of anthropogenic metabolism using spatially differentiated continuous MFA. Change Adapt. Socio-Ecol. Syst. 3:119–32
    [Google Scholar]
  147. 147.
    Tanikawa H, Fishman T, Okuoka K, Sugimoto K. 2015. The weight of society over time and space: a comprehensive account of the construction material stock of Japan, 1945–2010: the construction material stock of Japan. J. Ind. Ecol. 19:5778–91
    [Google Scholar]
  148. 148.
    Ajayebi A, Hopkinson P, Zhou K, Lam D, Chen H-M, Wang Y. 2020. Spatiotemporal model to quantify stocks of building structural products for a prospective circular economy. Resour. Conserv. Recycl. 162:105026
    [Google Scholar]
  149. 149.
    Arora M, Raspall F, Cheah L, Silva A. 2020. Buildings and the circular economy: estimating urban mining, recovery and reuse potential of building components. Resour. Conserv. Recycl. 154:104581
    [Google Scholar]
  150. 150.
    Buffat R, Froemelt A, Heeren N, Raubal M, Hellweg S. 2017. Big data GIS analysis for novel approaches in building stock modelling. Appl. Energy 208:277–90
    [Google Scholar]
  151. 151.
    Knöri C. 2015. Agent-based modelling of transitions towards sustainable construction material management: the case of Switzerland PhD Diss. Univ. Zürich
    [Google Scholar]
  152. 152.
    Daioglou V, Mikropoulos E, Gernaat D, van Vuuren DP. 2022. Efficiency improvement and technology choice for energy and emission reductions of the residential sector. Energy 243:122994
    [Google Scholar]
  153. 153.
    Pauliuk S, Arvesen A, Stadler K, Hertwich EG. 2017. Industrial ecology in integrated assessment models. Nat. Clim. Change 7:113–20
    [Google Scholar]
  154. 154.
    Hertwich EG, Ali S, Ciacci L, Fishman T, Heeren N et al. 2019. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environ. Res. Lett. 14:4043004
    [Google Scholar]
  155. 155.
    UN Habitat 2014. The right to adequate housing Fact Sheet 21/Rev.1 Nairobi: UN-Habitat
    [Google Scholar]
  156. 156.
    Behr DM, Chen L, Goel A, Haider KT, Singh S, Zaman A. 2021. Introducing the Adequate Housing Index : a new approach to estimate the adequate housing deficit within and across emerging economies Policy Res. Work. Pap. 9830 World Bank, Washington, DC
    [Google Scholar]
  157. 157.
    Berto R, Cechet G, Stival CA, Rosato P. 2020. Affordable housing versus urban land rent in widespread settlement areas. Sustainability 12:83129
    [Google Scholar]
  158. 158.
    Cournède B, Ziemann V, De Pace F. 2020. The future of housing: policy scenarios OECD Econ. Dep. Work. Pap. 1624 OECD Publ. Paris:
    [Google Scholar]
  159. 159.
    Mete S, Xue J. 2021. Integrating environmental sustainability and social justice in housing development: two contrasting scenarios. Prog. Plann. 151:100504
    [Google Scholar]
  160. 160.
    Kikstra JS, Mastrucci A, Min J, Riahi K, Rao ND. 2021. Decent living gaps and energy needs around the world. Environ. Res. Lett. 16:9095006
    [Google Scholar]
  161. 161.
    Cumming O, Elliott M, Overbo A, Bartram J. 2014. Does global progress on sanitation really lag behind water? An analysis of global progress on community- and household-level access to safe water and sanitation. PLOS ONE 9:12e114699
    [Google Scholar]
  162. 162.
    Martínez-Santos P. 2017. Does 91% of the world's population really have “sustainable access to safe drinking water”?. Int. J. Water Resour. Dev. 33:4514–33
    [Google Scholar]
  163. 163.
    Pelz S, Pachauri S, Rao N. 2021. Application of an alternative framework for measuring progress towards SDG 7.1. Environ. Res. Lett. 16:8084048
    [Google Scholar]
  164. 164.
    Rao ND, Min J, Mastrucci A. 2019. Energy requirements for decent living in India, Brazil and South Africa. Nat. Energy 4:1025–32
    [Google Scholar]
  165. 165.
    Kikstra JS, Vinca A, Lovat F, Boza-Kiss B, van Ruijven B et al. 2021. Climate mitigation scenarios with persistent COVID-19-related energy demand changes. Nat. Energy 6:1114–23
    [Google Scholar]
  166. 166.
    Pachauri S, Poblete-Cazenave M, Aktas A, Gidden MJ. 2021. Access to clean cooking services in energy and emission scenarios after COVID-19. Nat. Energy 6:1067–76
    [Google Scholar]
  167. 167.
    Poblete-Cazenave M, Pachauri S, Byers E, Mastrucci A, van Ruijven B. 2021. Global scenarios of household access to modern energy services under climate mitigation policy. Nat. Energy 6:824–33
    [Google Scholar]
  168. 168.
    Cameron C, Pachauri S, Rao ND, McCollum D, Rogelj J, Riahi K. 2016. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. Nat. Energy 1:115010
    [Google Scholar]
  169. 169.
    Howard G, Calow R, Macdonald A, Bartram J. 2016. Climate change and water and sanitation: likely impacts and emerging trends for action. Annu. Rev. Environ. Resour. 41:253–76
    [Google Scholar]
  170. 170.
    Khosla R, Miranda ND, Trotter PA, Mazzone A, Renaldi R et al. 2021. Cooling for sustainable development. Nat. Sustain. 4:3201–8
    [Google Scholar]
  171. 171.
    IEA (Int. Energy Agency) 2018. The Future of Cooling IEA Paris:
    [Google Scholar]
  172. 172.
    Falchetta G, Mistry MN. 2021. The role of residential air circulation and cooling demand for electrification planning: implications of climate change in sub-Saharan Africa. Energy Econ. 99:105307
    [Google Scholar]
  173. 173.
    Mastrucci A, Byers E, Pachauri S, Rao ND. 2019. Improving the SDG energy poverty targets: residential cooling needs in the Global South. Energy Build. 186:405–15
    [Google Scholar]
  174. 174.
    Pavanello F, De Cian E, Davide M, Mistry M, Cruz T et al. 2021. Air-conditioning and the adaptation cooling deficit in emerging economies. Nat. Commun. 12:16460
    [Google Scholar]
  175. 175.
    Khosla R, Agarwal A, Sircar N, Chatterjee D. 2021. The what, why, and how of changing cooling energy consumption in India's urban households. Environ. Res. Lett. 16:4044035
    [Google Scholar]
  176. 176.
    Zhang Y, Hu S, Yan D, Guo S, Li P. 2021. Exploring cooling pattern of low-income households in urban China based on a large-scale questionnaire survey: a case study in Beijing. Energy Build. 236:110783
    [Google Scholar]
  177. 177.
    Poblete-Cazenave M, Pachauri S. 2021. A model of energy poverty and access: estimating household electricity demand and appliance ownership. Energy Econ. 98:105266
    [Google Scholar]
  178. 178.
    Kar A, Pachauri S, Bailis R, Zerriffi H. 2020. Capital cost subsidies through India's Ujjwala cooking gas programme promote rapid adoption of liquefied petroleum gas but not regular use. Nat. Energy 5:125–26
    [Google Scholar]
  179. 179.
    Grabher HF, Rau H, Ledermann ST, Haberl H. 2023. Beyond cooking: an energy services perspective on household energy use in low and middle income countries. Energy Res. Soc. Sci. 97:102946
    [Google Scholar]
  180. 180.
    Prayas (Energy Group) 2021. PIER: modelling the Indian energy system through the 2020s Pune, India: Prayas (Energy Group)
    [Google Scholar]
  181. 181.
    Prayas (Energy Group) 2020. Energy consumption patterns in Indian households: insights from Uttar Pradesh and Maharashtra Pune, India: Prayas (Energy Group)
    [Google Scholar]
  182. 182.
    Balaras CA, Dascalaki EG, Droutsa KG, Kontoyiannidis S. 2016. Empirical assessment of calculated and actual heating energy use in Hellenic residential buildings. Appl. Energy 164:115–32
    [Google Scholar]
  183. 183.
    Bhan M, Gingrich S, Roux N, Le Noë J, Kastner T et al. 2021. Quantifying and attributing land use-induced carbon emissions to biomass consumption: a critical assessment of existing approaches. J. Environ. Manag. 286:112228
    [Google Scholar]
  184. 184.
    Sola A, Corchero C, Salom J, Sanmarti M. 2020. Multi-domain urban-scale energy modelling tools: a review. Sustain. Cities Soc. 54:101872
    [Google Scholar]
  185. 185.
    Creutzig F, Lohrey S, Bai X, Baklanov A, Dawson R et al. 2019. Upscaling urban data science for global climate solutions. Glob. Sustain. 2:e2
    [Google Scholar]
  186. 186.
    Peled Y, Fishman T. 2021. Estimation and mapping of the material stocks of buildings of Europe: a novel nighttime lights-based approach. Resour. Conserv. Recycl. 169:105509
    [Google Scholar]
  187. 187.
    Milojevic-Dupont N, Creutzig F. 2021. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64:102526
    [Google Scholar]
  188. 188.
    Biljecki F, Chew LZX, Milojevic-Dupont N, Creutzig F. 2021. Open government geospatial data on buildings for planning sustainable and resilient cities. arXiv:2107.04023 [cs]
  189. 189.
    Lanau M, Liu G. 2020. Developing an urban resource cadaster for circular economy: a case of Odense, Denmark. Environ. Sci. Technol. 54:74675–85
    [Google Scholar]
  190. 190.
    Li R, Crowe J, Leifer D, Zou L, Schoof J. 2019. Beyond big data: social media challenges and opportunities for understanding social perception of energy. Energy Res. Soc. Sci. 56:101217
    [Google Scholar]
  191. 191.
    Pauliuk S, Fishman T, Heeren N, Berrill P, Tu Q et al. 2021. Linking service provision to material cycles: a new framework for studying the resource efficiency-climate change (RECC) nexus. J. Ind. Ecol. 25:2260–73
    [Google Scholar]
  192. 192.
    Kim B, Yamaguchi Y, Kimura S, Ko Y, Ikeda K, Shimoda Y. 2020. Urban building energy modeling considering the heterogeneity of HVAC system stock: a case study on Japanese office building stock. Energy Build. 207:109590
    [Google Scholar]
  193. 193.
    Department for Business, Energy and Industrial Strategy 2017. National Household Model United Kingdom Gov., London.: https://data.gov.uk/dataset/957eadbe-43b6-4d8d-b931-8594cb346ecd/national-household-model
    [Google Scholar]
  194. 194.
    Kumar P, Natarajan R, Ashok K. 2021. Sustainable alternative futures for urban India: the resource, energy, and emissions implications of urban form scenarios. Environ. Res. Infrastruct. Sustain. 1:1011004
    [Google Scholar]
  195. 195.
    Taniguchi-Matsuoka A, Shimoda Y, Sugiyama M, Kurokawa Y, Matoba H et al. 2020. Evaluating Japan's national greenhouse gas reduction policy using a bottom-up residential end-use energy simulation model. Appl. Energy 279:115792
    [Google Scholar]
  196. 196.
    Chatterjee S, Kiss B, Ürge-Vorsatz D, Teske S. 2022. Decarbonisation pathways for buildings. Achieving the Paris Climate Agreement Goals S Teske 161–85. Cham, Switz: Springer
    [Google Scholar]
  197. 197.
    Fraunhofer ISI. 2022. FORECAST FORecasting Energy Consumption Analysis and Simulation Tool Fraunhofer ISI, Karlsruhe, Ger https://www.forecast-model.eu/forecast-en/index.php
    [Google Scholar]
  198. 198.
    RTE France. Energy pathways to 2050: key results Réseau de Transport d'Electricité (RTE) Paris: https://assets.rte-france.com/prod/public/2022-01/Energy%20pathways%202050_Key%20results.pdf
    [Google Scholar]
  199. 199.
    Zhou N, Khanna N, Feng W, Ke J, Levine M. 2018. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050. Nat. Energy 3:978–84
    [Google Scholar]
  200. 200.
    EPRI (Electr. Power Res. Inst.) 2020. US-REGEN model documentation Rep. 3002016601 EPRI Palo Alto, CA: https://www.epri.com/research/products/3002016601
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112321-102921
Loading
/content/journals/10.1146/annurev-environ-112321-102921
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error